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Abstract
In ad hoc teamwork, multiple agents need to collab-
orate without having knowledge about their team-
mates or their plans a priori. A common assump-
tion in this research area is that the agents cannot
communicate. However, just as two random people
may speak the same language, autonomous team-
mates may also happen to share a communication
protocol. This paper considers how such a shared
protocol can be leveraged, introducing a means to
reason about Communication in Ad Hoc Teamwork
(CAT). The goal of this work is enabling improved
ad hoc teamwork by judiciously leveraging the abil-
ity of the team to communicate. We situate our
study within a novel CAT scenario, involving tasks
with multiple steps, where teammates’ plans are
unveiled over time. In this context, the paper pro-
poses methods to reason about the timing and value
of communication and introduces an algorithm for
an ad hoc agent to leverage these methods. Finally,
we introduces a new multiagent domain, the tool
fetching domain, and we study how varying this do-
main’s properties affects the usefulness of commu-
nication. Empirical results show the benefits of ex-
plicit reasoning about communication content and
timing in ad hoc teamwork.

1 Introduction
Autonomous agents are becoming increasingly capable of
solving complex tasks, but encounter many challenges when
required to solve such tasks as a team. In many multiagent
tasks, the coordination strategy is either learned or decided a
priori while assuming full knowledge of the teammates and
the task at hand. However, as agents become more robust
and diverse, they are more likely to need to cooperate in new
situations without the ability to coordinate in advance. As
a topical example, service robots might be deployed to as-
sist medical teams in an epidemic outbreak. Such heteroge-
neous robots might be deployed without any prior coordina-
tion about each other’s capabilities to assist, but they will only
be effective if they are able to work together, and with the
medical team, without the need to be explicitly provided with
coordination strategies in advance.

This motivation is the basis for ad hoc teamwork, which
is defined as collaborating with teammates without pre-
coordination [Stone et al., 2010; Albrecht and Stone, 2018].
This terminology reflects that the collaboration is ad hoc –
the ways in which the agents learn, act and interact may be
quite principled. There are two main properties that distin-
guish ad hoc teamwork from other multiagent systems. First,
it assumes that all teammates strive to be collaborative [Stone
et al., 2010]. Second, the properties of the environment and
of the teammates cannot be changed by the ad hoc agent. Its
task is to reason and plan under these conditions.

Since agents engaged in ad hoc teamwork are developed
independently, it is commonly (and reasonably) not assumed
that they can communicate with one another. However, in
many real world situations, previously unfamiliar agents may
still share a communication protocol. In the medical emer-
gency example, once a robot is deployed, even if it does not
know the exact goals or plans of a physician in advance, they
may still be able to communicate using visual and audio sig-
nals, by choosing a legible plan [Kulkarni et al., 2019], or
even by altering the teammates’ achievable actions [Bisson
et al., 2011]. Barrett et al. [2014] considered a scenario in
which either teammates are assumed to share a common com-
munication protocol, or else this assumption can be quickly
tested on the fly (e.g. by probing). Their work was the first
to investigate an ad hoc agent’s reasoning over communica-
tion in ad hoc teamwork (CAT). However it was situated in a
very restrictive multiagent setting, namely a multi-arm ban-
dit, where each task was a single choice of which arm to pull.

The main contribution of this paper is a detailed study of
a much more general CAT scenario, that can model a service
robot that fetches different tools for a physician in a hospi-
tal [Cakmak and Thomaz, 2012]. The physician would nor-
mally prefer to avoid the additional cognitive load of commu-
nicating with the robot, but will answer an occasional ques-
tion from it so that the robot can be a better collaborator.
Based on this scenario’s core properties, we name it the Se-
quential One-shot MultiAgent Limited Inquiry CAT scenario,
or SOMALI CAT. In SOMALI CAT the agents execute se-
quential plans and only the ad hoc agent can inquire about a
teammate’s goal. SOMALI CAT was defined to be a broadly
representative class of CAT problems. Here we investigate
several questions that are common across all CAT problems:
(1) Potential: What are the cases where communication can



be useful? (2) Content: What should be communicated? (3)
Timing: When should the agent communicate? To answer
these questions in the context of SOMALI CAT, we provide
measures for the value of communication, which are moti-
vated by the value of information [Howard, 1966]. These
measures are utilized in a heuristic algorithm that can reason
about query content and timing to understand better the team-
mate’s plan while minimizing the total cost of execution.

As a secondary contribution, our empirical analysis intro-
duces a new multiagent domain, where different CAT prop-
erties can make communication more or less useful. In this
Tool Fetching domain, one agent visits a workstation while
the teammate fetches relevant tools for that station.

2 Related Work
We divide relevant research into three areas that involve
agents reasoning about other agents: ad hoc teamwork, com-
municating agents, and modeling other agents.
Ad Hoc Teamwork. Ad hoc teamwork was first introduced
as the challenge to create an autonomous agent that is able to
efficiently and robustly collaborate with previously unknown
teammates on tasks to which they are all individually capa-
ble of contributing as team members [Stone et al., 2010].
Subsequent works proposed to model teammates by mapping
them to one out of a set of types [Albrecht and Stone, 2017;
Ravula et al., 2019]. Our work is similar in the sense that we
represent the type of the teammate as its final goal. Wang
et al. [2020] recently proposed an Inverse Reinforcement
Learning technique to infer teammates’ goals on the fly when
no communication is available. Barrett et al. [2014] were the
first to reason about CAT, in the context of a multi-arm bandit
problem. Their work was later extended by Chakraborty et al.
[2017] to handle multiple decentralized ad hoc agents. There
have been several works on ad hoc agents that attempt to in-
fluence the behavior of their teammates [Stone et al., 2013;
Agmon and Stone, 2012]. Unlike our work, where the in-
teraction is done using explicit communication, these works
assume implicit communication or interaction via action
choices of the agents in episodic settings.
Communicating Agents. The concept of communicating
agents has been a fertile research area in the context of multi-
agent systems [Singh, 1998]. What makes ad hoc teamwork
with communication different from other works on commu-
nication in multiagent systems is that it takes the point of
view of a single agent trying to collaborate with teammates
with predefined policies: the single agent cannot change how
the teammates will respond to the communicated informa-
tion. In contrast, in general multiagent communication, the
agents are typically symmetrical in their ability to reason
about one another (distributed decision making). This point
of view shifts the challenges from the perspective of protocol
design, to the perspective of reasoning about other agents’
information states. For the rest of this section, we focus on
works that make a similar assumption. Reinforcement learn-
ing is a learning approach, where the agent actively tries new
things rather than following a fixed policy [Epshteyn et al.,
2008]. Various works investigated communication mecha-
nisms to facilitate learning. Several works allow the learning

agent to accept critique [Griffith et al., 2013] or advice [Lowe
et al., 2017; Torrey and Taylor, 2013; Amir et al., 2016;
Kapourchali and Banerjee, 2019; Roth et al., 2006]. In these
works, the information is given by a teacher and the other
agent passively integrates it. With recent developments in
deep learning, several works were proposed for a sub-area
of multiagent systems, where agents share information us-
ing learned communication protocols [Hernandez-Leal et al.,
2019; Mordatch and Abbeel, 2018; Foerster et al., 2016].
These works make several assumptions not used in this work:
that the agents can learn new communication skills, and that
the agent trains with its teammates before execution.

Modeling other Agents. Another related research area is
goal recognition, where an observer is required to recognize
the goal of an actor given a sequence of observed actions.
A common assumption in goal recognition is the keyhole as-
sumption, that the actor is unaware of the observer [Kautz and
Allen, 1986], an assumption that does not hold in our work.
Several other works broke this assumption as well, either in
order to communicate when there is ambiguity [Mirsky et al.,
2018], by performing actions in an attempt to assist the other
agent [Fern et al., 2007] or disambiguate between hypothe-
ses [Shvo and McIlraith, 2020], or by influencing the other
agent to take a specific course of action [Bisson et al., 2011].
These works did not quantify the value of a specific query,
nor did they provide an algorithm that can leverage this value
for planning in collaboration with the other agent.

3 SOMALI CAT
The rest of this paper focuses on the SOMALI CAT scenario.
In this scenario, there are two agents: the ad hoc agent that we
design and its teammate. The teammate has a goal in mind (a
task to be executed out from a set of possible tasks) and the ad
hoc agent needs to assist that teammate, by helping with the
task execution. The ad hoc agent is able to ask the teammate
about its goal in which case the teammate will incur a cost
by always responding. We define SOMALI CAT using the
following properties:

Environment. The task performed requires a sequence of
actions. It is also an episodic, one-shot task. The environment
is static, deterministic, and fully observable.

Teammate. A teammate that is assumed to have perfect
knowledge about the environment. It is assumed to plan opti-
mally, given that it is unaware of the ad hoc agent’s plans or
costs. We cannot change its learning or reasoning capabili-
ties.

Communication Channel. There is one communication
channel, where the ad hoc agent can query as an action, and if
it does, the teammate will forgo its action to reply truthfully
(the communication channel is noiseless).

To explain and exemplify our definitions in the SOMALI
CAT problem, we introduce a specific domain: the tool fetch-
ing domain. This domain is inspired by the crafting environ-
ment [Devin et al., 2019], with the main difference being that
there are two agents and only one of them can pick up tools.
The domain is a discrete-action world. It contains n station-
ary workstations and one toolbox with k different tools. Each



Figure 1: An example of the tool fetching domain. W , F and T are
the locations of the worker, fetcher and toolbox respectively. The lo-
cations of the workstations are represented by the numbered squares.
The circles show which zone each of the paths belong to (See sec-
tion 5 for more information on the zones). The hollow red circles
show the steps that belong only to the Zone of Information. The
thick green circles show the steps that only belong to the Zone of
Plan Branching. The blue disks show the steps that belong to the
Zone of Querying.

workstation requires a unique set of tools to work in – in our
implementation, we use k = n and each workstation requires
exactly one tool. The two agents in the environment are: an
ad hoc agent, the fetcher, and a teammate, the worker. Tools
can only be picked up by the fetcher. The worker’s task is
to use some workstation, while the fetcher’s task is to bring
the required tools as quickly as possible to that (initially un-
known) workstation.

An agent can change its position during the game by exe-
cuting one of the following actions: U for moving up, D for
moving down, R for moving right, L for moving left, or N
for staying put. The Fetcher may also pick up a tool (T ) or
ask a question (Q). The format of the questions we evalu-
ate are “What is your goal workstation?” and “Is your goal
in G′?” where G′ is a subset of workstations. These queries
were chosen because they can replace any type of query that
disambiguates between potential goals (e.g. “Is your goal on
the right?”, “What are your next k actions?”), as long as we
know how to resolve this ambiguity based on the response. A
worker must respond immediately (and truthfully) to a ques-
tion (R), which causes it to lose the opportunity to execute
any other action. At each timestep, both agents decide sep-
arately upon an action they are interested in performing. A
conflict can only occur if the fetcher asks a question (Q),
which forces the worker to perform a replying action (R) in-
stead of executing its planned action.

The problem ends successfully when both agents have
reached some workstation, and the fetcher holds the relevant
tool. The transitions are deterministic, and in our setup only
one object can be held at a time – if the fetcher picks up a tool
while holding another one, the old one automatically drops in
the square of the pickup. Pickup has no effect unless the agent
is at the same position as a tool. Figure 1 shows a running ex-
ample of the tool fetching domain, with the agents at their
initial locations.

4 Query Potential
In this section we define the Query Potential, or the maximum
gain from querying in a CAT domain relative to that domain’s

minimal cost without querying. We consider a domain model
in CAT to be a set of actions for both the teammate (AT )
and the ad hoc agent (AA), a set of queries (Q ⊆ AA) and a
cost function (C) that maps joint plan execution of the agents
(denoted C(pA, pT )) to R.

We assume that the teammate has a plan (pT ) that is unaf-
fected by the ad hoc agent, but the ad hoc agent’s plan is con-
tingent on the teamate’s actions (πA). Given these assump-
tions, the optimal behavior of the ad hoc agent with respect to
C, under the constraint of asking exactly k queries (Q ⊆ AA)
can be defined as a function of the teammate’s plan and k:
(πA : A∗T × N → A∗A). This function is the trace of the op-
timal policy for the ad hoc agent, given its uncertainty over
the teammate’s plan. Due to this uncertainty, the trace may
include actions such as waiting, querying, or backtracking.

Intuitively, the value of querying in a domain is the maxi-
mal gain that can be obtained by querying. We therefore now
define the query potential of a domain D = {AT , AA, C} as:

P (D) = max
pT∈A∗T

C(pT , πA(pT , 0))−min
k≥1

C(pT , πA(pT , k))

C(pT , πA(pT , 0))
(1)

If the cost of the optimal plan with and without the best
possible query are the same, then the query potential is 0. If
there is a query that can improve the total expected cost of
the ad hoc agent’s execution, then its potential is a positive
value, and if all queries can only worsen the total cost, then
its potential is negative. It might seem reasonable that if the
query potential of a domain is positive, and all queries have
the same cost, then querying about all goals right in the be-
ginning of the task is the optimal behavior. However, in the
next section we disprove this notion and present upper and
lower bounds on the best timing of a query.

5 Query Content and Timing
We now consider the scenario where we want to evaluate the
value of a specific query in our environment. Intuitively, the
value of a query depends on the time when it is asked. For
instance in our example domain, any query that is asked af-
ter the worker (the teammate) reaches a station is worthless,
since the goal is already clear from the worker’s actions. In
general, for any plan of the teammate there is some time t
where its goal becomes clear from its actions. Keren et al.
[2014] formalize this notion as the Worst Case Distinctive-
ness (wcd), or the maximal amount of time an optimal plan
can be ambiguous between two goals.
Definition 1. The wcd between goals i and j for an agent,
wcd(i, j), is the length of the longest shared prefix of some
plans pi, pj for that agent that are optimal for goals i and j
respectively.

In this work, we define the wcd between goals i and j
for the teammate as wcdT (i, j) and for the ad hoc agent as
wcdA(i, j). The wcd values for both the teammate and the
ad hoc agent in our running example are: wcdT (1, 2) = 9,
wcdT (1, 3) = 3, wcdT (2, 3) = 5, wcdA(i, j) = 6 when
i 6= j. If the worker follows the dashed line to station 1, as
shown in Figure 1, then it is impossible to tell that the goal is



not station 2 until a very late stage of the worker’s plan exe-
cution. The length of this shared prefix is the wcdT between
stations 1 and 2, since any other path will disambiguate be-
tween stations 1 and 2 sooner. When the fetcher considers a
query that disambiguates between goal gi and goal gj (e.g. “is
gi your goal?” or “what is your goal?”), it knows that this in-
formation will be revealed without querying after wcdT (i, j)
timesteps, where wcdT (i, j) is the wcd for disambiguating
between goal i and goal j of the teammate, by observing its
actions.

Using this insight, we can define the times at which the ad
hoc agent will gain information by querying about goals i, j:

Definition 2. The Zone of Information for two goals i, j is
ZI(i, j) = {t|t ≤ wcdT (i, j)}.

After wcdT (i, j), no new information can be gained from
querying about gi versus gj .

As an additional insight, it is not unlikely that there ex-
ists two or more optimal plans for the ad hoc agent such that
there is significant overlap between the plan executions for gi
and gj . Let us consider the maximal point in time t such that
there exists a common plan prefix of optimal plans for goals
gi and gj . t is the wcdA of the ad hoc agent’s plans. Consider
the running example, where no matter what is the goal of its
teammate, the ad hoc agent must first reach the toolbox in or-
der to fetch a tool. This means that the ad hoc agent’s actions
up until the 6th timestep are the prefix of an optimal plan to
either goal.

Given that two optimal plans can be identical up to a given
timestep, no new information about the teammate’s goal can
require a change of plan until after this time has passed. We
can then calculate the period of time at which our plan can
still be improved without additional expected cost:

Definition 3. The Zone of Plan Branching for two goals i, j
is ZB(i, j) = {t|t ≥ wcdA(i, j)}.

As thewcdA considers the worst-case, it is possible that the
teammate reveals its goal before that timestep, hence query-
ing about the teammate’s goal before the ad hoc agent is
required to commit to a specific goal cannot decrease (and
might increase) the total cost of the ad hoc agent’s plan ex-
ecution. As we require both the ability to improve our plan,
and the ability to gain information, we can define the period
of time where we are able to gain value from querying with-
out committing to a plan that can incur a penalty:

Definition 4. The Zone of Querying of two goals i, j is
ZQ(i, j) = ZI(i, j) ∩ ZB(i, j).

Figure 1 shows a representation of each zone in our running
example. We mark the locations of the agents at different
timesteps, given that the teammate executes the plan with the
longest shared prefix between the plan for workstation 1 and
the plan for workstation 2.

We can further expand this term to define the zone of
querying for a query that disambiguates a set of goals, G′,
from G \ G′. In order to define this value, we consider the
joint space in which some query can provide useful informa-
tion without executing an action that is only relevant to goals

in one of the sets G \G′ or G′ and not to goals in the other:

ZQ(G
′) =

⋃
i∈G′,j 6∈G′

ZI(i, j) ∩
⋃

i∈G′,j 6∈G′
ZB(i, j) (2)

Intuitively, a query qG′ can have a benefit only as long as
the teammate’s sequence of executed actions is a prefix of two
or more optimal plans for goals disambiguated by the query,
and the ad hoc agent’s next action deviates from an optimal
plan for at least one of the goals in G′. This means that the
first timestep inside ZQ(G

′) is the first timestep at which both
(1) the ad hoc agent might execute a wrong action and (2)
there might still be some ambiguity regarding the goal of the
teammate.
Definition 5. The Critical Querying Point (CQP) about a set
of goals G′ ( G is the first timestep inside ZQ of G′.

CQP (G′) =

argmin
t∈ZQ(G′)

t if ZQ(G
′) 6= ∅

−1 otherwise
(3)

In our running example, the critical querying points are
CQP ({1}) = CQP ({2}) = CQP ({1, 3}) = 6, and
CQP ({3}) = −1. Next, we propose a heuristic planning al-
gorithm for the ad hoc agent that considers the critical query-
ing points to ask about each subset of goals G′ ( G, and
chooses the first timestep that is a CQP for some G′, and
queries “Is your goal in G′?”

6 Query Algorithm
In this section, we present an algorithm for planning the ad
hoc agent’s actions while reasoning about the zones of query-
ing for a set of goals, in order to determine when to query.
This algorithm comprises three parts: (1) Calculating wcdT
and wcdA for all pairs of goals and keeping these values in a
matrix; (2) Calculating ZQ for multiple goals; and (3) Using
this information to determine when and what to query.
Calculating worst case distinctiveness values. In addition
to formalizing wcd, Keren et al. [2014] also provide an effi-
cient method for calculating the wcd of 2 goals. ZQ for any
two goals is merely the interval from wcdA to wcdT , which
can be identified via a matrix lookup.
Calculating ZQ for multiple goals. Calculating ZQ for
more than two goals is significantly more complicated. First,
for a set of goals G′ ( G, we calculate ZB(G

′) and ZI(G
′):

ZB(G
′) = {t | t ≥ min

i∈G′,j 6∈G′
wcdA[gi, gj ]} (4)

ZI(G
′) = {t | t ≤ max

i∈G′,j 6∈G′
wcdT [gi, gj ]} (5)

Given ZB(G
′) and ZI(G

′), the value of ZQ(G
′) is calcu-

lated using Equation 2, by taking the intersection of all unions
of ZB and ZI for goals i, j such that i ∈ G′ and j ∈ G \G′.
Determining When to Query. As we have shown how to
calculate ZQ for a set of goals, we can now leverage this in-
formation to determine when to query. As mentioned above
the CQP corresponds to the first point in ZQ, which is the op-
timal time to query about a set of goals. In addition, we know



Algorithm 1 Calculate CQP for a set of goals G′

procedure CALCULATE WHEN TO QUERY FOR G′(G, the
global set of goals, G′, the goals to query about)

initialize(wcdT , wcdA)
ZB ← [ min

i∈G′,j 6∈G′
wcdA[gi, gj ],∞)

ZI ← [0, max
i∈G′,j 6∈G′

wcdT [gi, gj ]]

ZQ ← ZB ∩ ZI

if |ZQ| > 0 then
return min(ZQ)

else
return -1

that we cannot gain value from a query to disambiguate goals
whose ZQ = ∅. We finalize this strategy in Algorithm 1.
After calculating ZQ for all G′, an informed ad hoc agent
will choose to query at the earliest CQP for any G′, and will
choose a query that disambiguates G′ from G \ G′, such as
“is your goal in G′?”1. In our domain, the minimal CQP is
the same value for all G′ such that CQP (G′) 6= −1.

7 Empirical Results
The purpose of our experiments is twofold: (1) to method-
ically investigate the effects of query timing, content, and
querying strategy on the performance of our example domain;
and (2) to empirically demonstrate that the strategies based on
ZQ hold in general for different setups of the domain.

In all experiments, the goal of the worker is defined as
the station it plans to visit, and unless stated otherwise, that
goal is randomly chosen at the beginning of each simula-
tion episode. We evaluate the total cost of the episode as the
timesteps it takes for the ad hoc agent to reach that station.

7.1 Timing Effect on Cost
The first experiment was designed to methodically evaluate
the benefit of a query at varying timesteps, by enumerating
all possible decisions made by the teammate and the ad hoc
agent. The ad hoc agent is allowed to query at most once, and
only if there is still ambiguity between goals. If the agent is
uncertain about the teammate’s goal and is not set to query
until some future point, it waits before picking up a tool that
might be incorrect (This behavior is the optimal policy for the
ad hoc agent given its uncertainty of the teammate’s goal).

Figure 2 shows the average and worst case number of
timesteps in the ad hoc agent’s plan. The top, middle, and
lower graphs represent a scenario where the teammate’s true
goal is station 1, 2 or 3 respectively. The x-axis is the timestep
in which the query “what is your goal?” can be asked, and the
y-axis shows the average number of timesteps it took the ad
hoc agent to complete its plan, where each point is an average
across all optimal plans. The results of these graphs together
represent all optimal paths that the teammate can follow. The
top part of each graph shows ZQ, ZB , and ZI for the query.

As presented earlier, not asking a question at all (point X in
the graphs) can potentially have a better value than querying

1We conjecture that it is an optimal policy for this type of queries
given equiprobable goals, but it is not necessarily optimal otherwise.

Figure 2: The effect of query timing on the ad hoc agent’s plan.

if the teammate executes a plan that disambiguates its goal
at an early stage, but the variance of using such a strategy is
high and in the worst case can lead to bad values.

In each graph for goal i, up until the CQP ({i}), we see
a plateau in the worst case values - the ad hoc agent might
waste a timestep on querying, but it will be certain of the
teammate’s goal by the time it reaches the toolbox and has to
make a decision about the tool to pick up. After the CQP
the worst-case increases, as the potential number of waiting
steps, up until it reaches the end of ZI where there is no am-
biguity about the teammate’s goal. When looking at the av-
erage case, querying at the CQP at timestep 6 has the low-
est value. Earlier queries are sometimes redundant when the
teammates chooses a path that disambiguates its goal before
the CQP . Later queries might cause the ad hoc agent to wait
at the toolbox until the goal of the teammate is clear. The bot-
tom graph, where the teammate’s goal is 3, is an interesting
case since ZQ({3}) = ∅, so there is no gain from querying.

7.2 Query Content Effect on Cost
Figure 3 shows another methodical evaluation of all enumer-
ated optimal plans, but instead of varying the timing, we var-
ied the possible content of the queries the ad hoc agent can
ask. In this experiment, the ad hoc agent can only ask one
question. The x-axis shows the outcome of using different
queries - Never means that no query is asked, First(x) and
CQP(x) respectively mean that the query that was asked is
“Is your goal workstation x?” for x ∈ 1, 2, 3 in the beginning
of the episode or at the CQP{x}. First(All) and CQP(All)
respectively mean that the query was “What is your goal?” in
the beginning of the episode or at the CQP{G} for all goals.
The y-axis shows the average additional number of timesteps
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Figure 3: The effect of query content on the ad hoc agent’s plan.

Figure 4: An instance of the domain used in our experiments. The
fetcher (agent on the left) travels to the toolbox while the worker
(agent on the right) moves downwards. When the fetcher arrives at
the toolbox, it already knows the worker is not traveling to any of the
stations (shown by the colored squares) above the dashed line since
the worker has been moving downwards. Thus the fetcher should
only query about stations below the dashed line.

compared to an optimal plan. As seen in this figure, the
best strategy is to ask a query that disambiguates goals that
share the highest wcdT values — in our case, a query that
disambiguates between workstations 1 and 2 at their CQP :
CQP (1), CQP (2), or CQP (All).

7.3 Algorithmic Evaluation
Figure 5 shows an evaluation of our algorithm, that queries
in the beginning of the joint ZQ for any two goals (which in
our case is when it reaches the toolbox). This algorithm was
compared to the following baselines: Random - starts query-
ing at a random timestep; First - starts querying at the first
timestep; Never - never queries. The queries for the First,
Random, and ZQ strategies were chosen randomly from “Is
your goal in G′?” for G′ ⊆ G. In addition, we guaranteed
that G′ consists of half the worker’s potential goals to ensure
maximum information gain. The query “What is your goal?”
is omitted as the marginal cost is constant (the cost of that
query) when this query is allowed. We evaluated these ap-
proaches on 100 different domain instances, where in each
instance we have a 50x50 grid with 400 stations. The stations
were clustered in groups of 4 as 2 by 2 squares, with the lo-
cation of each cluster chosen at random. Figure 4 shows an
example of a domain instance. Each domain was tested with
a randomly chosen target station, and the worker’s plan was
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Figure 5: Average performance of different algorithms in 100 ran-
domized tool-fetching simulations.

chosen randomly from the set of optimal plans. Each algo-
rithm in this experiment has two variations: ZQ-1, First-1,
Random-1 query once, while ZQ-All, First-All, Random-All
continue to ask new queries (each with half the remaining
possible goals) at every time step after they have started un-
til the teammate’s goal is clear. As seen in this figure, the
ZQ − All approach performs best, with an average of 3.65
steps more than a perfect plan (if the ad hoc agent had com-
plete knowledge of the teammate’s goal), where the next best
approach that is not based on ZQ takes an average of 7.25
steps more than a perfect plan. The average length of a per-
fect plan was 65 timesteps. The results for ZQ(All) were sig-
nificantly better than from all others (p-values of the t-tests
for each algorithm with ZQ(All) were < 0.01).

8 Conclusions

In this paper, we investigated a type of CAT problem, which
we refer to as SOMALI CAT. We defined the querying poten-
tial of a domain and presented the boundaries at which query-
ing in a domain can be beneficial. We introduced a testbed
for SOMALI CAT, and our empirical results show the ben-
efit of leveraging knowledge about these boundaries both in
our running example and on randomly generated setups. This
work is a first step towards a thorough investigation of CAT
problems. We plan on extending this work to other scenarios
inside and outside of the SOMALI CAT context, such as sce-
narios with stochastic transitions, where the task is repetitive
rather than one-shot, or with suboptimal teammates.
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