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Abstract
Deep reinforcement learning (DRL) agents are
trained through trial-and-error interactions with the
environment. This leads to a long training time
for dense neural networks to achieve good perfor-
mance. Hence, prohibitive computation and mem-
ory resources are consumed. Recently, learning ef-
ficient DRL agents has received increasing atten-
tion. Yet, current methods focus on accelerating
inference time. In this paper, we introduce for
the first time a dynamic sparse training approach
for deep reinforcement learning to accelerate the
training process. The proposed approach trains a
sparse neural network from scratch and dynami-
cally adapts its topology to the changing data dis-
tribution during training. Experiments on contin-
uous control tasks show that our dynamic sparse
agents achieve higher performance than the equiv-
alent dense methods, reduce the parameter count
and floating-point operations (FLOPs) by 50%, and
have a faster learning speed that enables reaching
the performance of dense agents with 40− 50% re-
duction in the training steps.

1 Introduction
Deep reinforcement learning (DRL) has achieved remarkable
success in many applications. The power of deep neural net-
works as function approximators allows RL agents to scale to
environments with high-dimensional state and action spaces.
This enables high-speed growth in the field and the rise of
many methods that improve the performance and stability of
DRL agents [Wang et al., 2020]. While the achieved per-
formance is impressive, a long training time is required to
obtain this performance. For instance, it took more than 44
days to train a Starcraft II agent using 32 third-generation ten-
sor processing units (TPUs) [Vinyals et al., 2019]. The very
long training time leads to high energy consumption and pro-
hibitive memory and computation costs. In this paper, we
ask the following question: Can we provide efficient DRL
agents with less computation cost and energy consumption
while maintaining superior performance?

Few recent works attempt to accelerate the inference time
of DRL agents via pruning [Livne and Cohen, 2020] or train-

ing a compact network under the guidance of a larger net-
work (knowledge distillation) [Zhang et al., 2019]. Despite
the computational improvement achieved at inference, exten-
sive computations throughout the training of dense networks
are still consumed. Our goal is to accelerate the training pro-
cess as well as the inference time of DRL agents.

The long training time of a DRL agent is due to two main
factors: (1) the extensive computational cost of training deep
neural networks caused by the very high number of network
parameters [Jouppi et al., 2017] and (2) the learning nature of
a DRL agent in which its policy is improving through many
trial-and-error cycles while interacting with the environment
and collecting a large amount of data. In this paper, we intro-
duce dynamic sparse training (DST) [Mocanu et al., 2021;
Hoefler et al., 2021] in the DRL paradigm for the first time to
address these two factors1. Namely, we propose an efficient
training approach that can be integrated with existing DRL
methods. Our approach is based on training sparse neural net-
works from scratch with a fixed parameter count throughout
training (1). During training, the sparse topology is optimized
via adaptation cycles to quickly adapt to the online changing
distribution of the data (2). Our training approach enables re-
ducing memory and computation costs substantially. More-
over, the quick adaptation to the new samples from the im-
proving policy during training leads to a faster learning speed.

In fact, the need for neural networks that can adapt, e.g.,
change their control policy dynamically as environmental
conditions change, was broadly acknowledged by the RL
community [Stanley, 2003]. Although prior works related to
the automatic selection of function approximation based on
neuroevolution exist [Heidrich-Meisner and Igel, 2009], per-
haps the most connected in the spirit to our proposed method
is a combination of NeuroEvolution of Augmenting Topolo-
gies (NEAT) [Stanley and Miikkulainen, 2002] and tempo-
ral difference (TD) learning (i.e., NEAT+Q [Whiteson and
Stone, 2006]). Still, the challenge remains, and cutting-edge
DRL algorithms do not account for the benefits of adaptive
neural networks training yet.

Our contributions in this paper are as follows:

• The principles of dynamic sparse training are introduced

1Code is available at: https://github.com/GhadaSokar/Dynamic-
Sparse-Training-for-Deep-Reinforcement-Learning. The extended
version of this paper is available at https://arxiv.org/abs/2106.04217.



in the deep reinforcement learning field for the first time.

• Efficient improved versions of two state-of-the-art algo-
rithms, TD3 [Fujimoto et al., 2018] and SAC [Haarnoja
et al., 2018a], are obtained by integrating our proposed
DST approach with the original algorithms.

• Experimental results show that our training approach
reduces the memory and computation costs of training
DRL agents by 50% while achieving superior perfor-
mance. Moreover, it achieves a faster learning speed,
reducing the required training steps.

• Analysis insights demonstrate the promise of dynamic
sparse training in advancing the field and allowing for
DRL agents to be trained and deployed on low-resource
devices (e.g., mobile phones, tablets, and wireless sensor
nodes) where the memory and computation power are
strictly constrained.

2 Related Work
Sparsity in DRL. To the best of our knowledge, the cur-
rent advance in deep reinforcement learning is achieved us-
ing dense neural networks. Few recent studies have intro-
duced sparsity in DRL via pruning. PoPS [Livne and Co-
hen, 2020] first trains a dense teacher neural network to learn
the policy. This dense teacher policy network guides the it-
erative pruning and retraining of a student policy network
via knowledge distillation. In [Zhang et al., 2019], the au-
thors aim to accelerate the behavior policy network and re-
duce the time for sampling. They use a smaller network for
the behavior policy and learn it simultaneously with a large
dense target network via knowledge distillation. GST [Lee
et al., 2021] was proposed as an algorithm for weight com-
pression in DRL training by simultaneously utilizing weight
grouping and pruning. Some other works [Yu et al., 2019;
Vischer et al., 2021] studied the existence of the lottery ticket
hypothesis [Frankle and Carbin, 2018] in RL, which shows
the presence of sparse subnetworks that can outperform dense
networks when they are trained from scratch. Pruning dense
networks increases the computational cost of the training pro-
cess as it requires iterative cycles of pruning and retraining.
This work introduces the first efficient training algorithm for
DRL agents that trains sparse neural networks directly from
scratch and adapts to the changing distribution.

Dynamic Sparse Training (DST). DST is the class of al-
gorithms that train sparse neural networks from scratch and
jointly optimize the weights and the sparse topology dur-
ing training. This direction aims to reduce the computation
and memory overhead of training dense neural networks by
leveraging the redundancy in the parameters (i.e., being over-
parametrized) [Denil et al., 2013]. Efforts in this line of re-
search are devoted to supervised and unsupervised learning.
The first work in this direction was proposed by [Mocanu et
al., 2018]. They proposed a Sparse Evolutionary Training
algorithm (SET) that dynamically changes the sparse con-
nectivity during training based on the values of the connec-
tions. SET achieves higher performance than dense models
and static sparse networks trained from scratch. The suc-
cess of the SET algorithm opens the path to many interest-

ing DST methods that bring higher performance gain. These
algorithms differ from each other in the way the sparse topol-
ogy is adapted during training [Mostafa and Wang, 2019;
Evci et al., 2020; Jayakumar et al., 2020; Liu et al., 2021;
Sokar et al., 2021].

In this work, we adopt the topological adaptation from the
SET method in our proposed approach. The motivation is
multifold. First, SET is simple yet effective; it achieves the
same or even higher accuracy than dense models with high
sparsity levels across different architectures (e.g., multi-layer
perceptrons, convolutional neural networks, restricted Boltz-
mann machines). Second, unlike other DST methods that use
the values of non-existing (masked) weights in the adaptation
process, SET uses only the values of existing sparse connec-
tions. This makes SET truly sparse and memory-efficient [Liu
et al., 2020]. Finally, it does not need high computational re-
sources for the adaptation process. It uses readily available
information during the standard training. These factors are
favorable for our goal to train efficient DRL agents suitable
for real-world applications. We leave evaluating other topo-
logical adaptation strategies for future work.

3 Proposed Method
In this section, we describe our proposed method, which in-
troduces dynamic sparse training for DRL. Here, we focus on
integrating our training approach with one of the state-of-the-
art DRL methods; Twin Delayed Deep Deterministic policy
gradient (TD3) [Fujimoto et al., 2018]. We named our new
approach Dynamic Sparse TD3 or “DS-TD3” for short. TD3
is an efficient DRL method that offers good performance in
many tasks [Shi et al., 2020; Woo et al., 2020]. Yet, our
approach can be merged into other DRL methods as well.
The integration with soft actor-critic (SAC) [Haarnoja et al.,
2018a] is presented in the extended version of the paper.

TD3 is an actor-critic method that addresses the overesti-
mation bias in previous actor-critic approaches. In actor-critic
methods, a policy π is known as the actor, and a state-value
function Q is known as the critic. Target networks are used
to maintain fixed objectives for the actor and critic networks
over multiple updates. In short, TD3 limits the overestimation
bias using a pair of critics. It takes the smallest value of the
two critic networks to estimate the Q value to provide a more
stable approximation. To increase the stability, TD3 proposed
a delayed update of the actor and target networks. In addition,
the weights of the target networks are slowly updated by the
current networks by some proportion τ . In this work, we aim
to dynamically train the critics and actor networks along with
their corresponding target networks from scratch with sparse
neural networks to provide efficient DRL agents. In the rest
of this section, we will explain our proposed DST approach
for TD3. The full details are also provided in Algorithm 1.

Our proposed DS-TD3 consists of four main phases:
sparse topology initialization, adaptation schedule, topolog-
ical adaptation, and maintaining sparsity levels.

Sparse Topology Initialization (Algorithm 1 L1-L4).
TD3 uses two critic networks (Qθ1 , Qθ2 ) and one actor net-
work (πϕ) parameterized by θ1 = {θl

1}|Ll=1, θ2 = {θl
2}|Ll=1,

and ϕ = {ϕl}|Ll=1 respectively; where L is the number of



layers in a network. We initialize each of the actor and critic
networks with a sparse topology. Sparse connections are allo-
cated in each layer between the hidden neurons at layer l − 1
and layer l. We represent the locations of the sparse connec-
tions by a binary mask M = {M l}|Ll=1. Following [Mocanu
et al., 2018], we use Erdős–Rényi random graph [Erdos et al.,
1960] to initialize a sparse topology in each layer l. Namely,
the probability of a connection j in layer l is given by:

p(M j) = λln
l + nl−1

nl × nl−1
, (1)

where λl is a hyperparameter to control the sparsity level in
layer l, and nl−1 and nl are the neurons count in layers l − 1
and l, respectively. M j ∈ {0, 1}; a value of 1 means the ex-
istence of a weight in location j. We omit the index l from the
mask and weight matrices for readability. A sparse topology
is created in each layer for the actor and critic networks:

ϕ = ϕ⊙Mϕ,

θi = θi ⊙Mθi , ∀i ∈ {1, 2}, (2)

where⊙ is an element-wise multiplication operator and Mϕ,
Mθ1 , and Mθ2 are binary masks to represent the sparse
weights in the actor and two critic networks, respectively. The
initial sparsity level is kept fixed during the training.

The target policy and target critic networks are parameter-
ized by ϕ′, θ′

1, and θ′
2, respectively. Initially, the target net-

works have the same sparse topology and the same weights
as the current networks: ϕ′ ← ϕ, θ′

1 ← θ1, θ′
2 ← θ2.

After the topological and weight initialization, the agent
collects enough data before training using a purely ex-
ploratory policy. During training, for each time step, TD3
updates the pair of critics towards the minimum target value
of actions selected by the target policy πϕ′ :

y = r + γ min
i=1,2

Qθ′
i
(s′, πϕ′(s′) + ϵ), (3)

where γ is the discounting factor, r is the current reward, s′
is the next state, and ϵ ∼ clip(N (0, σ̃),−c, c) is the proposed
clipped noise by TD3, defined by σ̃, to increase the stability;
where c is the clipped value. As discussed, TD3 proposed to
delay the update of the policy network to first minimize the
error in the value network before introducing a policy update.
Therefore, the actor network is updated every d steps with
respect to Qθ1 as shown in Algorithm 1 L17-L19.

During the weight optimization of the actor and critic net-
works, the values of the existing sparse connections are only
updated (i.e., the sparsity level is kept fixed). The sparse
topologies of the networks are also optimized during training
according to our proposed adaptation schedule.
Adaptation Schedule. The typical practice in DST meth-
ods applied in the supervised setting is to perform the dy-
namic adaptation of the sparse topology after each training
epoch. However, this would not fit the RL setting directly
due to its dynamic learning nature. In particular, an RL agent
faces instability during training due to the lack of a true tar-
get objective. The agent learns through trial and error cycles,
collecting the data online while interacting with the environ-
ment. Adapting the topology very frequently in this learn-
ing paradigm would limit the exploration of effective topolo-
gies for the data distribution and give a biased estimate of the

Algorithm 1 DS-TD3 (λl, η, e, N , τ , d)

1: Initialize critic networks Qθ1 , Qθ2 and actor network πϕ

with sparse parameters θ1, θ2, ϕ with a sparsity level
defined by λl:

2: Create Mϕ, Mθ1 , and Mθ2 with Erdős–Rényi graph
3: θ1 ← θ1⊙Mθ1 , θ2 ← θ2⊙Mθ2 , ϕ← ϕ⊙Mϕ

4: Initialize target networks θ′
1 ← θ1, θ′

2 ← θ2, ϕ′ ← ϕ
5: Initialize replay buffer B
6: for t = 1 to T do
7: Select action with exploration noise a ∼ πϕ(s) + ϵ,
8: ϵ ∼ N (0, σ) and observe reward r and new state s′

9: Store transition tuple (s, a, r, s′) in B
10: Sample mini-batch of N transitions from B
11: ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
12: y ← r + γmini=1,2 Qθ′

i
(s′, ã)

13: θi ← argminθi

1
N

∑
(y −Qθi

(s, a))2

14: if t mod e then
15: θi ← TopologicalAdaptation(θi,Mθi , η) (Algo. 2)
16: end if
17: if t mod d then
18: Update ϕ by the deterministic policy gradient:
19: ∇ϕJ(ϕ)← 1

N

∑
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

20: if t mod e then
21: ϕ ← TopologicalAdaptation(ϕ,Mϕ, η) (Algo.

2)
22: end if
23: Update target networks:
24: θ′

i ← τθi + (1− τ)θ′
i

25: ϕ′ ← τϕ+ (1− τ)ϕ′

26: θ′
i ←MaintainSparsity(θ′

i, ∥θi∥0) (Algo. 3)
27: ϕ′ ←MaintainSparsity(ϕ′, ∥ϕ∥0) (Algo. 3)
28: end if
29: end for

current one. To address this point, we propose to delay the
adaptation process and perform it every e time steps, where
e is a hyperparameter. This would allow the newly added
connections from the previous adaptation process to grow.
Hence, it would also give better estimates of the connections
with the least influence in the performance and an opportu-
nity to explore other effective ones. Analysis of the effect of
the adaptation schedule in the success of applying dynamic
sparse training in the RL setting is provided in Section 4.2.

Topological Adaptation (Algorithm 2). We adopt the
adaptation strategy of the SET method [Mocanu et al., 2018]
in our approach. The sparse topologies are optimized accord-
ing to our adaptation schedule. Every e steps, we update the
sparse topology of the actor and critic networks. Here, we
explain the adaptation process on the actor network as an ex-
ample. The same strategy is applied for the critic networks.

The adaptation process is performed through a “drop-and-
grow” cycle which consists of two steps. The first step is
to drop a fraction η of the least important connections from
each layer. This fraction is a subset (cp) of the smallest posi-
tive weights and a subset (cn) of the largest negative weights.
Thus, the removed weights are the ones closest to zero. Let
ϕ̃p and ϕ̃n be the cp-th smallest positive and the cn-th largest



Algorithm 2 Topological Adaptation ( X , M , η)

1: c← η ∥X∥0
2: cp ← c/2 ; cn ← c/2

3: X̃p ← get cp-th smallest positive(X)

4: X̃n ← get cn-th largest negative(X)

5: M j ←M j − 1[(0 < Xj < X̃p) ∨ (0 > Xj > X̃n)]
6: Generate c random integers {x}|c1
7: M j ←M j + 1[(j == x) ∧ (Xj == 0)]
8: X ←X ⊙M

Algorithm 3 Maintain Sparsity (X , k)

1: X̃ ← Sort Descending(|X|)
2: M j = 1[|Xj | − X̃k ≥ 0],∀j ∈ {1, ... ∥X∥0}
3: X = X ⊙M

negative weights, respectively. The mask Mϕ is updated to
represent the dropped connections as follows:
M j

ϕ = M j
ϕ − 1[(0 < ϕj < ϕ̃p) ∨ (0 > ϕj > ϕ̃n)], ∀j ∈ {1, ..., ∥ϕ∥0}, (4)

where M j
ϕ is the element j in Mϕ, 1 is the indicator func-

tion, ∨ is the logical OR operator, and ∥.∥0 is the standard
L0 norm. The second step is to grow the same fraction η of
removed weights in random locations from the non-existing
weights in each layer. Mϕ is updated as follows:

M j
ϕ = M j

ϕ + 1[(j == x) ∧ (ϕj == 0)], ∀j ∈ {1, .., ∥ϕ∥0}, (5)
where x is a random integer generated from the discrete uni-
form distribution in the interval [1, n(l−1) × (nl)] and ∧ is
the logical AND operator. The weights of the newly added
connections are zero-initialized (ϕ = ϕ⊙Mϕ).
Maintain Sparsity Level in Target Networks (Algorithm
3). TD3 delays the update of the target networks to be per-
formed every d steps. In addition, the target networks are
slowly updated by some proportion τ instead of making the
target networks exactly match the current ones (Algorithm
1 L23-L25). These two points lead to a slow deviation of
the sparse topologies of the target networks from current net-
works. Consequently, the slow update of the target networks
by τ would slowly increase the number of non-zero connec-
tions in the target networks over time. To address this, after
each update of the target networks, we prune the extra con-
nections that make the total number of connections exceed the
initial defined one. We prune the extra weights based on their
smallest magnitude. Assume we have to retain k connections.
The target masks of the actor (M ′

ϕ′ ) and critics (M ′
θ′
1
, M ′

θ′
2
)

are calculated as follows:
M ′j

ϕ′ = 1[|ϕ′j | − ϕ̃′k ≥ 0], ∀j ∈ {1, ..., ∥ϕ′∥0},

M ′j
θ′
i
= 1[|θ′j

i | − θ̃′k
i ≥ 0], ∀j ∈ {1, ..., ∥θ′

i∥0}, ∀i ∈ {1, 2},
(6)

where ϕ̃′k and θ̃′
i

k
is the k-th largest magnitude in the actor

and critics respectively, and |(.)j | is the magnitude of element
j in the matrix. The target networks are updated as follows:

ϕ′ = ϕ′ ⊙M ′
ϕ′ ,

θ′
i = θ′

i ⊙M ′
θ′
i
∀i ∈ {1, 2}.

(7)

Environment TD3 Static-TD3 DS-TD3 (ours) SAC

HalfCheetah-v3 1.7686 1.7666 1.9560 1.7297
Walker2d-v3 0.5264 0.5167 0.6956 0.6128
Hopper-v3 0.4788 0.4984 0.5435 0.5572
Ant-v3 0.5524 0.5807 0.6623 0.7969
Humanoid-v3 0.3635 0.5182 0.6089 0.5639

Table 1: Learning curve area (LCA) (× 5000) of different methods.

4 Experiments and Results
In this section, we assess the efficiency of our proposed dy-
namic sparse training approach for the DRL paradigm and
compare it to state-of-the-art algorithms. Experimental set-
tings are provided in the extended version of the paper.
Baselines. We compare our proposed DS-TD3 against the
following baselines: (1) TD3 [Fujimoto et al., 2018], the orig-
inal TD3 where dense networks are used for actor and critic
models, (2) Static-TD3, a variant of TD3 where the actor
and critic models are initialized with sparse neural networks
which are kept fixed during training (i.e., there is no topo-
logical optimization), and (3) SAC [Haarnoja et al., 2018b],
a popular off-policy algorithm in which the policy is trained
to maximize a trade-off between expected return and entropy
which results in policies that explore better.
Benchmarks. We performed our experiments on MuJoCo
continuous control tasks, interfaced through OpenAI Gym.
We evaluate our proposed approach on five challenging en-
vironments (HalfCheetah-v3, Hopper-v3, Walker2d-v3, Ant-
v3, and Humanoid-v3).
Metrics. We use multiple metrics to assess the efficiency
of the studied DRL methods: (1) Return which is the stan-
dard metric used in DRL to measure the performance of an
agent, (2) Learning curve area (LCA) which estimates the
learning speed of a model (i.e., how quickly a model learns)
[Chaudhry et al., 2018] by measuring the area under the train-
ing curve of a method, (3) Network size (#params) which
measures the memory cost via the number of network pa-
rameters, and (4) Floating-point operations (FLOPs) which
estimate the computational cost required for training. It is
the typical metric in the literature to compare a DST method
against its dense counterpart. Details are in the extended ver-
sion of the paper.

4.1 Results
Learning Behavior and Speed. Figure 1 shows the learn-
ing curve of studied methods. DS-TD3 has a much faster
learning speed than the baselines, especially at the begin-
ning of the training. After 40-50% of the steps, DS-TD3
can achieve the final performance of TD3. Static-TD3 does
not have this favorable property which reveals the importance
of optimizing the sparse topology during training to adapt
to the incoming data. The learning behavior of DS-TD3 is
also faster than SAC in all environments except one. Table
1 shows the learning curve area (LCA) of each method. DS-
TD3 has higher LCA than TD3 and static-TD3 in all environ-
ments. It is also higher than SAC in three environments out
of five. This metric is important to differentiate between two
agents with similar final performance but very different LCA.
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Figure 1: Learning curves of the studied algorithms on different continuous control tasks. The shaded region represents the standard deviation
of the average evaluation over 5 runs.

Method HalfCheetah-v3 Walker2d-v3 Hopper-v3 Ant-v3 Humanoid-v3

TD3 11153.48±473.29 4042.36±576.57 2184.78±1224.14 4287.69±1080.88 3809.15±1053.40
Static-TD3 10583.84±307.03 3951.01±443.78 3570.88±43.71 4148.61±801.34 4989.47±546.32
DS-TD3 (ours) 11459.88±482.55 4870.57±525.33 3587.17±70.62 5011.56±596.95 5238.16±121.71
SAC 11415.23±357.22 4566.18±448.25 3387.36±148.73 5848.64±385.85 5518.61±97.03

Table 2: Average return (R) over the last 10 evaluations of 1 million time steps.

Performance. Table 2 shows the average return (R) over
the last 10 evaluations. DS-TD3 outperforms TD3 in
all environments. Interestingly, it improves TD3 perfor-
mance by 2.75%, 20.48%, 64.18%, 16.88%, and 37.51%
on HalfCheetah-v3, Walker2d-v3, Hopper-v3, Ant-v3, and
Humanoid-v3 respectively. Static-TD3 has a close perfor-
mance to TD3 in most cases except for Humanoid-v3, where
Static-TD3 outperforms TD3 by 30.98%. DS-TD3 has a bet-
ter final performance than SAC in three environments.

4.2 Analysis
Memory and Computation Costs
We analyze the costs needed for the training process by cal-
culating the FLOPS and #params for the actor and critics.
We performed this analysis on Half-Cheetah-v3. #params for
dense TD3 is 214784, which requires 1×(1.07e14) FLOPs to
train. With our DS-TD3, we can find a much smaller topology
that can effectively learn the policy and the function value,
achieving higher performance than TD3 with a sparsity level
of 51%. This consequently reduces the number of required
FLOPs to 0.49×(1.07e14).

Adaptation Schedule
We analyze the effect of the adaptation schedule on the per-
formance. In particular, we ask how frequently the sparse
topology should be adapted? We performed this analysis on

HalfCheetah-v3. Figure 2a shows the learning curves of DS-
TD3 using different adaptation schedules controlled by the
hyperparameter e (Section 3). Adapting the topology very
frequently (e ∈ {200, 500}) would not allow the connections
to grow and learn in the dynamic changing nature of RL.
The current adaptation process could remove some promis-
ing newly added connections from the past adaptation pro-
cess. This would be caused by a biased estimate of a connec-
tion’s importance as it becomes a factor of the length of its
lifetime. Hence, the very frequent adaptation would increase
the chance of replacing some promising topologies. With less
frequent adaptation cycles, e = 1000 (the setting from the pa-
per), DS-TD3 can learn faster and eventually achieves higher
performance than other baselines. Giving the connections a
chance to learn helps in having better estimates of the impor-
tance of the connections. Hence, it enables finding more ef-
fective topologies by replacing the least effective connections
with ones that better fit the data. However, increasing the gap
between every two consecutive adaptation processes to 2000
steps decreases the exploration speed of different topologies.
As illustrated in the figure, DS-TD3 with e = 2000 has a
close learning behavior and final performance to TD3. Yet, it
still offers a substantial reduction in memory and computation
costs. This analysis reveals the importance of the adaptation
schedule in the success of introducing DST to the DRL field.
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Figure 2: The learning curves of DS-TD3 on HalfCheetah-v3 using
different adaptation schedules (a) and sparsity levels (b).

Sparsity Level
We analyze the performance of our proposed method using
different sparsity levels. Figure 2b shows the learning curves
of the dense TD3 and DS-TD3. By removing 25% of the con-
nections and training the sparse topology dynamically using
DS-TD3, we can achieve a faster learning speed and a perfor-
mance increase of 2.11%. More interestingly, with a higher
reduction in the size of the networks by 50%, we achieve a
much faster learning speed. However, when the network has
a very high sparsity level (i.e., 80%), it fails to learn effective
representations for the reinforcement learning setting. Learn-
ing DRL agents using very high sparse networks is still an
open-challenging task.

Learning Behavior and Speed
DRL agents learn through trial-and-error due to the lack of
true labels. An agent starts training with samples gener-
ated from a purely exploratory policy, and new samples are
drawn from the learning policy over time. Our results show
that dynamic sparse agents have faster adaptability to the
newly improved samples, thanks to the generalization ability
of sparse neural networks [Hoefler et al., 2021]. This leads
to higher learning speed, especially at the beginning of the
training. We hypothesize that dense neural networks, being
over-parameterized, are more prone to memorize and overfit
the inaccurate samples. A longer time is required to adapt to
the newly added samples by the improved policy and forget
the old ones.

To validate this hypothesis, we analyze the behavior of a
dense TD3 agent when it starts training with samples gener-
ated from a learned policy instead of a purely exploratory one.
We use two learned policies trained for 5 × 105 and 7 × 105

steps to draw the initial samples (see the extended version of
the paper). We performed this experiment on HalfCheetah-
v3. As illustrated in Figure 3, the learning speed of DS-TD3
and TD3 becomes close to each other at the beginning. After-
ward, DS-TD3 performs better than TD3 since the new sam-
ples are generated from the current learning policies. With
initial samples drawn from more improved policy (Figure 3b),
dense TD3 learns faster. It achieves higher performance than
the dense baseline that starts learning with samples drawn
from the policy trained for 5 × 105 steps (Figure 3a). On
the other hand, DS-TD3 is more robust to over-fitting, less
affected by the initial samples, and quickly adapt to the im-
proved ones over time.
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Figure 3: Learning curves of agents that start training with samples
drawn from policies trained for 5× 105 (a) and 7× 105 steps (b).

5 Conclusion
Introducing dynamic sparse training principles to the deep re-
inforcement learning field provides an efficient training pro-
cess for DRL agents. Our dynamic sparse agents achieve
higher performance than the state-of-the-art methods while
reducing the memory and computation costs by 50%. Opti-
mizing the sparse topology during training to adapt to the in-
coming data increases the learning speed. Our findings show
the potential of dynamic sparse training in advancing the
DRL field. This would open the path to efficient DRL agents
that could be trained and deployed on low-resource devices
where memory and computation are strictly constrained.
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