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Fig. 11. The exploratory behaviors used by the robot. The look
action is not depicted.

In a preliminary experiment, the robot explored 32
common household and office objects including various
containers, cups, toys, and so on. The robot’s behavior
repertoire consists of seven different exploratory actions:
grasp, lift, hold, lower, drop, push, and press. During the
execution of each action the robot recorded visual, auditory
and haptic sensory feedback. In addition, the robot is also
equipped with the static look behavior which captures the
object’s visual appearance before the robot begins to inter-
act with it. Figure 11 shows the exploratory actions used by
the robot.

During the execution of the look behavior, the robot’s
visual system segments the 3D point cloud of the object
from the tabletop and computes color histogram features
in RGB space, shape histogram features as implemented by
Rusu et al. (2009), and deep visual features computed by the
16-layer VGG network proposed by Simonyan and Zisser-
man (2014). During the execution of each of the remaining
seven exploratory behaviors, the robot computes auditory
and haptic features as described by Sinapov et al. (2014).
In addition, when performing the grasp behavior, the robot
used the same methodology to extract proprioceptive fea-
tures capturing how the fingers’ joint positions change over
time.

A more detailed description of the objects and data col-
lection methods used for this dataset can be found in a
paper on object ordering using haptic and proprioceptive
behavior (Sinapov et al., 2016).

8.2. Social learning stage

To learn words describing individual objects, our robot uses
a variation on the children’s game “I Spy”. During each
game session, the human and the robot take turns describ-
ing objects from among four on a tabletop, as shown in
Figure 12. On the human’s turn, the robot asks him or her
to pick an object and describe it in one phrase. The robot
subsequently attempts to guess which object matches the
words heard from the human. To do so, over the course of

Fig. 12. (Left) The robot guesses an object described by a human
participant as “silver, round, and empty.” (Right) A human partici-
pant guesses an object described by the robot as “light,” “tall,” and
“tub.”

multiple sessions the robot learns a behavior-grounded clas-
sifier for each word that it observes using the methodology
of Sinapov et al. (2014). Given the words uttered by the
human, the robot then picks the object that has the high-
est scores from the classifiers corresponding to the words.
To indicate its pick, the robot moves the arm, points to the
object, and asks the human if the choice is correct.

During the robot’s turn, an object is chosen at random
from those on the table and described by the robot using
three words corresponding to the three classifiers with the
highest score for that object. The robot then asks the human
to make a guess by physically touching or lifting the object.
After a correct guess, the robot asks questions about the
object in the form of “would you use the word x to describe
the object?” where x is one of the words that the robot has
observed.

8.3. Experiment

To test our system, we conducted an experiment involv-
ing 42 human participants, consisting of undergraduate and
graduate students, staff, and faculty. To measure the robot’s
learning progress over time, we divided an object set into
four folds. For each fold, at least 10 participants each played
four rounds of “I Spy” with the robot. After each fold, the
robot’s classifiers were re-trained using the newly gathered
data, and new classifiers were created for words that were
novel to that fold.

We measured the number of guesses it took the robot
and the human to correctly identify the object during their
respective turns. The experiment was conducted under two
conditions: vision-only, during which the robot attempts to
ground words using only visual sensory feedback detected
during the look behaviors, and multi-modal, during which
the robot used all available sensory feedback from all
behaviors.

8.4. Results

By the end of the experiment, the robot had learned
behavior-grounded classifiers for around 70 words that the
participants used to describe objects (Thomason et al.,
2016). Most noticeably, in the multi-modal condition, there
was a statistically significant decrease in the number of
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Fig. 13. Average expected number of guesses the robot made on
each human turn with standard error bars shown. Bolded num-
bers: Significantly lower than the average at fold 0 with p < 0.05
(unpaired student’s t-test). *: Significantly lower than the compet-
ing system on this fold on participant-by-participant basis with
p < 0.05 (paired student’s t-test).

guesses it took the robot to identify the object as a result
of the robot’s interactive game-play experience. During the
first fold, it took the robot an average of 2.5 guesses to solve
each task. During the second fold, the robot was able to
identify the object with an average of 1.98 guesses, which
dropped to 1.73 during the third fold.

Figure 13 details these results. Because we had access
to the scores the robot assigned each object, we calculated
the expected number of robot guesses for each turn. For
example, if all four objects were tied for first, the expected
number of robot guesses for that turn was 2.5, regardless
of whether it got (un)lucky and picked the correct object
(last)first. (The expected number for four tied objects is 2.5
because the probability of picking in any order is equal, so
the expected turn to get the correct object is 1+2+3+4

4 =
10
4 = 2.5.)

A close look at the classifiers learned by the robot showed
that for many words, such as “full,” “empty,” and “heavy,”
visual features alone were insufficient for accurate ground-
ing. Using the framework for grounding semantic cate-
gories proposed by Sinapov et al. (2014), the robot was
able to estimate the reliability of particular combinations
of a sensory modality and a behavior for the task of rec-
ognizing whether a particular word fits an object. These
estimates show that for words describing the internal state
of objects, the robot largely relied on the haptic sensory
feedback produced when manipulating the object. Words
describing the shape (e.g. “cylindrical”) and color of the
object were in turn best recognized using visual features.
Auditory features were most useful for words denoting the
object’s material (e.g. “metal” vs. “plastic”) as well as com-
pliance (e.g. objects that are “soft” produce less sound when
dropped and pushed).

To demonstrate the effectiveness of multi-modal ground-
ing quantitatively, we obtained agreement scores between
the multi-modal versus vision-only classifiers with human
labels on objects. Training the predicate classifiers using
leave-one-out cross validation over objects, we calculated
the average precision, recall, and F1 scores of each against

Table 3. Average performance of predicate classifiers used by the
vision-only and multi-modal systems in leave-one-object-out cross
validation.

Metric System

Vision-only Multi-modal
Precision .250 .378a

Recall .179 .348b

F1 .196 .354b

aSignificantly greater than competing system with p < 0.05.
b p < 0.1 (student’s un-paired t-test).

human predicate labels on the held-out object. Table 3 gives
these metrics for the 74 predicates used by the systems.9

Across the objects our robot explored, our multi-modal
system achieves consistently better agreement with human
assignments of predicates to objects than does the vision-
only system.

Ongoing and future work will focus on expanding our
service robots’ ability to learn about objects from humans.
While our focus thus far was on a game-play scenario in
which participants were brought to the lab, we envision that
in the near future our robot will be able to autonomously
find people and engage in dialogue with the propose of
learning. Towards that goal, we are currently implement-
ing a system for autonomous object exploration and fetch-
ing which will enable a robot to find an interesting object,
explore it, and finally engage a person in dialogue about the
object for the purpose of grounded language acquisition.

9. Robot-centric human activity recognition

In the research contributions described in the previous sec-
tions, the robot aims to understand human intention via
direct means such as spoken or written commands speci-
fied in natural language. For a robot to effectively function
in a human-inhabited environment, it would also be useful
for it to be aware of the activities and intentions of humans
around it based on its own observations. For example, con-
sider the case where a BWIBot is navigating a crowded
environment such as an undergraduate computer lab. If the
robot could recognize when a person needs help, or when
a person is trying to approach or engage it (or avoid it), its
social and navigational skills would improve dramatically.
In this section, we describe a research contribution which
explores how human activity can be recognized, making it
possible for a BWIBot to understand the intent of humans
in its vicinity.

To address visual activity recognition, the computer
vision research community has produced a wide array of
methods for recognizing human activities (see Aggarwal
and Ryoo, 2011, for a review). Most relevant to our work
are studies in which the video is captured by a robot. Such
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studies are relatively new and include the works of Chrun-
goo et al. (2014), Xia et al. (2015), Ryoo and Matthies
(2013), and Ryoo et al. (2015). This existing work is sub-
ject to several limitations: (1) the activities were not carried
out spontaneously but rather, were rehearsed or commanded
by the experimenters; (2) the activities were performed by a
small number of people, typically five to eight; (3) the robot
was typically either stationary or teleoperated.

Our work on activity recognition overcomes these lim-
itations in several important ways. First, our robot uses
its autonomous navigation capability in a large, unstruc-
tured, and human-inhabited environment, as opposed to
a laboratory. Second, the activities learned by our robot
were performed spontaneously by many different people
who interacted with (or were observed by) the robot, as
opposed to the standard methodology of asking study par-
ticipants to perform certain actions. And third, in contrast to
classic computer vision approaches, our system uses both
visual and non-visual cues when recognizing the activities
of humans that it interacts with.

Next, we describe the robot’s activity recognition sys-
tem and present experimental results conducted from a
week long experiment in which the BWIBot autonomously
patrolled through an undergraduate and a graduate stu-
dent lab via randomly generated planning tasks. Video cap-
tured during this experiment was then processed offline to
categorize different human activities.

9.1. Overview of activity recognition system

We formulate the problem of activity recognition as a multi-
class classification problem; that is, the robot has to recog-
nize an observed activity as one of k activity classes. As
input, the robot is given some visual and non-visual sensory
feature descriptors computed from the set of frames during
which the robot’s sensor detected and tracked a person.

To perform human detection and tracking, the robot uses
the KinectV2, as explained in Section 3.4. The Kinect SDK
is capable of simultaneously detecting and tracking up to
six people at a time, as well as estimating the positions of
21 joint markers corresponding to joints such as the neck,
shoulders, waist, elbows, knees, and so on. Whenever a new
person is detected by the robot, the robot’s system recorded
a sequence of RGB images, I ∈ R

512×424×3×t, a sequence
of depth images D ∈ R

512×424×t, and a sequence of joint
markers, J ∈ R

21×3×t, where t is the number of frames
during which the system detected and tracked the person.

The raw image and joint-marker data are too highly
dimensional to be used as direct input to standard classifica-
tion algorithms. To reduce dimensionality, we implemented
five different visual feature extraction algorithms:

• covariance of the joint positions over time (COV) as
described by Hussein et al. (2013);

• histogram of the joints in 3D (HOJ3D) as described by
Xia et al. (2011);

• pairwise joint relation matrix features (PRM) as
described by Gori et al. (2015);

• histogram of direction vectors (HODV) as described by
Chrungoo et al. (2014);

• histogram of oriented 4D normals (HON4D) as
described by Oreifej and Liu (2013).

Each of these methods computes a real-valued feature
vector for each frame in a given sequence of joint-marker
data or depth image data. To further reduce dimensionality,
the feature vectors that were extracted for each frame were
quantized using k-means and represented using the bag-
of-words model (BoW). Thus, each sequences of frames
was represented as a single feature vector encoding the
distribution of visual “words.”

In addition to visual features, our system also uses non-
visual data as input to the activity recognition classifier. We
hypothesized that the types of activities that humans may
perform in front of the robot may be influenced by the dis-
tance between the robot and the person. In addition, it is
likely that different activities may be more likely to occur at
different locations in the robot’s environment (e.g. the activ-
ity of sitting down on a desk is more likely to be observed
in the open lab area where there are many desks as opposed
to a hallway). Therefore, as described in Gori et al. (2015),
we added three additional non-visual features:

• human–robot velocity features representing the move-
ment of the person with respect to the robot;

• human–robot distance features representing the dis-
tance between the human and the robot;

• robot location features representing the robot’s pose (i.e.
position and orientation) in the map over the course of
the observation.

The non-visual features were also computed for each
frame of each observation, quantized with k-means, and
represented using the BoW model. Note that these non-
visual features are specific to our robot and our environment
and, thus, the learned activity recognition model may not
always be applicable on a different robot in a different build-
ing. Figure 14 shows an overview of the activity recognition
system.

9.2. Experimental evaluation and results

The robot’s activity recognition system was evaluated
by collecting a dataset over the course of the robot’s
autonomous navigation of the environment, which con-
sisted of a graduate and an undergraduate student lab, con-
nected by two door ways. The robot traversed the environ-
ment for 1–2 hours per day, for six days, traveling a total
of 14.03 km. After the observations were recorded, each
detection of a person was manually labeled with one of sev-
eral activity labels: approach, block, pass by, take picture,
side pass, sit, stand, walk away, wave, false. The label false
corresponded to false detections by the Kinect SDK, which
typically corresponded to fixed objects in the environment.
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Fig. 14. An overview of the robot’s activity recognition system. As the robot navigates the environment, it uses the Kinect sensor to
detect humans in its environment. Subsequently, the robot computes visual and non-visual features for each detection, quantizes the
features, and uses them as an input to a support vector machine for activity recognition.

In total, there were 1204 detections, each labeled with one
of the 10 activity classes.

The classifier implemented by our activity recognition
system was a non-linear support vector machine using the
X 2 kernel function. Other kernel functions (e.g. Gaussian
and polynomial) and other classifiers (e.g. Naive Bayes,
C4.5 decision tree) achieved comparable results. The clas-
sifier’s performance was evaluated using stratified six-fold
cross-validation, which was performed 10 different times
with random fold splits. The dataset is very imbalanced
with respect to the activity labels (i.e. some activities are
much more common than others) and, therefore, the perfor-
mance was measured in terms of Cohen’s kappa coefficient
(Cohen, 1960) which compares the classifier’s accuracy
against chance accuracy:

K = Pr( a)−Pr( e)

1− Pr( e)
,

where Pr( a) is the probability of correct classification
by the classifier, and Pr( e) is the probability of correct
classification by chance. A kappa of 1.0 corresponds to
a perfect classifier, while 0.0 corresponds to a classifier
that randomly assigns class labels based on the prior label
distribution.

Figure 15 shows the results of the cross-validation test
with five different visual feature descriptors and two dif-
ferent conditions: visual features only, and visual features

Fig. 15. Activity recognition results using five different visual
feature descriptors (described in Section 9.1) under two different
conditions: visual features only, and visual + non-visual features.
The error bars represent standard error.

concatenated with non-visual features. The HON4D visual
feature descriptor performs the best out of all five—unlike
the rest which are computed from joint-marker data, the
HON4D descriptor is computed from the saved depth image
sequences which may explain why it performs substantially
better (a drawback to the HON4D descriptor is that it is
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much more computationally expensive to compute than the
rest). Adding the three non-visual features to the repre-
sentation improves the SVM’s performance and, depend-
ing on the visual descriptor, the improvement can be quite
substantial and significant.

In ongoing and future work, we are exploring how the
robot’s activity recognition system can be used for activity-
aware autonomous navigation. For example, if the robot
recognizes that a person is taking a picture of it, it would
be intuitive for it to pause its current task and motion for
a moment. In addition, while the existing system focuses
only on activities performed by individual persons, we plan
to extend it by adding the ability to learn about interactions
between multiple people performing activities in relation to
each other and/or the robot. We believe that enabling a robot
to learn and reason about the activities of people around it
has the potential to greatly improve its ability to navigate
around and interact with people, particularly in large and
crowded environments.

10. Conclusion

In this paper, we have presented an overview of the BWI-
Bots, both from a hardware and software perspective. We
have also outlined how these robots have enabled research
on a variety of projects pertaining to robot reasoning, action
planning, and HRI. Specifically, the first research contribu-
tion presented in this paper has demonstrated how action
language BC can be used construct a planning and action
execution system that is able to express defeasible reason-
ing and recursively defined fluents. The second contribution
has integrated probabilistic and symbolic reasoning for con-
structing a spoken dialog system that uses commonsense
reasoning to resolve queries efficiently. The third and fourth
contributions have looked into how requests in natural lan-
guage can be interpreted by a robot, how these requests can
be grounded in a robot’s perception and actions. Finally,
the last contribution investigates how human activity can
be categorized from afar.

While all the research contributions presented in this
paper are used for single-robot applications, one of the
main goals behind the development of the BWIBots is to
enable multi-robot research and applications. When multi-
ple robots share a physical environment, their plans might
interact such that their independently computed optimal
plans become suboptimal at runtime. Toward achieving
the global optimality in a multirobot system, the robots
need to compute plans to simultaneously share limited
domain resources and realize synergy within the robot
team. However, robots’ noisy action durations pose a chal-
lenge to achieve such robot behaviors. In our ongoing
research, we are investigating algorithms for multi-robot
planning while considering the uncertainty in noisy action
durations (Zhang et al., 2016).

Another multi-robot application that we intend to work
on is a real-world implementation of a multi-robot human

guidance system (Khandelwal et al., 2015). In this previ-
ous work, we have explored how multiple robots in simu-
lation can be coordinated to efficiently guide a human to
his destination, while simultaneously minimizing the time
each robot is diverted from other duties to do so. A real-
world implementation of this work helps verify many mod-
eling assumptions made in the simulation, and helps explore
how robots can effectively provide instructions with less
ambiguity to people.

In addition to multi-robot research, we expect that the
current and future BWIBots will continue to support
research on HRI and other areas of AI and robotics. Our
long-term goal is for the BWIBots to be an always-on, per-
manent fixture in the UT Austin Computer Science build-
ing, such that inhabitants of and visitors to the building
expect to interact with them and find them useful and enter-
taining. We hope that this article will help inspire and
inform other such systems throughout the world.
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Notes

1. Defeasible reasoning allows a planner to draw tentative con-
clusions which can be retracted based on further evidence.

2. The RMP 50 is no longer available for sale.
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3. 80/20 framing has already been used on other research robots
such as the Cobot (Veloso et al., 2015).

4. Parts larger than 20”×12” were split to fit on the cutting bed,
and then joined together using joining plates from 80/20 Inc.

5. http://www.qt.io/.
6. https://github.com/mleonetti/actasp.
7. https://github.com/utexas-bwi/.
8. The use of PDDL axioms allows PDDL to encode indirect

and recursive action effects (Thiébaux et al., 2003), but this
feature is typically not tested in the International Planning
Competition, where different PDDL solvers are evaluated.

9. There were 53 predicates shared between the two systems. The
results in Table 3 are similar for a paired t-test across these
shared predicates with slightly reduced significance.
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