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Abstract Human beings are a largely untapped source of
in-the-loop knowledge and guidance for computational learn-
ing agents, including robots. To effectively design agents
that leverage available human expertise, we need to under-
stand how people naturally teach. In this paper, we describe
two experiments that ask how differing conditions affect a
human teacher’s feedback frequency and the computational
agent’s learned performance. The first experiment consid-
ers the impact of a self-perceived teaching role in contrast
to believing one is merely critiquing a recording. The sec-
ond considers whether a human trainer will give more fre-
quent feedback if the agent acts less greedily (i.e., choos-
ing actions believed to be worse) when the trainer’s recent
feedback frequency decreases. From the results of these ex-
periments, we draw three main conclusions that inform the
design of agents. More broadly, these two studies stand as
early examples of a nascent technique of using agents as
highly specifiable social entities in experiments on human
behavior.
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1 Introduction

Before agents begin learning a task, much engineering by
technical experts goes into the agents’ task-specific designs.
However, human beings are a largely untapped source of
knowledge and guidance during the learning process. We
aim to create agents with relatively natural interfaces that
allow anyone—including non-programmers—to guide the
learning process of an agent. But to effectively design such
agents, we need to understand how people naturally teach.

In this paper, we ask how human teachers can be af-
fected by changes in their beliefs and in the pupils’ behav-
iors. Specifically, we examine effects on the frequency with
which teachers give feedback and the quality of the behavior
learned from their feedback. We describe two experiments,
each of which addresses this question by using a computa-
tional agent as the pupil of a human subject. The agents, de-
scribed in Section 2, are built within the TAMER framework
for agents that can be shaped by human trainers’ reward and
punishment signals [18]. For these experiments, we vary the
conditions under which the humans teach and then look for
differences in training statistics and agent performance.

In what we call the critique experiment, which tests the
impact of taking on the role of teacher, there are two con-
ditions: one in which subjects know the agent is learning
from their feedback and another in which subjects believe
they are merely critiquing a recording of a learning agent.
We predicted that the participants’ assumed roles would af-
fect what the agents learn from the resulting feedback and
the frequency at which trainers give feedback. Against our
intuitions, the results of the critique experiment indicate that
changing the trainer’s role has little on these two dependent
variables. These results suggest that either the quality of the
trainers’ feedback was not greatly altered by whether they
considered themselves to be teaching or that the learning
agents were robust to such changes in training.
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Attempting to directly study the relationship between
trainer engagement and the agent’s learned task performance,
we conducted a second experiment wherein the agent in one
condition directly responds to changes in recent feedback
frequency. This experiment, called the feedback-frequency
experiment, considers whether a human trainer will give feed-
back more frequently if the agent acts less greedily (i.e.,
“exploring” or choosing actions believed to be worse) when
the trainer’s recent feedback frequency decreases. The re-
sults indicate that tying non-greedy action to a trainer’s feed-
back frequency increases the overall frequency—and thus,
the number of learning samples available. However, the ef-
fect on performance is unclear, which we discuss later. The
feedback-frequency experiment yields two contributions that
inform the design of agents than can learn from human teach-
ers.

First, these results provide a strategy for increasing trainer

engagement—lowering performance, especially when engage-

ment drops—that could be incorporated in any agent that
learns from a human teacher. Traditionally, learning agents
receive feedback from encoded objective functions, called
“reward functions” in reinforcement learning (RL) [34]; re-
ward functions give regular feedback after each discrete time
step. But human teachers are more complex than an encoded
objective function—creating new challenges for learning—
and yet can be more effective, especially given their ability
to adapt to their pupils. The experiment described here adds
to the currently small base of knowledge on how to create
agents whose learning algorithms and behavior are designed
with a respect for human trainers’ strengths and limitations.

The second contribution of the feedback-frequency ex-
periment is a proof-by-example that the common practice
of categorizing all actions as either exploitation—greedily
choosing actions currently thought to be best for the task—
or exploration—trying other actions to learn whether they
are actually superior—is insufficient when a human is in the
learning loop. Since the human is reacting and adapting to
the agent, the agent can take actions to intentionally affect
the human’s behavior. Rather than exploiting to get the high-
est appraisal or exploring to try new actions, the agent’s ac-
tions might instead be used to communicate to, or even re-
inforce behavior of, the human trainer.

Additionally, this paper comprises a more general con-
tribution. Social agents, including social robots, provide an
emerging opportunity to study human social behavior [6,
9]. A computational agent’s behavior can be parametrized
and recorded much more thoroughly than can a human’s be-
havior. Thus such studies allow more controlled conditions
at the potential cost of less authentic interactions, yielding
a different perspective from studies that use humans oppo-
site the subjects, a perspective that has its own strengths and
weaknesses. As our final contribution, these experiments il-
lustrate this new experimental method, providing an instan-

tiation of the previously unexplored version in which the
agent learns during an interaction that is itself affected by
the learning (i.e., socially-guided machine learning [36]).
Also, we discuss the motivation for studying human behav-
ior through human-agent interaction in the context of these
experiments.

The remainder of the paper is organized as follows. In
Section 2, we describe the learning paradigm and algorithm
used in the experiment. Section 3 explains the experimen-
tal designs and results, which are then discussed in Sec-
tion 4 along with our observations from the general practice
of studying human behavior with interactive agents. Sec-
tion 2.1 contains a discussion of related work.

2 Background and related work

In this section, we motivate our experiments, first by dis-
cussing related work in Section 2.1. Then in Section 2.2 we
give the background on TAMER and the task that the TAMER
agents are taught.

2.1 Related work
2.1.1 Agents learning from human teachers

The field of agents that learn from humans is young but al-
ready has a rich and varied literature. The most commonly
studied mode of teaching is demonstration, for which Argall
et al. [3] wrote an excellent survey. Successes of learning
by demonstration include the domains of autonomous driv-
ing [27], multi-robot coordination [8], robot soccer [13], and
helicopter flight [1]. Other modes, though given less atten-
tion, have also been studied: learning from advice [24,21],
learning from numeric feedback or reward [15,37,18,40],
and allowing the human to shape the agent’s learning en-
vironment, facilitating the learning process [32,38]. For a
more thorough review of the general topic of agents learn-
ing from human teachers, we refer the reader to Knox and
Stone [18].

The concept of an agent using actions to affect a human
teacher, though usually left out of the conversation about
such human-oriented learning agents, has been explored pre-
viously. Nicolescu and Mataric [25] speak of “communica-
tion by acting,” which is using behavior to communicate in-
tentions and needs. They specifically consider how a robot
can ask for help after failure and conduct experiments in
which the robot repeatedly tries to execute a failed behav-
ior to signal a need for help. A difference between their ap-
proach and ours is that, in their work, the human’s requested
assistance comes after learning, so the robot improves its
current performance through assistance but it does not im-
prove its autonomous performance.
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2.1.2 How humans teach

The general question of how humans teach has been studied
extensively. We review some of the more relevant work here.

Some work has specifically examined how humans teach
social robots or other agents. Thomaz and Cakmak [38] ex-
amined how people teach a robot affordances (i.e., action-
effect relationships) to manipulate objects. Among their find-
ings, they observed that humans point out affordances that
are rare in systematic exploration of the object configura-
tion and action spaces. They also found that people often re-
move the object before the robotic action completes, possi-
bly indicating that the remaining part of the action would not
have caused a desirable effect. Kim et al. observed how peo-
ple talk while teaching a robot and found that “people vary
their vocal input depending on the learners performance his-
tory” [17]. In work by Koachar et al. [16], human subjects
teach a complex task to a fake agent in a Wizard-of-Oz ex-
periment. The teachers could give reward-based feedback,
give demonstrations, teach concepts by example, and test
the agent’s skills. The authors found that “teaching by [feed-
back] was never employed by itself and in the 82% of cases
where it was used, it followed another teaching type in all
but 2 cases. 58% of the teachers who used feedback used
it exclusively after testing.” A consistent finding across all
of these studies is that human teachers break implicit and
explicit expectations built into the learning system (e.g., re-
moving an object before an action is complete), suggesting
that agents should be robust to at least some such violations.

Looking particularly at teaching by explicit reward and
punishment, there has been much research on how humans
and other animals learn [5] and, complementarily, how peo-
ple should teach [29,28]. However, little has been said about
how people actually do teach by explicit reward and punish-
ment and, complementarily, how pupils should learn from
it—as this paper does. One exception is by Thomaz and
Breazeal [37], who had people teach a task to a software
agent by reward and punishment (the agent also had another
feedback source). They found that people gave more reward
than punishment and that people appeared to be using the
feedback mechanism to give guidance to the agent, again
interestingly breaking protocol.

2.1.3 Studying human social behavior with human-agent
interaction

Here we discuss the budding practice of studying human-
human interaction using human-agent interaction experi-
ments. We do not include in this category studies that draw
conclusions that are only of interest to the human-robot in-
teraction or human-agent interaction communities. We save
our discussion of the motivation for using agents in lieu of

humans for Section 4.4, where we can interweave our exper-
imental results.

Replacing humans with agents in experiments on hu-
man social behavior has been proposed by numerous re-
searchers [6,22,9]. Of the relevant social robotics studies
which we are aware, all used both human-human and human-
robot interaction [14,30]. In one [23], people converse with
either a human, a Wizard-of-Oz robot (i.e., a robot con-
trolled by a human but pretending to be autonomous), or
an openly remote-controlled robot. Researchers examined
which direction subjects moved their eyes when breaking
eye contact after having been asked a question. The results
on the effect of which conversational partner was used were
inconclusive, which the authors attribute to high variance
and a small sample size. In another study [11], each sub-
ject watched two videos, one of a collaborative human as-
sistant and another of a collaborative robot assistant. After-
wards, subjects rated the collaboration on multiple criteria,
such as comfort with and trust in the assistant. Subjects were
divided along two additional variables. Along one of these
variables, subject nationality, results on collaboration ratings
were consistent across human and robot versions (e.g., Chi-
nese subjects gave higher trust ratings for both human and
robot assistants than did subjects from the U.S.). The ratings
were not consistent along the other variable, how strongly
the subject is prompted to consider the assistant to be part of
her ingroup (i.e., a group that the subject strongly identifies
with).

From these studies, we see two patterns. First, the robots
and humans were not perfectly interchangeable as social
partners. However, the difference in their effects was usu-
ally by whether results were significant, not by significant
results in opposite directions. And the results did agree a
fair amount. Overall, their specific robotic partners created
interactions that resembled those with humans in some situ-
ations, but not fully. We note, though, that results from stud-
ies with human actors following scripted interactions—as
the human partners in the above social robotics experiments
do—differ in their own way from the ground truth of au-
thentic human-human interaction. The second pattern is that
none of these experiments use agents to fully replace hu-
mans where their use would be problematic or to perform
analysis that would be impossible with humans. Among pre-
vious work that employed computational agents or robots to
study human interaction, our experiments stand out for ran-
dom assignment and controls, for the relatively large sample
sizes, and for the complexity of our agents.
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2.2 Background
2.2.1 The TAMER learning agent

The experiments carried out in this paper involved human
subjects training a computational learning agent that im-
plements the TAMER framework, employing the algorithm
published by Knox and Stone [18]. TAMER, explained be-
low, has two main motivations: (1) to empower people—
regardless of programming ability—to designate correct be-
havior, which will often be specific to the person training
and (2) to speed learning compared to traditional reinforce-
ment learning by transferring human knowledge about the
task to an agent.

The TAMER framework is an answer to the Interactive
Shaping Problem [18]. The Interactive Shaping Problem asks
how an agent can best learn to perform a task given only
real-valued feedback on its actions from a human trainer.
This problem is put formally as follows.

The Interactive Shaping Problem Within a sequential decision-
making task, an agent receives a sequence of state descriptions
(s1,52,... where s; € S) and action opportunities (choosing a; € A
at each s;). From a human trainer who observes the agent and
understands a predefined performance metric, the agent also re-
ceives occasional positive and negative real-valued reward signals
(hy,hy,...) that are positively correlated with the trainer’s assess-
ment of recent state-action pairs. How can an agent learn the best
possible task policy (7 : § — A), as measured by the performance
metric, given the information contained in the input?

Human reward is delivered through push buttons, spoken
word, or any other easy-to-learn interface.

The TAMER framework is designed around two insights.
First, when a human trainer evaluates some behavior, she
considers the long-term impact of that behavior, so her feed-
back signal contains her full judgement of the desirability of
the targeted behavior. Second, a human trainer’s feedback is
only delayed by how long it takes to make and then commu-
nicate an evaluation. Thus, credit from human reward can be
assigned within a small window of recent actions. Though it
is tempting to treat human reward! as reward within a rein-
forcement learning framework, these insights suggest a dif-
ferent approach. In reinforcement learning, agents use re-
ward to estimate return, the long-term accumulation of re-
ward. These estimates of return are considered the values of
actions. However, human reward is more qualitatively anal-
ogous to a trivially delayed, noisy sample of expected return
from the targeted behavior given the trainer’s expectations
of future behavior than it is to reward in an RL framework.”

Consequently, a TAMER agent does not try to predict and
maximize long-term human reward. Instead, it tries to pre-

! Following common practice in reinforcement learning, we use “reward” to mean
both positively and negatively valued feedback.

2 The trainer’s assessment of return is, of course, dependent on her understanding
of the task and expectation of future behavior, both of which may be flawed and will
likely become more accurate over time.

dict and maximize immediate reward, converting an appar-
ent reinforcement learning problem into a supervised learn-
ing problem (with some credit assignment techniques which
are described in past work on TAMER). Put simply, a TAMER
agent assumes that the trainer has an internal feedback func-
tion, H : S x A — R, and treats feedback as labels on state-
action pairs, providing samples to learn A, an approximation
of H, via supervised learning. If acting greedily, the agent
chooses the action that maximizes the output of A given the
current state. In practice, all TAMER agents thus far have
been greedy, since the trainer can punish the agent to make
it try something different, making other forms of exploration
less necessary.

Our experiments indicate that humans can train TAMER
agents to perform tasks well (but imperfectly) within shorter
time than a traditional RL agent would learn, reducing the
costs of poor performance during learning.

2.2.2 The experimental task: Tetris

In this section, we describe how
our human subjects trained TAMER
agents and the task-specific agent im-
plementations. Each TAMER agent
was trained to play Tetris (Figure 1)
as implemented in RL-Library [35]
(with some visual adaptations),34 a
well known, computer-based puzzle
game. In Tetris, pieces of various
shapes fall from the top of the screen,
and the player’s task is roughly to fit
each piece with previous pieces be-
low to make solid horizontal lines.
Each such line disappears upon fill-
ing its last hole(s), and the pieces above move down one
position. Play ends when a piece cannot be placed because
previous pieces are stacked too high, and the object of Tetris
in our implementation is to clear as many horizontal lines as
possible before play ends.

In this TAMER algorithm, the agent’s action is a choice
among potential piece placements, not each movement or
rotation of a piece. H is represented by a linear model over
46 features that are extracted from a piece placement’s effect
on the Tetris board (i.e. state-action features). For the full
time that the agent places the current piece, the trainer can
give reward to the previous piece’s placement; thus, credit is
trivially assigned to the previous action, which is effective
with slow action frequencies that give the trainer plenty of

Fig. 1 A screenshot
of RL-Library Tetris.

3 Tetris is one of five task domains for which TAMER has published results [18,33,
19,20].

4 The specification of Tetris in RL-Library follows does not differ from that of tra-
ditional Tetris, except that there are no points or levels of increasing speed, omissions
that are standard in Tetris learning literature [4]. We use RL-Library for convenience
and its compatibility with RL-Glue, a software specification for reinforcement learn-
ing agents and environments.
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time to respond. Each placement results in a set of features
and a human reward value that together make a sample for
supervised learning. The specific learning algorithm is in-
cremental gradient descent. For more details on the TAMER
agent’s algorithm, consult Knox and Stone [18].

Subjects observed their agent’s play on a computer screen
and delivered real-time feedback, targeting the most recent
block placement, through two keys. One key corresponded
to positive feedback and the other to negative feedback, and
each press of the button increased the feedback’s intensity
up to a predefined limit, yielding integer feedback values in
the range [—4,4]. Subjects were given a short practice pe-
riod to adjust to the training task before starting the actual
training.

3 Experimental design and results
In this section, we discuss the designs and results of the two

experiments. We first describe aspects of experimental de-
sign that were common to both experiments.’

We evaluated participants’ teaching with descriptive anal-

yses as well as simulations of their learned models’ (Bs")
performances. For descriptive analyses, we considered the
human responses’ frequency. All descriptive analyses were
conducted over time in bins defined by intervals of 80 time
steps. In other words, the first bin considered time steps 1 to
80, the second considered steps 81 to 160, and so on.

Simulations were performed offline for each subject at
80 time-step intervals, fixing A and using a greedy policy—
and thus fixing the learned behavior—after 80, 160, ... time
steps of training and then testing the fixed behavior’s perfor-
mance over 20 games (i.e., episodes). For our performance
metrics, we use the mean number of lines cleared per episode
by a TAMER agent over the 20 games in simulation at each
time interval. This analysis evaluates the quality of a sub-
ject’s training by simulating the performance of the fixed
policies shaped from their feedback.

Subjects were drawn from the undergraduate community
at the University of Texas at Austin.

3.1 The critique experiment: teaching vs. critiquing
In our first of two experiments, the critique experiment, we

tested how donning the role of teacher affected subjects’
feedback frequency and the effectiveness of their teaching.

3.1.1 Design

Subjects were randomly assigned to one of two conditions:
Teaching or Critiquing.

3 Instructions given to subjects can be found at
http://www.cs.utexas.edu/ "bradknox/papers/12ijsr.

1. Teaching (n = 27): Subjects were aware that the agent learns from
his or her feedback.

2. Critiquing (n = 30): Subjects were told that they should critique a
recording of an agent learning.

The authors’ hypotheses about the conditions’ effects
on feedback frequency and agent performance varied. The
dominant hypothesis was that when teaching, humans would
satisfice aggressively, dramatically reducing their feedback
once the agent appeared to be doing reasonably well. This
reduction in feedback might harm the agent’s performance
compared to one that received a consistent level of feedback.
If the non-teaching subjects trained better agents, it would
suggest that human trainers need to be fooled into providing
large amounts of feedback over time to maximize a TAMER
agent’s performance. Another intuition was that the Teach-
ing subjects would be more engaged and attentive, leading to
a contrasting hypothesis that the teaching group would give
more feedback and achieve better performance. The plausi-
bility of either result motivates this experiment.

3.1.2 Results

Our results focus on the question of whether frequency of
feedback and agent task performance differed between the
two conditions. We found that they did not differ. More de-
tailed results are below. For our analyses, one subject in each
condition was removed for not responding during the exper-
iment, and two subjects were removed from the Critiquing
group for not completing at least 720 time steps of training
(as did the remaining 57 subjects).

Plots of feedback frequency and performance by condi-
tion are respectively shown in Figures 2 and 3. A 2 (con-
dition) x 9 (interval) repeated measures ANOVA indicated
no significant main effect of condition nor an interaction
of interval and condition for the dependent measure of fre-
quency of responding (all F[2,55] < 0.83, p > 0.60). Con-
sidering agent performance (i.e., lines cleared by the sim-
ulated TAMER agent), there was no significant main effect
of condition nor an interaction of interval and condition (all
F[2,55] < 1.14, p > 0.33).

Seeking to assess how similar the effects of the two con-
ditions are, we calculated a Bayes factor for the data. A
Bayes factor is the odds that the null hypothesis is true when
the alternative is a distribution over alternative hypotheses.
We examined performance at the end of the nine intervals,
giving something akin to a final skill level, and feedback fre-
quency over all intervals. Using an effect-size scaled param-
eter of 1 for specifying the distribution of alternate hypothe-
ses, we calculate the JZS Bayes factor to be 4.28 for perfor-
mance and 4.67 for feedback frequency [31]. Thus, under
this parameter—which is recommended as a default param-
eter because it favors neither outcome—the null hypotheses
for both metrics is more than four times more probable than
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Critique Experiment: Frequency of Giving Feedback
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Fig. 2 Feedback frequency from the human trainer over 9 bins of 80
consecutive time steps each. On all plots with error bars, the bars show
standard error.

Critique Experiment: Mean Reward per Interval in Simulation
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Fig. 3 Performance (lines cleared per game) of policies fixed at the end
of 9 intervals, each 80 time steps in length. In other words, the tested
agents have learned from the first 80, 160, ..., and 720 time steps.

the alternatives, given the data. A Bayes factor above 3 is
commonly considered substantial evidence that the null hy-
potheses is approximately true, giving us confidence to con-
clude that the subjects’ roles had similar effects.

Though we are not focusing on the difference in the
amounts of positive and negative reward given, we report
that the mean absolute value of positive reward per time step
was greater than that of negative reward across all conditions
of both experiments (all p < 0.025 in paired t-tests). This
finding confirms observations by Thomaz and Breazeal [37].

In summary, the difference in participants’ roles did not
significantly affect any of the the dependent variables. Look-
ing at performance, a Bayes factor analysis suggests that
similarity between the two groups can explain the lack of
significance, as opposed to merely too few subjects or too
high of variance.

This critique experiment influenced the following exper-
iment on feedback-frequency in several critical ways. First,
because teaching and critiquing trainers behaved and per-
formed similarly, all conditions in the feedback-frequency
experiment involve a teaching role for the subject. Second,
because subjects’ frequency of responding was quite high in
the critique experiment, we changed the subjects’ instruc-
tions from “If it has made a [good/bad] move, press ...” to
“If you feel it is necessary to [reward/punish] it, press ...”.

From this change in instructions, we hoped to both lower
their baseline frequency and give subjects more leeway to
determine their own frequency, two consequences that we
expected to increase any differences in frequency created by
the different conditions. Lastly, after the conditions of this
critique experiment did not significantly affect the rate of
feedback that some authors predicted would improve per-
formance, we were motivated to more directly manipulate
feedback frequency by making the agent react to it.

3.2 Feedback-frequency experiment: Varying action
greediness with feedback frequency

In this section, we describe the feedback-frequency experi-
ment, which investigates a human-agent interaction scenario
in which the computer agent reacts to waning human feed-
back by behaving worse. By controlling the parameters of
the computer agent’s reaction to its human trainer’s frequency
of feedback, we were able to evaluate the human behavioral
response under three conditions. The specification of condi-
tions below relies on the term greedy, which in this context
means choosing the action a that maximizes a prediction of
immediate human reward, argmax,[H (s, a)]. To be concise
and ease reading, we sometimes refer to non-greedy actions
as “misbehavior”, since agents are taking actions that they
currently believe to be suboptimal (though they may actu-
ally be optimal).

3.2.1 Design

Subjects were randomly assigned to one of three conditions:
Reactive Non-greedy, Greedy, or Yoked Non-greedy.

1. Greedy (n = 19): The TAMER agent always chose the action with
the highest predicted feedback value.®

2. Reactive Non-greedy (n = 30): The TAMER agent’s level of greedi-
ness was negatively correlated with the recency-weighted frequency
of human feedback. (The frequency is “recency-weighted” because
more recent opportunities for feedback are weighted more heavily
in the frequency calculation.) For this group and the Yoked Non-
greedy group, details about calculating feedback frequency and its
effect on action selection are described below in this section.

3. Yoked Non-greedy (n = 30): To separate the effects of general mis-
behavior from misbehavior that occurs in response to the trainer,
we added a third group in which agents explored without being
tied to their respective trainers. In this Yoked Non-greedy group,
the TAMER agent used the frequency from a matched trainer from
the Reactive Non-greedy group instead of its own trainer’s feed-
back frequency. In other words, we assigned each member of this
group to a member of the Reactive Non-greedy group. The agent
explored based on feedback frequency, identically to the Reactive
Non-greedy group, except that the frequency at step i was deter-
mined from the feedback history of the matched subject from the

6 The Greedy group can be considered similar to the Teaching group from the
critique experiment. The two groups’ instructions do contain differences, but both
groups have identical TAMER agent algorithms and subjects are aware that they are
teaching.
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Fig. 4 An example trajectory of recency-weighted frequency over the
first 40 time steps of training. The frequency varies dramatically, a con-
sequence of the small decay factor, 0.2. In this example, the trainer
refrains from giving feedback only six times.

Reactive Non-greedy group rather than the current subject’s feed-
back history. Thus, whereas the agent acted with varying degrees
of misbehavior, the level of misbehavior was not causally deter-
mined by the subject’s behavior.

We hypothesized that the Reactive Non-greedy group
would have the highest feedback frequency as well as the
best performance. Our intuition was that, in line with the id-
iom “The squeaky wheel gets the grease” and popular wis-
dom that misbehavior can be a cry for attention, an agent that
“misbehaves” when feedback frequency diminishes will be
effectively training the trainer to give more feedback. And
given more feedback, the agent would have more training
samples to learn from, resulting in better task performance.

Calculating frequency To calculate a trainer’s recency-
weighted feedback frequency, each feedback instance is ex-
ponentially decayed over time. Thus, at each time step, we
calculate a := [decay*a]+ (feedback #0) and b := [decay *
b]+ 1, where a and b are initialized to zero and feedback #
0 resolves to 1 when feedback was given and 0 otherwise.
Together, a and b define frequency: freq := a/b. In our
experiments, the decay parameter was 0.2, which heavily
weights the last few actions. An example frequency trajec-
tory can be seen in Figure 4.

Choosing actions based on frequency  Given a fre-
quency, the agents in both non-greedy conditions choose
actions. To choose, an agent ranks all available actions ac-
cording to their predicted human reinforcement, A (s,a), and
picks out five actions from that ranking: the best, the second-
best, the action at the first quartile, the action at the median,
and the worst. (Ambiguous quartile and median choices go
to the better-ranked action.) Then, the agent chooses ran-
domly from these five actions according to a probability dis-
tribution conditioned on frequency, where lower frequencies
generally result in worse-ranked action choices. The distri-
butions can be seen in Figure 5.

3.2.2 Results

We performed the same descriptive and model-based analy-
ses as we did for the previous critique experiment.” An ex-
ception though, is that we find significant results here and
thus do not perform the Bayes factor calculation, which we
used to determine how similar the data was between con-
ditions after finding a complete lack of significance. One
Greedy subject, three Reactive Non-greedy subjects, and five
Yoked Non-greedy subjects were removed for responding
insignificantly during the experiment. Also, one Greedy sub-
ject, one Reactive Non-greedy subject, and four Yoked Non-
greedy subjects were removed for training for less than the
800 time steps we used for analysis. For the two non-greedy
conditions, subjects matched to removed subjects were also
removed from analysis.

If non-greedy actions increase feedback frequency and
tying non-greedy actions to trainer’s recent feedback fre-
quency further increases subsequent frequency, we expect
the Reactive Non-greedy group to have the highest frequency,
followed by the Yoked Non-greedy group, with the Greedy
group having the lowest frequency. And since frequency in-
creases the number of learning samples, we expect the same
ordering of performance.

Trainer’s feedback frequencies are shown in Figure 6,
and performance after each training interval is shown in Fig-
ure 7. Note that the change in instructions described at the
end of Section 3.1.2 was effective: the baseline feedback fre-
quency, given by the Greedy group, is lower than the almost
equivalent Teaching group in the critique experiment.

Surprisingly, 2 (condition) x 10 (interval) ANOVAs com-
paring the performance (i.e., lines cleared) of the Greedy
group over all intervals to that of the Reactive Non-greedy
and Yoked Non-greedy groups found significant effects by
condition (p = 0.015 and p = 0.024, respectively), indicat-
ing superior learned performance within the greedy group.

7 Performance is again tested offline, not during training, and the
testing policy is greedy regardless of condition.

Action selection as a function of feedback frequency
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Fig. 5 Probability distributions over the five possible actions at differ-
ent recency-weighted feedback frequencies.
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Feedback-Frequency Experiment: Frequency of Giving Feedback-Frequency Experiment: Frequency of Giving
Feedback Feedback, Good Trainers only
1.0 1.0
> - - - -
g ~+---Yoked > 0o i I .
% 0.9 —=8— Reactive § ST *Y—1—1 — % ~~~~~ T r [
T b —4— Greedy = 08 L E B SR St .. [
¥ 08 T I T n\ *[ '[ T e
S 1 b= i — —~
g 07 g 07
i » g —-+-Yoked |- I I
2 06 w 0.6 | —=—Reactive
] o
'% 1:1:': = Greedy
F 05 ———————t £ 05
1 2 3 4 5 6 7 8 9 = 1 2 3 4 5 6 7 8 9

Testing Interval (80 time steps each)

Fig. 6 Feedback frequency from the human trainer over 9 bins of 80
consecutive time steps each.

Feedback-Frequency Experiment: Mean Reward per
Interval in Simulation
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Fig. 7 Performance (lines cleared per game) of policies fixed at the
end of 9 intervals, each 80 time steps in length.

The two non-greedy groups were not significantly different.
Also, 2 x 10 ANOVAs comparing trainer’s feedback fre-
quencies found no significant differences.

Results for good trainers only  Before acting intelli-
gently, these learning agents go through a period of initial
learning, during which their actions are generally of low
quality. Additionally, many agents are never trained to a level
at which greedy actions are generally good. Taking non-
greedy actions when greedy actions themselves are not good
lacks the qualitative characteristic on which we are focused:
non-greedy action corresponding to decreased quality of ac-
tion. Therefore, we repeat the analyses above, only examin-
ing the subset of subjects who were able to train their agents
to consistently clear more than 10 lines on average across
multiple time intervals. Additionally, we only use data start-
ing at the third interval, where the percentage of agents that
pass the 10-line standard first surpasses 90% (after pass rates
of only 58.3% and 72.2% in the first two intervals), never
dropping below after. The 10-line threshold was chosen for
its position in the valley of the bimodal distribution of agent
performance across subjects.® This more selective analysis
gives a different perspective that is more focused on the ef-
fect of “misbehaving” to affect the trainer.

8 Illustrating the bimodality of performance, there were 79 subjects across condi-
tions. In the 9th testing interval, 23 agents clear between 0—1 lines; 47 clear more than
100. Only 2 agents clear 5-20 lines.

Testing Interval (80 time steps each)

Fig. 8 Figure 6 with low-performing trainers removed.

After removing low-performing subjects and all subjects
that were matched to those low-performing subjects, the con-
dition sizes were Reactive Non-greedy, n = 10; Greedy, n =
16; and Yoked Non-greedy, n = 10. The feedback frequency
by condition across time intervals for this smaller set of sub-
jects is shown in Figure 8. Compared to the full set of sub-
jects, all conditions have generally higher feedback frequen-
cies. However, this frequency increase is more pronounced
in the two non-greedy conditions. Further, the Reactive Non-
greedy condition now results in more frequent feedback than
the Yoked Non-greedy condition. Despite the small num-
ber of subjects being considered, the Reactive Non-greedy
group’s mean feedback frequency over intervals 3-10 has
marginal significance (p < 0.1) in comparison to the lower
feedback frequency of the Greedy group. Additionally, a
non-parametric analysis of the same data is nearly signifi-
cant, with an upper confidence bound of 0.83 for the Greedy
group and a lower confidence bound of 0.82 for the Reac-
tive Non-greedy group. Therefore, we expect that increasing
the number of subjects would quickly strengthen the signif-
icance of the difference in feedback frequency.

The performance of these subjects across conditions is
much more similar than in the full set of subjects and is no
longer significantly different. However, removing subjects
based on performance clearly biases group performance. This
bias is motivated for analyzing feedback frequency but not
for performance, and we therefore only base our performance
results on the full set of subjects. We can say, though, that
these results add further evidence (though biased) that in-
creased feedback frequency and the consequently increased
number of learning samples do not result in better perfor-
mance in this experiment.

4 Discussion

In this section, we interpret and discuss the results of the ex-
periments in Section 3. The first subsection draws a conclu-
sion on agent design from the critique experiment; the sec-
ond subsection does likewise from the feedback-frequency
experiment. We then discuss the feedback-frequency exper-
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iment’s implications for the explore-exploit dichotomy that  actions would actually look worse), tying the action qual-
is pervasive within the field of learning agents. Lastly, we ity to the trainer’s recency-weighted frequency further in-
discuss the new technique of using social agents to study  creased feedback frequency. Considering that there are likely

human behavior, using our experiments as examples and de-  other techniques that increase either frequency or quality of
scribing how these results may also be of interest outside of ~ feedback, one product of our results is a proof-of-concept
artificial intelligence communities. that this broader category of techniques exists, though the

extent of its breadth is an open question. Also, the concept

of an agent manipulating the trainer to improve feedback can
4.1 Honesty is still the best policy be generalized to other modes of teaching, including demon-

strations, which can also vary by frequency and quality.

When agents learn to perform tasks, one clear objective is Contrary to our expectations, though the agents’ manip-
to maximize performance. The results from the critique ex-  ulations increased feedback frequency, they did not improve
periment indicate that, contrary to the hypothesis that hu-  performance and even decreased it among the full set of sub-
man trainers would need to be deceptively told that they are  jects. Exploring created more learning samples, but we sus-
not teaching to do their best training, the human-agent sys-  pect these samples were less useful than those experienced

tem performs similarly when the human knows that he is by the Greedy group. We see two plausible explanations: the
engaged in a training session. Either the subject’s role had ~ learning samples were in a less useful area of the state-action
little or no effect on his feedback, or the TAMER agent was  space, or the quality of trainer feedback worsened. The intu-

robust to differences in feedback. ition behind the first potential explanation is that the learn-

In addition to the performance objective that we explic-  ing samples created during greedy behavior help distinguish
itly study, it is also important to respect the desires and needs ~ between the best few actions, whereas non-greedy behav-
of humans. Deceiving human trainers to get the best perfor-  ior created samples that help distinguish between mediocre
mance is an ethically questionable trade-off. The results pro-  or worse actions, a type of differentiation that does not aid

vide evidence that disclosing to the trainer that he is teaching  an agent trying to choose the best action. Further, the sam-
maximizes both crucial objectives, performance-based and  ples from non-greedy actions may have even been directly
humanistic. harmful; the representation of A is not highly expressive,
and more accurately modeling reward for non-greedy ac-
tions likely lessens the accuracy of modeling high-quality
4.2 A tool for increasing feedback actions. The other potential explanation is that the quality
of the feedback within the non-greedy conditions suffered
When numeric feedback comes to an agent from an encoded ~ because of trainer frustration or some other effect of mis-
reward function instead of a human, the problem is often ~ behavior on the trainer. Further analysis of the data might

framed as a reinforcement learning problem. These prob-  shed light on which of these explanations is correct. For
lems are usually formalized as Markov Decision Processes ~ instance, we could test each agent’s performance with the
(MDPs). In an MDP, reward has a static distribution of fre- same learning samples, except we label each sample with a
quency and quality. In contrast, human reward can be af-  static feedback function instead of with the variable set of
fected along both of these dimensions. From this observa- ~ humans that did label the samples. This relabeling would

tion, one may notice that one way to give highly effective ~ control for quality of feedback, directly testing how much
feedback (though possibly imperfect feedback with certain  the difference in the samples” locations in state-action space
function approximators) for a TAMER agent would be to give ~ Would affect performance. More generally, whether misbe-

feedback at every time step and have as its value the ex- ~ havior can be used to increase interaction and learned per-
pected return of MDP reward under the optimal policy from formance is a promising question for future inquiry.

the most recent state-action pair, where the MDP reward fol- The agent’s frequency-tied action selection can least spec-
lows the task’s objective and credit is assigned only to the  ulatively be framed as a “manipulation”. We might also con-
preceding time step. These two characteristics of feedback—  sider it to be a form of communication with the human trainer,
frequency and quality, or, equivalently, the number of learn-  though we are careful not to imply that the trainer consciously
ing samples and the quality of their labeling—comprise two  understood some message from the frequency-tied actions,
dimensions along which a particular human trainer’s feed-  which she may or may not have. Another speculative but
back can be improved. plausible interpretation is that when the agent lowers its ac-

The feedback-frequency experiment demonstrates one  tion quality after the trainer’s feedback drops in frequency,
on-line technique for increasing the frequency of human feed-  the human is being punished for inattentiveness. This inter-
back: lowering action quality. More specifically, when ex-  pretation is more compelling if the human trainer is emo-
amining only the successful trainers (for which non-greedy  tionally vested in the agent’s performance, which fits anec-
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dotally with comments made by subjects and the authors’
experience in informally training agents themselves.

One lesson of this feedback-frequency experiment is that
agent designers should be careful not to make the mistake
of considering pedagogy to be a single-directional manipu-
lation, that though teacher and student do interact, it is the
student who is significantly changed through the interaction.
On the contrary, the student has expectations of the teacher
and beliefs about how the teacher should meet his or her
needs, and an effective student will teach the teacher how to
meet those needs.

4.3 Non-greedy action is not necessarily exploration

When referring to agents that learn to estimate some notion
of the relative values of various state-action pairs (i.e., not
policy-search learners), researchers generally consider ac-
tions to be either exploratory or exploitative. This dichotomy
between exploration and exploitation holds strictly in tradi-
tional reinforcement learning, where an action a is exploita-
tive if it is chosen greedily, such that (@ = argmax,Q(s,a)),
and contrapositively any action chosen non-greedily, typi-
cally resulting in a # argmax,Q(s,a), is exploratory [34].°

At the intersection of learning agents and human-agent
interaction are agents that, like TAMER agents, learn inter-
actively from human teachers. In past work, many of these
agents only exploit [18,2,26] and some, especially those
that use reinforcement learning, explore or exploit [37,15,
40]. However, we will argue that the non-greedy actions
taken by agents in the Reactive Non-greedy group of the
feedback-frequency experiment are neither exploration nor
exploitation.

4.3.1 Is it exploitation?

Retaining the notion that exploitation involves greedy ac-
tion selection, the Reactive Non-greedy group’s non-greedy
behavior was not exploitation by definition. This conclusion
generalizes to any agents that learn the values of state-action
pairs for the task and cannot model the human as part of
their value function, though they may be able to model the
impact of their actions on the trainer’s feedback frequency
and quality.

4.3.2 Is it exploration?
In the terminology of reinforcement learning, any action a

such that a # argmax,H (s,a) is commonly referred as “ex-
ploration”. But exploration in reinforcement learning, and

9 Though exploration is often considered equivalent to non-greedy action, this def-
inition does not fit all instances of its use in RL. For instance, an agent that employs an
exploratory policy might have a greedy policy that sometimes agrees on what action
to select. However, this is a semantic point that does not affect our assertion that the
comprehensive dichotomy of explore/exploit is insufficient.

in general if we want to keep the term close to its colloquial
meaning, is undertaken to learn more about state-action pairs
which are not experienced sufficiently during greedy behav-
ior to create the desired level of behavioral improvement.
The Reactive Non-greedy group in the feedback-frequency
experiment may have received a wider range of state-action
pairs in their learning samples as a result of their non-greedy
behavior, but they also affected their feedback source. Their
trainers’ feedback frequency, on average, was higher than
that of other groups, sometimes significantly so, giving the
agents motivation beyond exploration to act non-greedily.

Through its non-greedy actions, an agent in the Reac-
tive Non-greedy group does receive information about state-
action pairs that it would likely not encounter during greedy
actions. So, in a sense, exploration does occur. But explo-
ration is not the only effect, and in an agent that predicts
the effects of its actions and acts with goals, the exploration
may be merely incidental to the intended result of increas-
ing feedback frequency. Thus, while the agents’ non-greedy
actions had exploratory consequences, calling such actions
exploration is incomplete, obscuring their desirable, non-
exploratory effects.

4.3.3 Non-greedy action to manipulate the trainer

There is more than one reason to act non-greedily. Exploring
is one reason, as is increasing a trainer’s feedback frequency.
If the learning agents community intends to embrace the
use of humans as teachers for agents, it might reconsider
the common practice of using the word “exploration” syn-
onymously with non-greedy actions. Though exploration re-
mains a critical form of non-greedy action, our results show
that when a human trainer is in the learning loop, there are
reasons to act non-greedily besides exploration.

4.4 Tllustration of employing human-agent interaction to
study human behavior

In this subsection, we conduct a more general discussion on
the merits of using social robots or social software agents to
study human behavior outside of human-agent interaction.
Our experiments serve as motivating examples in this dis-
cussion.

Computational agents, both robotic and simulated, com-
prise an emerging tool for the behavioral sciences. In current
practice for experiments on human behavior that require so-
cial interaction and constrained behavior on one side of the
interaction, a human fulfills the role opposite the subject.
Compared to this human actor,'? a computational agent can

10" A human opposite the subject could have fully scripted behavior, act naturally
except in certain situations (like misbehaving at certain times), or simply act naturally.
Additionally, the subject may believe either that this person is a fellow subject or
that she is working for the experimenters. We call this human that would potentially



How humans teach agents

11

act more consistently, since its behavior is fully parametrized.
Further, the conditions under which humans act may con-
found their performance. In our feedback-frequency exper-
iment, for example, a human pupil’s learning would likely
be confounded by varying levels of mental effort to align ac-
tions to the constraints of each condition. The computational
agent chooses its actions without meaningfully pulling re-
sources from the learning algorithm (i.e., though they share
computation time, there was plenty of time for both). Addi-
tionally, the computational agent can record every aspect of
its “mental” process and behavior, allowing in-depth analy-
sis later. Both experiments provide an example of such anal-
ysis, freezing learning at different points in time and testing
performance. On the other hand, human actors have some
clear advantages. The focus of studies on social interaction
is generally human-human interaction, and human subjects
probably interact more naturally with human actors than com-
putational ones, though the extent of this difference will de-
pend on the character of the computational agent. Thus, the
relative generalizability of results from experiments with hu-
man actors increases from the authenticity of human-human
interaction. Given the different strengths of human and com-
putational agents, we expect both to play an important role
in future behavioral studies, a view shared by some in the
human-robot interaction community [6,22,9].

This paper provides analysis aiming to be valuable to
a researcher of learning agents or human-robot interaction.
However, these results may also be of interest to the educa-
tional community. There the relationship between classroom
misbehavior and teacher attention is of real-world impor-
tance [39]. In a relatively recent article, Dobbs et. al [10],
summarizing past research on the relationship between mis-
behavior and attention from teachers, write that “children
who misbehave frequently receive more teacher attention
than do children who rarely misbehave.” One study found
that the amounts of criticism and commands received from
a teacher were negatively correlated with the level of on-task
behavior from children [12]. Other research on this relation-
ship has been correlational and often considers a potential
causal relationship in the direction of attention causing mis-
behavior. Using real children as misbehaving confederates
in a randomized controlled trial is an untenable proposition.
But with interactive agents, we were able to establish the
first causal connection between misbehavior and teacher at-
tention, showing that performance-oriented misbehavior can
increase attention.

5 Conclusion

This paper describes two experiments that consider how hu-
man beliefs and agent behavior affect a human’s teaching.

be replaced by an agent a “human actor” for simplicity and to differentiate from the
subject.

The first, the critique experiment, showed similar feedback
frequency and agent performance between subjects placed
in a teaching role and subjects in a critiquing role, indicat-
ing that either the role had little effect on the subject or it did
affect the subjects’ feedback quality but the resultant differ-
ences did not affect the TAMER agent’s performance. The
second, the feedback-frequency experiment, demonstrated
a technique that agents can use to increase the frequency
of trainer feedback: acting non-greedily. Additionally, when
we filter for agents that show sustained decent or better per-
formance, the frequency increase is greatest when this non-
greedy misbehavior occurs in response to decreases in the
trainer’s feedback rate. Through this type of behavior, the
feedback-frequency experiment also gives a specific exam-
ple of how actions in the presence of a human trainer can
be used for purposes other than exploration or exploitation.
This result shows that the explore/exploit dichotomy is in-
adequate for describing actions by an agent learning inter-
actively from a human. Together, these experiments 1) lend
support to the efficacy of the TAMER approach—actively
taught and thus far greedy—to learning from human reward
and punishment, and 2) identify forms of human-agent in-
teractivity that do or do not impact agent performance.

This research may serve as a model for other research
that studies humans by having them interact with robots. The
generality of our findings would be buttressed by repeating
these two experiments in different contexts: especially using
arobotic agent, different tasks, and even a different teaching
modality, such as Learning from Demonstration. Nonethe-
less, the results presented here provide interesting, some-
times surprising results that apply to designers of learning
agents, including social robots. And the unexpectedness of
some of our conclusions indicates that further studies of hu-
man teaching stand to provide much counterintuitive guid-
ance in the design of agents that learn from human teachers.

An agent with the power to manipulate the trainer to its
advantage should not necessarily use that power. We should
consider when pulling a teacher in for more training is worth
the cost in human effort. There are numerous potential ap-
proaches to this problem. For example, a more sophisticated
agent might have some self-confidence measure and only
engage the human when it lacks confidence in making deci-
sions [7].

Lastly, this paper’s two experiments serve as exemplars
of using agents as parametrized social entities in experi-
ments on human behavior. We hope that they will inspire
and guide researchers to explore this nascent experimental
technique, helping to expand the impact of human-agent and
human-robot interaction into the behavioral sciences.
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