
Evasion Planning for Autonomous Vehicles at Intersections

Tsz-Chiu Au1, Chien-Liang Fok2, Sriram Vishwanath2, Christine Julien2, and Peter Stone1

Abstract— Autonomous intersection management (AIM) is a
new intersection control protocol that exploits the capabilities of
autonomous vehicles to control traffic at intersections in a way
better than traffic signals and stop signs. A key assumption of
this protocol is that vehicles can always follow their trajectories.
But mechanical failures can occur in real life, causing vehicles
to deviate from their trajectories. A previous approach for han-
dling mechanical failure was to prevent vehicles from entering
the intersection after the failure. However, this approach cannot
prevent collisions among vehicles already in the intersection or
too close to stop because (1) the lack of coordination among
vehicles can cause collisions during the execution of evasive
actions; and (2) the intersection may not have enough room
for evasive actions. In this paper, we propose a preemptive
approach that pre-computes evasion plans for several common
types of mechanical failures before vehicles enter an intersec-
tion. This preemptive approach is necessary because there are
situations in which vehicles cannot evade without pre-allocation
of space for evasion. We present a modified AIM protocol and
demonstrate the effectiveness of evasion plan execution on a
miniature autonomous intersection testbed.

I. INTRODUCTION

Recent robotic car competitions and demonstrations have
convincingly shown that autonomous vehicles are feasible
with current generation of hardware [1]. Looking ahead to
the time when autonomous cars will be common, Dresner
and Stone proposed a new intersection control protocol called
Autonomous Intersection Management (AIM) and showed
that by leveraging the control and network capabilities of
autonomous vehicles it is possible to design an intersection
control protocol that is much more efficient than traffic
signals [2]. By removing the human factor from the con-
trol loop, autonomous vehicles, with the help of advanced
sensing devices, can be safer and more reliable than human
drivers. In addition, the AIM protocol exploits the fine
control of autonomous vehicles to allow more vehicles to
simultaneously cross an intersection, thus effectively reduc-
ing the delay of vehicles by orders of magnitude compared to
traffic signals [3]. However, the assumption that vehicles can
always be reliably controlled is unrealistic, since mechanical
failures such as tire blowouts can happen in reality. Since a
small mechanical error can result in a devastating collision,
AIM is not fail-safe.

To remedy this problem, Dresner and Stone proposed a
simple way to mitigate catastrophic failure, namely to notify
vehicles when problems occur and prevent new vehicles from
entering the intersection [4]. Upon receiving distress signals

1Department of Computer Science, The University of Texas at Austin.
{chiu,pstone}@cs.utexas.edu

2Department of Electrical and Computer Engineering, The University of
Texas at Austin. {liangfok,theory,c.julien}@mail.utexas.edu

Fig. 1. All-stop strategy versus evasion planning.

from vehicles or monitoring devices at an intersection, the
intersection manager will promptly stop granting reservations
to prevent vehicles from entering the intersection and broad-
cast emergency messages to all vehicles at the intersection. In
their experiments, the worst cases have at most 3.23 vehicles
involved in the collisions, and their conservative estimation
shows that a 77% drop in the number of vehicles per accident
is possible when compared with today’s traffic control at
intersections [2]. Hence, the number of vehicles involved in
individual incidents can be drastically reduced.

This approach assumes vehicles will take ad hoc eva-
sive actions upon receiving an emergency notification. The
success of these last-second evasive actions depends on the
coordination among vehicles. Suppose there are four vehicles
at an intersection as shown in Fig. 1. If there is no mechanical
failure, all vehicles will go through the intersection without
collisions. However, if Vehicle B suddenly loses power and
stops at the middle of the intersection, other vehicles cannot
stop because vehicles will continue to move briefly after
braking due to their momentum, resulting in collisions due
to this All-Stop policy as shown in Fig. 2. Instead, vehicles
should take evasion actions—Vehicle A turns right, and both
Vehicles C and D continue to move without stopping. If there
is a lack of coordination between Vehicles A and C, Vehicle
A could think that Vehicle C is going to turn left. This may
cause Vehicle A to also turn left and collide with Vehicle C.

Another drawback of taking last-second evasive actions is
that there may not be enough room for evasion. Suppose
there is a slow-moving Vehicle E in the front right side of
Vehicle A, as shown in Fig. 2. As can be seen, Vehicle A
cannot avoid collisions no matter what it does. To avoid this
problem, the AIM protocol should have reserved some space
for evasion actions of Vehicle A. We therefore propose the
preemptive approach of evasion: the AIM protocol should

Fig. 2. A collision due to the lack of space for evasive actions.

generate evasive actions for incoming vehicles and reserve
enough space for these evasive actions before vehicles enter
an intersection.

In this paper, we present an implementation of this pre-
emptive approach to make the AIM protocol fail-safe with
respect to a restricted set of mechanical failures. We focus on
a restricted set of mechanical failures only because there is no
obvious way to prevent collisions in the general case—unless
only one vehicle is allowed in the intersection at a time. Since
there is no perfectly fail-safe protocol, we opt for a protocol
that protects vehicles from a number of common mechanical
failures and rely on the last-second ad hoc evasive actions
to handle other failures.

Before we describe our protocol in detail in Section VIII,
we present the related work and a summary of the original
AIM protocol in Section II and Section III, respectively.
We then outline the simulation of mechanical failures in
Section IV, the detection of mechanical failures in Section V,
the definition of evasion plans in Section VI, and the formal
statements of our problem in Section VII. Finally, we discuss
an implementation of evasion plan execution on a miniature
autonomous intersection testbed in Section IX.

II. RELATED WORK

Safety is a major factor in the design of AIM, particularly
in the incorporation of buffers to handle sensing and control
errors of autonomous vehicles. The protocol is fail-safe
in terms of communication failure—no vehicle is allowed
to enter an intersection when the communication network
is disrupted. More importantly, if all vehicles follow the
protocol exactly, the AIM protocol guarantees no collision
can occur. Dresner and Stone conducted a failure-mode
safety analysis and argued that AIM is safer than traffic
signals for human drivers [4]. They proposed preventing
vehicles from entering an intersection after an accident but
did not suggest what vehicles should do to avoid collisions
if they cannot stay out of the intersection.

There is much work regarding safety properties of traffic
signals. For instance, there are studies of the relationship
between accidents and traffic level [5] as well as accidents
in particular types of intersections [6], [7]. But these studies
focus on traditional intersections and do not consider the

possibility of improving intersection efficiency and safety
with information technology and artificial intelligence.

Cooperative collision avoidance systems deal with the
safety of vehicles on road networks including intersections.
Colombo and Vecchio studied the least restrictive controller
for collision avoidance of vehicles at an intersection via
computing the maximal controlled invariant set [8]. Hafner
et al. presented experimental results for an intersection colli-
sion avoidance system that utilizes Dedicated Short-Range
Communications to share safety critical state information
and generates control commands to vehicles to prevent
collisions [9]. Our work is somewhat similar to [10], which
proposed a hybrid architecture for collision avoidance at
intersections. Their approach is based on failsafe maneuvers,
which are infinite horizon open-loop contingency plans with
a safety guarantee with respect to some set of vehicles even
if sensors and communication fail in the network. However,
the main theorem (Theorem 4) of the paper requires that all
vehicles follow their intersection-crossing algorithm exactly.
Our paper relaxes this requirement by avoiding collision even
if some vehicles lose control and fail to follow the protocol.

III. AUTONOMOUS INTERSECTION
MANAGEMENT

The AIM protocol is based on a reservation paradigm,
in which vehicles “call ahead” to reserve space-time in the
intersection [2]. The system assumes that computer programs
called driver agents control the vehicles, while an arbiter
agent called an intersection manager (IM) is placed at each
intersection. The driver agents attempt to reserve a block of
space-time in the intersection. The IM decides whether to
grant or reject requested reservations. In brief, the paradigm
proceeds as follows.
• An approaching vehicle announces its impending arrival

to the IM. The vehicle indicates its predicted arrival time,
velocity, acceleration, and arrival and departure lanes.
• The IM simulates the vehicle’s path through the in-

tersection, checking for conflicts with the paths of any
previously processed vehicles.
• If there are no conflicts, the IM issues a reservation. It

then becomes the vehicle’s responsibility to arrive at, and
travel through, the intersection as specified.
• The car may only enter the intersection once it has

successfully obtained a reservation.
The prototype intersection control policy operates by divid-
ing the intersection into a grid of reservation tiles. When
a vehicle approaches the intersection, the IM uses the data
in the reservation request regarding the time and velocity of
arrival, vehicle size, etc. to simulate the intended journey
across the intersection. At this stage the IM also introduces
safety buffers that further ensure a safe traversal of the
intersection (Fig. 3). At each simulated time step, the policy
determines which reservation tiles will be occupied by the
vehicle. If the vehicle’s space-time request has no conflict,
the reservation is successful; otherwise, the reservation re-
quest will be rejected.

(a) Successful (b) Rejected

Fig. 3. (a) The vehicles’ space-time request has no conflicts at time t. (b)
The vehicle’s request is rejected because at time t of its simulated trajectory,
the vehicle requires a tile already reserved by another vehicle. The yellow
area represents the space buffer of the vehicle.

Empirical results demonstrated that the proposed system
can dramatically improve the intersection efficiency when
compared to traditional intersection control mechanisms [2].
Overall, by allowing for much finer-grained coordination, the
simulation-based reservation system can dramatically reduce
per-car delay by two orders of magnitude relative to traffic
signals and stop signs. This reduction of delays can translate
into less traffic congestion [11], which in turn leads to better
fuel efficiency and lower emissions.

IV. SIMULATION OF MECHANICAL FAILURE

Our evasion planning relies on the prediction of outcomes
of mechanical failures to determine what courses of actions
can prevent collisions. In this section, we describe the
simulation of mechanical failures conducted by IMs.

A. Physical Model of Vehicles

Intersection managers employ a simplified physical model
of vehicles’ movement when computing the trajectories of
vehicles and the set of tiles that are potentially occupied
by the vehicles [2]. In this model, the set of differential
equations for non-holonomic motion are:

∂x
∂ t

= v · cos(φ),
∂y
∂ t

= v · sin(φ),
∂φ

∂ t
= v · tanψ

L
, (1)

where (x,y) is the position of the center of the front of
vehicle, φ is the direction of the vehicle, and L is the length
of the vehicle’s wheelbase. The position and the direction
depend on the steering angle ψ and the velocity v. At each
time step in the simulation, the IM solves these equations
numerically by holding v and ψ as constant, while v and ψ

may have different values at different time steps. The change
of v is determined by an acceleration profile a(t), which is
the acceleration the vehicle should use at time t. The change
of ψ is determined by a sequence of target points p̂(p),
where p is the position on the trajectory. The vehicle should
always aim at p̂(p) by adjusting its steering angle ψ .

B. Mechanical Failure

When a mechanical failure occurs, the vehicle may no
longer follow the given acceleration profile and target points
and start to deviate from its trajectory. The effect of me-
chanical failures on v and ψ also depends on the type of
mechanical failures as well as the position and the velocity
of the vehicle when the failure occurs. For example, if a
vehicle loses power, the vehicle will start to decelerate and
the deceleration will depend on the current velocity.

In our current implementation, IMs consider only a finite
set F of mechanical failures whose effects can be predicted.
A partial list of these failures is: (a) A tire blowout occurs;
(b) The gas pedal gets stuck; and (c) Loss of power due
to empty gas tank, etc. We can mathematically describe the
effect of a mechanical failure f ∈ F as a mapping from the
vehicle type, the vehicle position, and the vehicle velocity
to a(·) and p̂(·), which are substitutes for the acceleration
profile and the target points, causing the vehicle to have a
different trajectory.

C. Handling Uncertainty

The simulation of trajectories is sensitive to the precise
position and velocity of the vehicles. When an IM runs
a simulation of a vehicle, the vehicle has not entered the
intersection yet. Thus all the IM knows is the set of tiles in
the grid that might be occupied by the vehicle in the future.
Since vehicles can legally be at any position inside the buffer
covered by the tiles, the IM should not assume it is always
located at the center of the buffer. Similarly, the vehicle can
legally arrive at the intersection at a sightly different time
and velocity within the given error bounds. Therefore, the
simulation should simulate a bundle of trajectories, which
comprises all possible trajectories of the vehicles. When a
mechanical failure occurs, the deviation will be applicable
to all trajectories in the bundle.

To compute trajectory bundles, we use intervals to present
the uncertainty of positions and velocities. In our current
implementation, IMs solve the differential equations in Eq. 1
numerically; thus we estimate the trajectory bundles by
solving the equations repeatedly with different values in the
intervals, especially the boundary values. Fortunately, the
space and time buffers are rectangles, and hence we can often
simplify the calculation by assuming the numerical solutions
with boundary values encompass all values in the bundle.

D. Simulation of Collisions

There is a short period of time between the occurrence
of a mechanical failure and the execution of evasion plans
in which the IM cannot control vehicles and collisions can
happen. For example, if Vehicle A in Fig.1 is very close
to Vehicle B such that the IM fails to detect that Vehicle
B loses its power on time, Vehicle A will inevitably collide
with Vehicle B. While there is little the IM can do to prevent
this collision, the IM should try to prevent multiple-vehicle
collisions by preventing other vehicles from hitting Vehicles
A and B after the initial collision. One problem is that after
the collision, the positions of Vehicles A and B change
abruptly. If they get in the way of Vehicle C, the evasion
plan should instruct Vehicle C to turn left instead. Therefore,
IMs need to simulate collisions and predict the outcomes.

One difficulty of the simulations is that there is a great
deal of randomness in collisions and it is hard to predict
their effects. Thus we instead use the notion of collision
circle which is a circular area centered at the position of
a collision. We assume that vehicles will stop completely
within the collision circle after a collision, and therefore

the evasion plan should prevent vehicles from entering the
collision circle. Currently, our implementation cannot model
multiple-vehicle collisions outside the initial collision circle.

V. FAILURE DETECTION AND IDENTIFICATION

Let t0 be the time at which the mechanical failure f ∈ F of
a vehicle σ occurs. Normally if the vehicle in question is able
to detect the problem immediately and the communication
with the IM is uninterrupted, the vehicle can send a message
to inform the IM that something wrong has occurred. Even
if the vehicle failed to inform the IM about the problem,
the IM can rely on traffic cameras to detect the mechanical
failure. For example, Kamijo et al. proposed an algorithm,
called “spatio-temporal Markov random field” that tracks
vehicles at intersections to determine when an incident has
occurred [12]. Let t1 be the time at which f is detected by
the IM, where t1 ≥ t0. Our system has a maximum delay
Tdetect of the detection of a failure, such that t1 < t0+Tdetect.
If t1 ≥ t0+Tdetect, the IM cannot generate evasive actions for
vehicles and must rely on ad-hoc evasive actions that cannot
guarantee prevention of collisions.

VI. EVASION PLANS

An evasion plan π is a set of control instructions for
vehicles inside or near the intersection. The objective of an
evasion plan is to prevent vehicles that are not involved in
the accident from collisions in the future. Let us define an
evasion plan precisely as follows. Suppose t2 is the time
at which an evasion plan is executed. Let Σ1 be the set
of all vehicles inside the intersection at t2. Let Σ2 be the
set of all vehicles outside the intersection at t2 but that are
past the point of no return—the position beyond which a
vehicle cannot stop before the intersection and must enter
the intersection. Moreover, let Σ3 be the set of all vehicles
involved in the accident. Then the set Σ=(Σ1∪Σ2)\Σ3 is the
set of all vehicles controlled by an evasion plan. An evasion
plan is a list of n pairs 〈(b1,δ1),(b2,δ2), . . . ,(bn,δn)〉, where
n = |Σ|, bi is a boolean value indicating whether the vehicle
σi ∈ Σ should stop, and δi is the new direction for σi. We
say (bi,δi) is the control instruction for the vehicle σi.

When a vehicle receives (bi,δi), it will check the value of
bi to see whether it needs to stop. If bi is true, the vehicle
will immediately steer towards δi until the direction is δi,
and then break as hard as possible to stop. If bi is false, no
modification of the vehicle’s trajectory is needed; the vehicle
will keep using the acceleration profile and the sequence of
target points to leave the intersection.

While a more complicated evasion plan should offer better
ways to evade vehicles and avoid collisions, we opt for
simple evasion plans that can be quickly generated because
the IM has only a few seconds to generate such plans.

VII. COMPLETENESS OF INCIDENT HANDLERS

We define an incident as a triple (σ , f , t0), which denotes
that a mechanical failure f ∈ F of a vehicle σ ∈ Σ3 occurred
at time t0. When an incident (σ , f , t0) occurs, one or more

Procedure AcceptReqeuestMessage(r)
// Input: r = (σ , t ′,v′, l1, l2) is a request message
// Let DB be the evasion plan database.
Compute the trajectory τ of the vehicle σ from l1 to l2
Find a set A1 of tiles occupied by σ on τ

If some tiles in A1 have been assigned to other vehicles
Send a reject message to σ

End
For each time step t0 during the traversal of τ

For each mechanical failure f ∈ F
Let I = (σ , f , t0) be an incident
If UpdateEvasionPlanDB(DB, I) = False

Send a reject message to σ

End
End

End
Let P be the set of plans in DB for incidents involving σ

Let A2 be the set of all tiles used by all plans in P
If all tiles in A2 are either occupied by σ or unoccupied

Assign tiles in A1 to σ

Assign tiles in A2 to corresponding vehicles in evasion plans
Send a confirm message to σ

Else
Send a reject message to σ

End

Fig. 4. The request handler in the modified AIM protocol.

collisions may occur subsequently, and the number of ve-
hicles involved in the collisions may increase in multiple-
vehicle collision scenarios. Let Σ be the set of all vehicles
inside the intersection or past their points of no return, but
not involved in any collisions at time t2 after the incident.
A solution to an incident is an evasion plan π executed at
time t2 such that all vehicles in Σ will never collide after t2.
More precisely, we denote a solution by (π, t2), and say a
solution is valid for an incident (σ , f , t0) if there exists a time
t1 ∈ [t0, t0+Tdetect) such that if the IM detects the incident at
t1, it can execute π at time t2 to avoid any further collisions
except those that have already occurred on or before t2, where
t2 ∈ [t1, t1 +Texe) for some constant Texe.

An incident handler is a process that runs in parallel with
an IM. Its job is to detect the occurrence of mechanical
failures and schedule the execution of evasion plans for them.
An incident I = (σ , f , t0) is t1-solvable if there exists a valid
solution (π, t2) for I, where t2 ∈ [t1, t1+Texe) is the execution
time of π . An incident is solvable if it is t1-solvable for all
t1 ∈ [t0, t0 +Tdetect+Texe). In this paper, we assume that all
incidents are solvable. An unsolvable incident does not mean
that there is no way to mitigate the scale of collisions; but
in our framework there is no guarantee that the vehicles not
involved in the collisions will not collide after t2.

An incident handler solves an incident I if it generates
a valid solution for I. An incident handler is complete if it
solves all solvable incidents. That is, a complete incident
handler can generate valid solutions for all kinds of failures
of all vehicles entering an intersection at all times. It is hard
to build a complete incident handler to deal with all kinds
of failures. Therefore, we will focus on building an incident
handler that is F-complete—the completeness for a restricted
set F of possible mechanical failures for which the incident
handler can generate valid solutions. Note that IMs only
allow vehicles whose incidents can be preemptively handled
with some evasion plans to enter the intersection. A vehicle

Procedure UpdateEvasionPlanDB(I)
// Input: I = (σ , f , t0) is an incident
Simulate the incident I for a period of time Tdetect+Texe
For each time step t2 ∈ [t0, t0 +Tdetect+Texe)

Let Σ1 be vehicles inside the intersection at t2
Let Σ2 be vehicles passed the point of no return at t2
Find the set Σ3 of vehicles collided on or before t2
Let A be the set of occupied tiles on and after t2
DB(I, t2) := SearchEvasionPlan(I, (Σ1 ∪Σ2)\Σ3, A, t2)

End
// Check whether evasion plan exists for all t1
For each time step t1 in [t0, t0 +Tdetect)

found := False
For each time step t2 in [t1, t1 +Texe)

If DB(I, t2) 6=Nil, then found := True
End
If found = False, then return False

End
Return True

Fig. 5. The procedure for updating the evasion plan database.

that is denied by the IM should resubmit the reservation
requests until the IM successfully pre-computes all evasion
plans for all possible incidents with this vehicle.

VIII. MODIFIED INTERSECTION MANAGERS

In this section, we present a modified IM that pre-
computes evasion plans. Fig. 4 is the pseudo-code of the
request handler of IMs, which is invoked when it receives
a reservation request r = (σ , t ′,v′, l1, l2), where σ is the
vehicle’s ID, t ′ is the arrival time, v′ is the arrival velocity,
l1 is the lane at which σ enters the intersection, and l2 is the
lane from which σ leaves the intersection. The modification
includes (1) the incremental update of the evasion plan
database DB and (2) the allocation of tiles for evasion plans.
DB is a mapping from incidents and execution times to
evasion plans that will be used by the incident handler.

After computing the trajectory τ of σ , the IM will simulate
all kinds of mechanical failures in F that may happen at
every time step t0 when σ moves across the intersection
along τ . For each possible incident I, the IM calls Upda-
teEvasionPlanDB to compute the evasion plans for all pos-
sible execution times t2 ∈ [t0, t0 +Tdetect+Texe) (see Fig. 5).
UpdateEvasionPlanDB stores the evasion plans in DB and
checks whether there is at least one evasion plan for each
detection time t1. After that, AcceptReqeuestMessage
assigns the tiles to σ and the evasion plans if the tiles have
not been occupied. Unlike the original AIM implementation,
each tile can be assigned to more than one vehicle because
the set of tiles used by different evasion plans can overlap.
It is safe for evasion plans to share some tiles since only one
evasion plan will be executed at a time. Moreover, if the new
trajectory of σ is different from the original trajectory of σ ,
the tiles on the original trajectory can be used for evasion.
Finally, the IM sends a confirmation message to σ .

Fig. 6 shows the search procedure used by UpdateEva-
sionPlanDB to find an evasion plan at time t2 for a particular
incident I. SearchEvasionPlan is a recursive procedure
that enumerates all possible evasion plans until it finds
one that safely avoids collisions on and after t2. In each
iteration, it first checks whether it is safe for a vehicle σ

Procedure SearchEvasionPlan(I, Σ, A, t2)
// Input: I = (σ , f , t0) is an incident
// Input: Σ is a set of vehicles not collided before t2
// Input: A is a set of occupied tiles
// Input: t2 is time at which evasion plan will be executed
If Σ is an empty set, then return an empty list 〈〉.
Let σ be the first vehicle in Σ

Let A1 be the set of tiles on the original trajectory of σ

If A∩A1 = /0 // σ will not collide
π1 := SearchEvasionPlan(I, Σ\{σ}, A∪A1, t2)
If π1 =Nil, then return Nil // no evasion plan is found
Return 〈(True,0)〉⊕π1 // ⊕ is the concatenation operator

Else
Let δ0 be the direction of σ at t2
For each direction δ ∈ {δ0 + k× (π/9) :−3≤ k ≤ 3}

Let τ2 be the new trajectory after executing (False,δ) at t2
Let A2 be the set of tiles occupied by σ on τ2
If A∩A2 = /0 // σ will not collide

π2 := SearchEvasionPlan(I, Σ\{σ}, A∪A2, t2)
If π2 6=Nil, then return 〈(False,δ)〉⊕π2

End
End
Return Nil // no solution

Fig. 6. The search procedure for finding an evasion plan.

Procedure IncidentHandler()
Loop until an incident I = (σ , f , t0) is detected at t1

Stop granting reservations to vehicles.
For each time step t2 in [t1, t1 +Texe)

If DB(I, t2) 6=Nil // an evasion plan exists
π := DB(I, t2)
Schedule π to be executed at time t2
Break the for-each loop

End
End
If no evasion plan is scheduled for I

secondaryIncidentHandler(I, t1)
End

Fig. 7. The procedure of the incident handler.

to move along its original trajectory without stopping using
instruction (False,0). If not, it will check into which direction
σ can turn and then stop. To limit the search space, the
procedure considers a finite number of directions in the set
{δ0+k×(π/9) :−3≤ k≤ 3} only, where δ0 is the direction
of σ at time t0 and k is an integer. If it finds a direction δ that
is safe for σ , the instruction for σ is (True,δ); otherwise, the
procedure backtracks to consider another evasion actions for
previous vehicles. Finally, the procedure will return a valid
evasion plan at t2 for I, or Nil if there is no solution. The time
complexity of the procedure is O(8|Σ|), where |Σ| is usually a
small number because there is a upper bound on the number
of vehicles that can be in an intersection simultaneously.

The incident handler continually monitors the intersection
to detect any failure (see Figure 7). Once it detects an inci-
dent, it will immediately inform the IM to stop sending out
confirmation messages. It will then retrieve the evasion plan
π∗ with the earliest execution time from DB and schedule
π∗ for execution. If no evasion plan is found or the failure
is unknown, the incident handler will invoke a secondary
incident handler which will either notify the vehicles to take
evasive actions themselves or generate an evasion plan on
demand to avoid collisions as much as possible and minimize
the severeness of inevitable collisions in the future.

The following theorem states that the incident handler, in
collaboration with the modified intersection manager, is F-

Fig. 8. The robots used in our testbed in their final orientation. The robot on
the right entered the intersection first but suffered a mechanical breakdown.
The robot on the left executes an evasion plan that causes it to steer to the
left thereby avoiding collision with the first robot.

complete. But due to space limitation we omit the proof.
Theorem 1: The incident handler in Fig. 7 is F-complete.

IX. IMPLEMENTATION PROOF-OF-CONCEPT

We implemented evasion planning in an autonomous in-
tersection testbed at UT Austin [13], which consists of small
robotic vehicles based on the Traxxas Stampede R/C car
mobile chassis as shown in Figure 8. While miniature relative
to real vehicles, they move in the same non-holonomic
manner where only the front two wheels are steerable. The
vehicles are autonomous with on-board x86 computers and
various micro-controllers for accessing the on-board sensors
and actuators. White lines are placed on the ground denoting
lanes that the robots follow using on-board CMUCam2 vi-
sion sensors, while overhead markers are placed at the points
of approach, entry, and exit surrounding the intersection.
The robots use upward facing IR range sensors to detect
these markers and, combined with odometer measurements,
compute their positions in and around the intersection.

Two robots are configured to approach the intersection
from perpendicular directions. As they approach, they com-
municate with the IM that grants both vehicles entry times
that ensure safe crossing assuming no mechanical failures
occur. We tested this scenario to verify safe passage. To
evaluate situations that arise due to mechanical failures, we
modified the software to simulate a mechanical fault (i.e.,
after entering the intersection, the motors are intentionally
disabled). Only the first robot that enters the intersection
is configured to suffer this fault. We verified that the fault
results in a collision by having the two robots travel through
the intersection like before, and observing the first robot
stop midway and the second robot colliding into it. Finally,
evasion planning is enabled by having the first robot report
the mechanical failure to the IM. Upon receiving this, the IM
sends the second robot an evasion plan, which in this case
is to turn left. The second vehicle is able to successfully
avoid collision by turning left after the first robot stalls,
thus demonstrating the feasibility of our approach. A video
showing all three experiments accompanies this submission.

X. CONCLUSIONS AND FUTURE WORK

Autonomous intersection management can dramatically
improve intersection efficiency, reduce traffic delays, and
alleviate traffic congestion [3]. But concerns about the safety

and questions like “what if a tire blows out?” are common.
This paper addresses this concern by proposing a modified
AIM protocol that is fail-safe with respect to a restricted set
of mechanical failures. The fail-safe property is crucial to
the deployment of AIM to the real world.

We argue that it is essential to compute evasion plans
preemptively because last-second evasive actions are not
always successful without pre-allocation of spaces in an
intersection. Our approach guarantees that once an evasion
plan is executed, there will be no collision among vehicles
that have not yet collided. Note that our approach still
requires vehicles to carry out ad-hoc evasive actions if the
mechanical failure is not one of those considered by the IM.

In the future, we intend to (1) derive a close-form solution
to Eq.1 to compute the trajectory bundle exactly; (2) include
a better collision model for multiple-vehicle collisions; (3)
relax the assumption that no two mechanical failures occur
nearly at the same time; and (4) examine the tradeoff between
the intersection efficiency and the number of mechanical
failures that can be addressed preemptively.
Acknowledgments. Part of this work has taken place in the
Learning Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (IIS-0917122), ONR (N00014-
09-1-0658), and the FHWA (DTFH61-07-H-00030).

REFERENCES

[1] DARPA, “DARPA Urban Challenge,” http://www.darpa.mil/
grandchallenge/index.asp, 2007.

[2] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research
(JAIR), March 2008.

[3] D. Fajardo, T.-C. Au, S. T. Waller, P. Stone, and C. Y. D. Yang,
“Automated intersection control: Performance of a future innovation
versus current traffic signal control,” TRR: Journal of the Transporta-
tion Research Board, no. 2259, pp. 223–232, 2012.

[4] K. Dresner and P. Stone, “Mitigating catastrophic failure at intersec-
tions of autonomous vehicles,” in The Fifth Workshop Agents in Traffic
and Transportation (ATT 08), May 2008.

[5] T. Sayed and S. Zein, “Traffic conflict standards for intersections,”
Transportation Planning and Technology, vol. 22, no. 4, pp. 309–323,
August 1999.

[6] J. A. Bonneson and P. T. McCoy, “Estimation of safety at two-
way stop–controlled intersections on rural highways,” Transportation
Research Record, vol. 1401, pp. 83–89, 1993.

[7] B. N. Persaud, R. A. Retting, P. E. Gardner, and D. Lord, “Safety
effect of roundabout conversions in the united states: Empirical bayes
observational before-after study,” Transportation Research Record,
vol. 1751, pp. 1–8, 2001.

[8] A. Colombo and D. D. Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Hybrid Systems: Computation and
Control, 2012.

[9] M. R. Hafner, D. Cunningham, L. Caminiti, and D. D. Vecchio,
“Automated vehicle-to-vehicle collision avoidance at intersections,” in
Proceedings of World Congress on Intelligent Transport Systems, 2011.

[10] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide
safety in intelligent intersections,” IEEE Transactions on Vehicular
Technology, 2011.

[11] T.-C. Au and P. Stone, “Motion planning algorithms for autonomous
intersection management,” in AAAI 2010 Workshop on Bridging The
Gap Between Task And Motion Planning (BTAMP), 2010.

[12] S. Kamijo, Y. Matsushita, K. Ijeuchi, and M. Sakauchi, “Traffic
monitoring and accident detection at intersections,” IEEE Transactions
on Intelligent Transportation Systems, vol. 1, no. 2, pp. 108–118, 2000.

[13] C.-L. Fok, M. Hanna, S. Gee, T.-C. Au, P. Stone, C. Julien, and
S. Vishwanath, “A platform for evaluating autonomous intersection
management policies,” in Proceedings of the International Conference
on Cyber-Physical Systems (ICCPS), to appear, 2012.

