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Leveraging Commonsense Reasoning and Multimodal Perception for
Robot Spoken Dialog Systems
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Abstract— Probabilistic graphical models, such as partially
observable Markov decision processes (POMDPs), have been
used in stochastic spoken dialog systems to handle the inherent
uncertainty in speech recognition and language understanding.
Such dialog systems suffer from the fact that only a relatively
small number of domain variables are allowed in the model,
so as to ensure the generation of good-quality dialog policies.
At the same time, the non-language perception modalities on
robots, such as vision-based facial expression recognition and
Lidar-based distance detection, can hardly be integrated into
this process. In this paper, we use a probabilistic commonsense
reasoner to “guide” our POMDP-based dialog manager, and
present a principled, multimodal dialog management (MDM)
framework that allows the robot’s dialog belief state to be
seamlessly updated by both observations of human spoken
language, and exogenous events such as the change of human
facial expressions. The MDM approach has been implemented
and evaluated both in simulation and on a real mobile robot
using guidance tasks.

I. INTRODUCTION
Language has been the most natural way of interaction

among humans. Accordingly, there is the need to equip
robots with the same kind of capabilities to achieve more
natural human-robot interaction (HRI). Robot spoken dialog
systems are designed to enable a robot to converse with a
human with voice, and typically include the components for
language understanding, dialog management, and language
generation. A typical language understanding module in-
cludes a speech recognition subsystem that converts spoken
language into text, and a parsing subsystem that converts
text into symbolic representations. It should be noted that
both subsystems are unreliable and introduce noise, placing
the main challenge to dialog management, as the next step
in the pipeline. This work is aimed at the dialog manager
component that is used for computing a language policy. This
policy takes as input the symbolic, unreliable observations
from the language understanding module, and outputs lan-
guage actions that are synthesized by the language generation
component.

Following the Markov assumption, i.e., the next state
relying on only the current state and being independent of
all previous ones (first-order), Markov decision processes
(MDPs) have been developed for action selection toward
maximizing long-term rewards under the uncertainty in ac-
tion outcomes. Partially observable MDPs (POMDPs) further
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Fig. 1: The mobile robot platform (KeJia robot) that has
been used (as a museum guide robot) in the experiments.

assume the partial observability of the current world state, so
a belief state, in the form of a distribution over all possible
states, is maintained for estimating the current state [1]. As a
result, POMDPs have been used for dialog management [2].
Such dialog systems share a limitation with many other
POMDP-based systems that only a relatively small number
of domain variables can be modeled in the state space.

In this paper, we decompose standard POMDP problems
into a sub-problem of commonsense reasoning in the original
state space, and a sub-problem of probabilistic planning in
a (much smaller) partial state space, enabling our dialog
manager to account for exogenous events during human-
robot conversations. This work is particularly useful for
conversations that last a relatively long time. As the second
contribution of this paper, we add the perception modalities
of vision and laser range finding into our robot dialog system
to augment its sensing capabilities.

The proposed algorithm has been implemented and eval-
uated both in simulation and on a mobile robot working on
museum guide tasks (Fig. 1), where the robot interacts with
visitors via spoken language to identify their interests and
physically guide visitors to exhibits. In addition to language,
this work enables the robot to incorporate vision-based
facial expression recognition and Lidar-based localization
into spoken dialog systems. For instance, given an “unhappy”
face being detected in front of an exhibit of Professor P ’s
research achievement in the 50′s, our robot revises its belief
(in probability) toward the visitor being interested in neither
Professor P ’s research nor research in the 50′s. As a result,



it is likely that the visitor will be led to exhibits related to
other researchers in different years (after confirming with
language).1 Existing dialog management methods cannot
produce such robot behaviors.

II. RELATED WORK

Within the context of intelligent robotics, this work lies in
the intersection of spoken dialog management, commonsense
reasoning, and multimodal perception. We summarize a
representative set of algorithms and systems in these areas.

Spoken dialog management has been modeled as a prob-
abilistic planning problem to handle the inherent noise from
spoken language understanding in dialog systems. NJFun is
one of the early, representative systems that base its dialog
manager on an MDP [3]. POMDPs are used in modern
dialog systems to model the uncertainty from language
understanding in a continuous space [2], and such dialog
systems have been applied to real robot systems [4], [5], [6].
Despite the significant advancements achieved in POMDP-
based planning algorithms and implementations ([7], [8]) and
in speech recognition (e.g., the ones based on Deep Neural
Networks [9]), it is still a challenge to apply such dialog
systems to real-world problems that frequently involve a
large number of domain variables. Also, the perception in
such systems is restricted to language.

The term commonsense knowledge, in this paper, is used
to refer to the knowledge that is normally true but not always,
and can be represented using defaults and probabilities.
There is a rich history of default reasoning in artificial
intelligence [10], and answer set programming (ASP) is one
of the popular realizations that has been applied to different
reasoning problems [11], [12]. P-log extends ASP to further
enable probabilistic commonsense reasoning using causal
Bayesian network [13]. As a result, P-log is able to draw
conclusions in both quantitative and qualitative forms using
commonsense knowledge. We use P-log in this work.

Modern robots are mostly equipped with multiple sensing
modalities, such as audio, video, range-finding and hap-
tics [14], [15], [16], [17]. While audio-based language has
been the predominant input of spoken dialog systems [2],
recent work has shown that other sensing modalities have
the potential to significantly improve robots’ language ca-
pabilities [18], [19]. In this work, we develop an algorithm
that integrates multiple sensing modalities (audio, video, and
Lidar) for robot spoken dialog systems in a principled way.

The work closest to this research is algorithm CORPP [5]
that uses a commonsense reasoner and a probabilistic planner
to focus on the “curse of dimensionality” and the “curse of
history” (defined in [20]) respectively. The reasoner speci-
fies a partial state space (typically much smaller than the
original), on which a POMDP-based planner computes a
policy that maximizes its long-term reward. This strategy has
enabled dialog management in high-dimensional spaces and
long planning horizons that have been impossible before.

1In this work, a dialog does not end until the visitor leaves the current
room.

A recent work further enables dynamically constructing
(PO)MDPs using a commonsense reasoner [21]. However,
neither of them is capable of incorporating multimodal
perception or incorporating exogenous events into state es-
timation. For instance, an unhappy face of the human in
a human-robot conversation can be a negative sign to the
robot’s belief estimation or current acting policy. In case of
such exogenous events (unhappy face), CORPP and its recent
extension either discard all information collected so far (to
account for the changes) or completely ignore the exogenous
events. This paper aims to address these issues.

III. ALGORITHM

In this section, we first introduce how commonsense
knowledge is structured in our multimodal dialog manage-
ment (MDM) framework, then building on this structure we
present the MDM control flow in a general way, and finally
we detail the implementation of our MDM-based spoken
dialog system on a KeJia robot.

A. Structure of commonsense knowledge

In a factored space, a world state can be specified using
a set of random variables (or simply variables), denoted by
V, and their values, denoted by v. The world states together
form a full world state space (or simply full space). Given
a task at hand, we can select a minimal set of random
variables for specifying a partial world state space (or partial
space). The partial space includes a set of partial world
states (or simply partial states). The variables modeled in
a partial space are called endogenous variables and denoted
by Ven. The elements in Vex=V \Ven (set subtraction) are
exogenous variables.

Our strategy is to use a commonsense reasoner (includes a
set of logical and probabilistic rules) to reason within the full
space about the variables of Ven ∪ Vex (without consider-
ing robot actions); and to use a task-oriented probabilistic
planner (corresponds to a probabilistic transition system)
to plan within the partial space about only the variables
of Ven. Intuitively, the reasoner and planner are concerned
with “understanding the current state of the world” and
“accomplishing the task given the current understanding”
respectively. The task-oriented probabilistic planner is guided
by the reasoner – this will be detailed in our dialog system.
Standard probabilistic planners (including the POMDP-based
spoken dialog systems) do not differentiate these two spaces,
directly computing plans in the full world state space.

Fig. 2 illustrates an example world space that includes
three endogenous variables and three exogenous variables.
The endogenous variables and their conditional dependencies
are modeled by a causal Bayesian network via a directed
acyclic graph (DAG), where the relationships between nodes
are required to be causal [22]. This partial state space
corresponds to the POMDP state space and is where planning
happens. It should be noted that the standard POMDP frame-
work does not allow the modeling of direct dependencies
between states (e.g., a POMDP cannot tell which state is the
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Fig. 2: An illustration of world state space and partial
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most likely before taking any actions), whereas MDM does
so via the structured knowledge.

The exogenous variables are causally dependent on the
endogenous variables. The dependencies are represented by
the arrows that connect the partial and non-partial state
spaces in Fig. 2. The dependencies between exogenous
variables are not modeled because they have default values
that can be smoothly replaced by true values when available
(accomplished via default reasoning). Modeling the exoge-
nous variables this way allows us to use their dependencies
to estimate the values of endogenous variables. This enables
POMDP belief state, as a distribution, to be directly updated
by the value change of exogenous variables. This belief
update mechanism has been absent in the literature.

Consider a museum environment that includes one mu-
seum guide robot and two exhibits about science and art
respectively. The robot can ask questions to find out (in
probability) which exhibit a visitor is most interested in. In
this sense, it is necessary to model only one domain variable
(either science or art). If the robot is equipped with the facial
expression recognition capability (happy/unhappy), another
domain variable is needed. In this example, the science/art
variable is endogenous, where the robot plans to actively
uncover its value; the happy/unhappy variable is exogenous,
because the expression recognition algorithm can be running
all the time and the robot does not need to consider this
variable until its value change is detected.

B. Multimodal Dialog Management

Our control framework is presented in Fig. 3. Comparing
our flow chart with that of standard POMDPs [1], our system
has an event reasoner (ER) that is inserted between state
estimator (SE) and policy π for action selection. ER is
mainly used for two purposes:

1) Initializing beliefs at the very beginning; and
2) Updating beliefs given events being detected.
We say an exogenous event (or event) happens when

there is a value change of an exogenous domain variable.
At the beginning of a conversation, ER reasons about both
logical and probabilistic commonsense knowledge (using P-
log [13]), including the values of exogenous domain vari-
ables and the dependencies of endogenous variables. This
reasoning step enables ER to compute a distribution over all
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Fig. 3: A flow chart of our multimodal dialog management
(MDM) framework. The event reasoner (ER) plays a key
role in comparison to standard stochastic dialog manager.

possible partial states. This distribution serves as the initial
belief for our POMDP. After that, we follow the standard
process to use the precomputed POMDP policy for action
selection and update the belief based on observations. In
each iteration, if there is no event detected, the updated belief
is directly used for action selection. Otherwise, we take the
current belief as the prior distribution and use the new values
of exogenous domain variables to compute the posterior
distribution of the POMDP belief (over partial states).

The probability of the current partial world being in
partial state s (a POMDP state) is computed based on the
distribution over the combinations of values of endogenous
domain variables:

Pr(s) = Pr(V en
0 = ven0 , V en

1 = ven1 , · · · , V en
m−1 = venm−1)

(1)

where V en
i is the ith endogenous domain variable, veni is the

value of that variable, and ven = [ven0 , · · · , venm−1] specifies s.
There are totally m endogenous domain variables. It should
be noted that these endogenous variables are not necessarily
to be independent. Continuing our museum guide example,
a visitor who is interested in exhibits about the College of
Engineering (college) is likely to be interested in researchers
working on engineering (person). The standard POMDP
framework does not support reasoning about dependencies
between states (or domain variables), whereas it is achieved
via the P-log-based event reasoner in MDM.

Given the values of exogenous domain variables and the
belief over partial world (POMDP) states, we can use the
standard Bayes’ theorem to update the POMDP belief (this
process is automatically done in ER):

Pr(s|vex) = η · Pr(vex|s) Pr(s) (2)

where vex is a vector of exogenous domain variable values,
and η is a normalizer.

The observation model of exogenous events is Pr(vex|s)
and can be computed as follows

Pr(vex|s) = Pr(vex0 |s) · Pr(vex1 |s) · · ·Pr(vexn−1|s) (3)

where n is the number of exogenous domain variables.
It should be noted that we do not assume that exogenous

domain variables are independent. We use default reasoning
to assign each exogenous variable a default value. When
the true value becomes available, this default value can be



1: procedure MDM
2: while not in a terminal state do
3: Initialize belief bt by commonsense reasoning in ER
4: Select action a using policy π based on belief b
5: Make observation o from the world
6: Update belief b based on prior belief, a, and o
7: if exists(exogenous events) then
8: Update b based on prior belief and exogenous events
9: end if

10: end while
11: end procedure

Fig. 4: Procedure of our multimodal dialog management
(MDM) framework.

overwritten without breaking the consistency of the whole
reasoning system. In this way, each exogenous domain
variable always has a “known” value (default or observed),
making it unnecessary to model the dependencies between
exogenous domain variables. Modeling the dependencies
would improve the value estimation of endogenous variables
– this will be investigated in future work.

After updating the belief over partial state space, we use
the updated belief for selecting the next action π : b′ → a.
Intuitively, this new belief includes all information collected
from the history and the information from the exogenous
domain changes. Finally, the belief can be updated based on
observations over the partial world state space:

Pr(s′) = η ·O(o | s′, a)
∑
s∈S

T (s′ | s, a) Pr(s) (4)

where O(o | s′, a) is the observation model that defines the
probability of receiving an observation in state s′ after taking
action a (in our case, it describes the speech recognition
reliability). T is the state transition model that specifies the
probabilities transition system of a POMDP.

Fig. 4 summarizes the procedure of our MDM framework.
It is different from standard POMDP control loop in that,
when exogenous events are detected (such as a change of
human facial expression), belief b is updated based on the
exogenous events in Lines 7-9. This enables a robot to update
its dialog belief state using multimodal (both language and
non-language) perception. Fig. 5 visualizes the belief update
process, where the robot actively acquires information via
observations of 〈ot, ot+1, · · · 〉 and the belief state can be
passively updated via observations over exogenous events of
〈oet , oet+1, · · · 〉 at the same time.

IV. IMPLEMENTATION

Our MDM dialog management framework has been imple-
mented on a mobile robot that serves as a tour guide in the
Museum of USTC (University of Science and Technology
of China). The museum includes gallery rooms, where each
gallery room includes a set of exhibits. The exhibits can
be characterized using the properties of identity (the main
person involved in the exhibit, such as Adams, Brown and
Clark), college (the main college involved in the exhibit,

Partial state 
space

Fig. 5: A visualization of the transitions, actions, and obser-
vations in the proposed spoken dialog system.

such as Engineering, Education and Business), and years
(the years that corresponds to the exhibit, such as 50s-70s,
70s-90s, and 90s-present). It should be noted that, given an
exhibit, a property might not be applicable. For instance,
exhibit E1 might be about Professor Brown who served
as the Provost of USTC in the 80s, so this exhibit is not
corresponding to any colleges. To account for such situations,
we add a special value of na (standing for “not applicable”)
into the range of each property.

Since the robot is only interested in which exhibit(s) a
visitor is interested in, it makes sense to include only the
variables of “identity” , “college”, and “years”, as endoge-
nous domain variables, in the partial state space.
• V i: the identity of the main person of an exhibit.
• V c: the college to which an exhibit is most related.
• V y: the years of an exhibit, e.g., 50s, 70s and 90s.
Focusing on the relationships among the endogenous vari-

ables, we find a visitor who is interested in college C is
likely to be interested in a person (with identity I) affiliated
to college C. Accordingly, we model the causal dependency
of V i on V c. For instance, the probability of a visitor being
interested in identity I given the fact this person is affiliated
to college C and the visitor is interested in C is set 0.8
arbitrarily in experiments.

Three other variables are not modeled in the partial state
space, including “following”, “age”, and “mood”.
• V f : a boolean variable that represents if a visitor is

following the robot.
• V a: the age of a visitor (<20, 20−40, and >40).
• V m: the mood of a visitor (happy and unhappy).
The three endogenous variables depend on variable V f

(following): a visitor staying at the previous exhibit (instead
of following the robot to the next) indicates that the visitor
is interested in at least one property of the previous exhibit
(in probability). The endogenous variables also depend on
variable V m (mood): an unhappy face of a visitor indicates
that the visitor is not interested in any property of the current
exhibit (in probability).

The goal is to create a spoken dialog system to enable
the robot to talk to visitors to find their interests, use vision-
based mood recognition and Lidar-based localization to help
estimate the visitor’s interests, and physically guide visitors
to exhibits of the most interest.



(a) Cost. (b) Success. (c) Reward.

Fig. 6: Incorporating sensing modalities of vision and Lidar into a robot spoken dialog system. The x-axis represents the
four dialog management strategies that use: language only, language and Lidar, language and vision, and all three. Our MDM
framework generally reduces the question-asking cost, as shown in (a), and increases the interest identification accuracy, as
shown in (b), in comparison to the baseline.

V. MULTIMODAL PERCEPTION

In this section, we first give an overview of our robot’s
hardware, and then describe the perception modules on
which we build our spoken dialog system.

Our robot is based on a two-wheel driving chassis of size
62 × 53 × 32 in centimeter. A lifting system is mounted
on the chassis and is attached to the robot’s upper body.
Assembled with the upper body is a six degrees-of-freedom
(DOF) arm. It is able to reach objects over 83 centimeters far
from the mounting point and the maximum payload is about
500 grams when fully stretched. The robot is powered by a
20Ah battery that guarantees the robot a continuous run of at
least one hour (as a tour guide robot, the time is significantly
longer as the robot spends most of the time talking instead
of moving). As for real-time perception needs, our robot
is equipped with a Kinect sensor, a high-resolution CCD
camera, two Lidar sensors and a microphone. A workstation
laptop is used to meet the computational need.

a) Speech recognition: The speech recognition module
converts speech signals (voice) into natural language text. For
speech recognition, we use directional microphone hardware
to reduce background noise and we use the Speech Appli-
cation Programming Interface (SAPI) package for speech
recognition.2 On this basis, we have encapsulated it into a
ROS [23] package in our code base.

b) Emotion recognition: The emotion recognition mod-
ule is realized via a facial expression recognition package.
We first track the speaker’s face using OpenFace, an open
source face detection and recognition software building on
deep neural networks [24]. Then, the saved face image is sent
to our emotion recognition module that is built on Emotion
Recognition Application Programming Interface (ERAPI)
from Microsoft Cognitive Services.3 Finally, ERAPI recog-
nizes the emotion(s) of one or more people in the image,
based on which a happy/unhappy emotion is returned.

c) Age recognition: In order to recognize human age,
we save the face image and send it to the Face API of (again)
Microsoft Cognitive Services. The Face API returns face

2http://www.iflytek.com/en/
3https://www.microsoft.com/cognitive-services/en-us/

locations and face attributes in comma-separated strings like
“returnFaceAttributes=age,gender”, from which human age
is extracted. Other attributes supported by the API include
age, gender, headPose, smile, facialHair, and glasses.

VI. EXPERIMENTS

The MDM framework has been implemented both in
simulation and on a real robot. In a museum environment, the
robot (simulated or physical) needs to estimate the interest
of a visitor via multimodal perception, and decide where
(which exhibit) to guide the visitor to. After a brief self-
introduction, the robot actively asks questions to acquire
information about the visitor’s interests (such as “Are you
interested in the history of the College of Education?”), while
at the same time passively using vision and Lidar to estimate
the visitor’s interests. For instance, an unhappy face indicates
the visitor might not be interested in the current exhibit,
and not following the robot to the next exhibit indicates
the visitor is interested in at least some aspects of the last
exhibit. The goal is to evaluate if (and how much) the non-
language perceptual capabilities can contribute to the dialog
management, using the MDM framework.

a) Simulation experiments
In simulation experiments, the robot interacts with visitors

in a gallery room that has a set of nine exhibits. For instance,
the first exhibit is about Dr. Brown’s achievement in the 70s
when Dr. Brown was with the College of Engineering. Im-
perfect sensing capabilities are simulated. For instance, when
the visitor answers “yes/no” to the robot’s question “Are
you interested in the history of the College of Education?”,
the robot correctly recognizes the answer in probability 0.8
unless specified otherwise.

We simulate human emotion (reflected by facial expres-
sion) in such a way that the more properties of the current
exhibit the human is not interested in, the higher proba-
bility that the visitor has an unhappy face: the probability
ranges from 0.2 (zero uninterested property) to 0.8 (three
uninterested properties). At the same time, we simulate that
a “not following” behavior indicates the visitor is interested
in some properties of the previous exhibit (more properties
result in a high probability). We cannot evaluate the statistical
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Fig. 7: Question-asking cost (left y-axis) and accuracy
of visitor interest identification (right y-axis). Our MDM
framework is especially useful when the speech recognizer
is unreliable (the left end of the curves).

significance in following experiments, because we sample
human interests in each trial, making direct comparisons
over different trials infeasible. Each data point corresponds
to 1000 trials in all figures.

Fig. 6 reports the results of the first set of experiments in
simulation. The evaluation is based on question-asking cost
(time needed before the robot starts to physically guide the
visitor), success rate (correctly identifying the exhibit that
the visitor is most interested in is a success), and overall
reward (that combines question-asking cost and success
bonus/failure penalty). We can see our MDM framework
generally performs better than the baseline (CORPP [5]) in
all three criteria (question-asking cost, overall reward, and
success rate). Especially, when all three sensing modalities
are used, the robot produces the best accuracy in success rate,
while requiring the least question-asking cost. The results
support our hypothesis that MDM improves spoken dialog
management (in both accuracy and efficiency) by leveraging
vision-based and Lidar-based perception.

We further evaluate the performance of MDM given
different speech recognition accuracies. Our hypothesis is
that multimodal perception plays a more significant role
when speech recognition is more unreliable. For the sake
of easy analysis of the results, we only change the recog-
nition accuracy of visitors’ “yes/no” answers. Fig. 7 shows
the question-asking cost and success rate (accuracy) given
different speech recognition accuracies. First, we can see
given a better-quality speech recognizer, both the baseline
and our MDM perform better (in both cost and accuracy).
Second, the performance difference between the baseline and
MDM decreases as the speech recognizer becomes more
reliable. The results support our hypothesis that our MDM
framework is especially useful in environments where good-
quality speech recognition is challenging.

In the last set of simulation experiments, we evaluate
the performance of our MDM-based dialog manager given
different success bonus, R+ (a positive real number), and
failure penalty, R− (a negative real number). Their values
are adjusted in a way that |R+| = |R−|. Intuitively, these
values can be used to adjust the trade-off between visitor
interest identification accuracy and question-asking cost.
Fig. 8 reports the results, where the value of R+ varies from
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Fig. 8: Adjusting the trade-off between cost and accu-
racy by changing the success bonus and failure penalty
([5, 10, 15, 20] from left to right for each curve). Our MDM
framework consistently performs better than the baseline
given different trade-offs between cost and accuracy.

Fig. 9: Our KeJia robot interacting with a “visitor” in an
artificial museum.

5 to 20. We can see MDM generally performs better than
the baseline (CORPP) given different values of R+ and R−.
The results can serve as a reference in deciding how long a
conversation needs to be. For instance, it makes sense to give
a longer time to a conversation with senior people (thanks
to our age recognition module) who might be physically
challenged in walking, and hence the visitor’s interest can be
more accurately identified (minimizing walking distance).

b) Trials on a real robot
Our MDM framework has been implemented on a KeJia

robot. Figure 9 shows a picture of the robot interacting
with a visitor in artificial museum environment.4 Section IV
detailed the implementation of MDM on our KeJia robot,
including the components for speech recognition, emotion
recognition, and age recognition, in addition to standard
robotic capabilities such as localization and navigation.

We present the spoken language in a human-robot con-
versation, where the conversation starts near an exhibit
about 〈Adam,Engineering, Seventies〉, whereas the visi-
tor’s real interest is 〈Brown,Education,Nineties〉.

- Robot: Hi! I’m a tour guide robot. Do you need my
assistance to find your favorite exhibit?

* Visitor: Sure!
- Robot: Sounds good. May I ask which college of our

university you are the most interested in?

4Even though the project is on a museum guide robot, the experiments
were all conducted in our research lab so far, where we try our best to
capture the challenges from the real museum environment.



* Visitor: I am interested in the College of Education.
- Robot: Did you say that you are interested in the

College of Education?
* Visitor: Yes!
- Robot: I see. Are you interested in its history in the

nineties?
* Visitor: Yes!
- Robot: Did you say you are interested in its history in

the nineties?
* Visitor: Yes!
- Robot: Got it! Please follow me.
It should be noted that the robot detected an unhappy

facial expression, right before it received the underlined
human feedback. As a result, the robot has a prior belief
that the visitor might not be interested in exhibits about
Adam, Engineering, or Seventies (the properties of its current
exhibit), and only four questions (not considering the self-
introduction one) are needed before the robot is confident
about the visitor’s interest. In comparison, using the baseline
approach, the robot would have asked five questions on
college, confirming college, person Brown, years, confirming
years. An illustrative trial can be viewed online.5

VII. CONCLUSIONS

In this paper, we develop a multimodal dialog management
(MDM) framework that leverages multimodal perception and
commonsense reasoning for robot spoken dialog systems.
In addition to language, sensing modalities of vision (for
facial expression recognition) and Lidar (for localization)
have been integrated into our dialog manager. We build
our commonsense reasoner on P-log, a declarative language
that is good at both logical and probabilistic commonsense
reasoning. As a result, MDM enables the robot to actively
acquire information via spoken language and passively up-
date its belief based on observations over exogenous events
at the same time. Experiments conducted in simulation and
on a real robot show that MDM reduces the communication
cost while increasing accuracy of acquired information.
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