Deep R Learning for Continual Area Sweeping

Rishi Shah*, Yuqian Jiang*, Justin Hart, Peter Stone

The University of Texas at Austin Department of Computer Science College of Natural Sciences

Motivation

Motivation

- Ongoing stream of tasks
 - \circ Service robot
- Long term task
 - Cleaning robot
 - Surveillance robot

Motivation

- Ongoing stream of tasks
 - Service robot
- Long term task
 - Cleaning robot
 - Surveillance robot
- Efficiently build up background knowledge
 - Semantic map

Coverage Path Planning

Coverage Path Planning (Choset 2001)

- Complete coverage of the building
- Highly wasteful
 - Food delivery robots don't care about restrooms

Efficient Coverage

Detections per Second (DPS): Average events detected per second

Shah et al.

Continual Area Sweeping

How can we continually patrol an area?

Continual Area Sweeping

How can we continually patrol an area in a **non-uniform** way in order to efficiently use travel time?

Prior Work: ADT-Greedy

- ADT-Greedy (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)

Prior Work: ADT-Greedy

- ADT-Greedy (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)
- Limitations
 - Events assumed to follow binomial distribution
 - Appearance assumed to be linear in time
 - Events never disappear

Prior Work: ADT-Greedy

- ADT-Greedy (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)
- Limitations
 - Events assumed to follow binomial distribution
 - Appearance assumed to be linear in time
 - Events never disappear
- Acceptable Scenario: **Dust Cleaning**

Our Work: DPS-Max

DPS-Max:

- No prior assumptions
- We provably maximize DPS (Detections per Second) by employing a semi-MDP formulation
- Novel deep R-learning approach to solve problem

Semi-MDP

State Space:

- 2D Navigational Costmap
- Robot Position
- Events Trace

Shah et al.

Deep R-Learning for Continual Area Sweeping

Action Space:

- Any location in the map
 - Motion is deferred to the robot's path planner

Semi-MDP

Action Space:

- Any location in the map
 - Motion is deferred to the robot's path planner
- Actions take different amounts of time
 - \circ $\,$ This is what gives us a Semi-MDP $\,$

Average Reward Setting

Usual discounted reward setting:

$$\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} R(s_{k}, a_{k}, s_{k+1})\right]$$

Average Reward Setting

Usual discounted reward setting:

$$\mathbb{E}\left[\sum_{k=0}^{\infty} \boldsymbol{\gamma}^{\boldsymbol{k}} R(s_k, a_k, s_{k+1})\right]$$

Our goal is to maximize DPS (Detections per Second) – we can't express that in this setting!

Average Reward Setting

Usual discounted reward setting:

$$\mathbb{E}\left[\sum_{k=0}^{\infty} \boldsymbol{\gamma}^{\boldsymbol{k}} R(s_k, a_k, s_{k+1})\right]$$

Average reward setting:

$$\liminf_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{k=0}^{n-1} R(s_k, a_k, s_{k+1}) \right]$$

Reward Construction

Proposition 1. Take $\{(s_n, a_n)\}_{n \ge 0} \subset S \times A$ to be a trajectory generated from a policy π . Let $\{\phi_n\}_{n \ge 0} \subset \mathbb{R}$ a sequence, and $\{t_n\}_{n \ge 0} \subset \mathbb{R}$ an increasing sequence denoting the associated environmental time. Construct R in the following way:

$$R(s_0, a_0, s_1) \coloneqq 0$$
$$R(s_n, a_n, s_{n+1}) \coloneqq (n+1)\frac{\phi_{n+1}}{t_{n+1}} - n\frac{\phi_n}{t_n}$$

Then
$$\rho^{\pi}(s_0) = \liminf_{n \to \infty} \frac{\mathbb{E} \phi(s_n)}{t_n}$$

- Off-policy RL is desired
 - Greater sample efficiency

- Off-policy RL is desired
 - Greater sample efficiency
- R Learning (Schwartz 1993)
 - Classical modification to Q Learning for the average reward setting
- We want to use deep function approximators
 - Experience Replay
 - Modify Double DQN

Algorithm 1 Deep R-Learning

- 1: Initialize empty experience replay buffer \mathcal{D} .
- 2: Initialize network Q with random weights $\theta = \theta^{-}$.
- 3: Initialize $\rho = 0$.
- 4: **for** t = 1, ..., M **do**
- 5: Select an action a_t according to an action selection mechanism like ϵ -greedy.
- 6: Execute a_t and store the resulting transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D} .
- 7: Randomly sample a batch of transitions $\{(s_j, a_j, r_j, s_{j+1})\}$ from \mathcal{D} .
- 8: Let $q_{max} = Q\left(s_{j+1}, \operatorname{argmax}_{a} Q\left(s_{j+1}, a; \boldsymbol{\theta}\right); \boldsymbol{\theta}^{-}\right).$
- 9: Let $y_j = r_j \rho + q_{max}$.
- 10: Take a gradient descent step on $L(y_j, Q(s_j, a_j; \theta))$.
- 11: Let $\Delta_j = y_j Q(s_j, a_j; \boldsymbol{\theta})$
- 12: Let $\Delta = \arg\{\Delta_j \text{ s.t. } |Q(s_j, a_j) q_{max}| < \delta\}$
- 13: if Δ is well-defined then
- 14: $\rho = \rho + \alpha \Delta$ for learning rate α
- 15: **end if**
- 16: **end for**

Shah et al.

• Huge action space

Shah et al.

- # actions: height x width of map
- Value based methods traditionally struggle in this context
- Architecture circumvents the issue by exploiting the topology of our action space

Gridworld Experiments

- Initial experiments on 20x20 gridworld to compare with ADT-Greedy
- Events appear in some random cells
 - Binomially (like dust)
 - Periodically (like objects)

Gridworld Experiments

DPS Comparison

Shah et al.

Leveraging Extra Knowledge

- Littering experiment
 - Person moves around and sometimes drops trash
 - Location of person added to robot's state
- DPS-Max leverages person information and learns that it is correlated with trash appearance
 - Outperforms baseline by utilizing this information

Gazebo Experiments

- Gazebo is a high-fidelity simulator
- Simulated robot in an apartment
- Realistic map size representing 900 m² area

 With 10cm x 10cm grid cells

Service Robot Demonstration

Related Work

- Adversarial Coverage
 - Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 - Focus is on adversarial two player games

Related Work

- Adversarial Coverage
 - Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 - Focus is on adversarial two player games
- Coverage with Metrics
 - Known spatial distribution
 - Ergodic coverage, Information Surfing (Ayvali et. al. 2017, Ratto et. al. 2015)

Related Work

- Adversarial Coverage
 - Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 - Focus is on adversarial two player games
- Coverage with Metrics
 - Known spatial distribution
 - Ergodic coverage, Information Surfing (Ayvali et. al. 2017, Ratto et. al. 2015)
 - Unknown/changing spatial distribution
 - Adaptive ergodic approaches (Mavrommati et. al. 2017)
 - ADT-Greedy (Ahmadi and Stone 2005)

Summary

- Continual area sweeping important for ongoing streams / long term tasks
 - Service robots, cleaning, surveillance, etc.
- Our novel algorithm DPS-Max outperforms and generalizes the baseline
- DPS-Max provably maximizes detections per second

Deep R Learning for Continual Area Sweeping

Rishi Shah*, Yuqian Jiang*, Justin Hart, Peter Stone

Paper: https://arxiv.org/abs/2006.00589