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Abstract— One of the key challenges in high-speed off-road
navigation on ground vehicles is that the kinodynamics of the
vehicle-terrain interaction can differ dramatically depending on
the terrain. Previous approaches to addressing this challenge
have considered learning an inverse kinodynamics (IKD) model,
conditioned on inertial information of the vehicle to sense the
kinodynamic interactions. In this paper, we hypothesize that to
enable accurate high-speed off-road navigation using a learned
IKD model, in addition to inertial information from the past,
one must also anticipate the kinodynamic interactions of the
vehicle with the terrain in the future. To this end, we introduce
Visual-Inertial Inverse Kinodynamics (VI-IKD), a novel learning
based IKD model that is conditioned on visual information from
a terrain patch ahead of the robot in addition to past inertial
information, enabling it to anticipate kinodynamic interactions
in the future. We validate the effectiveness of VI-IKD in accurate
high-speed off-road navigation experimentally on a scale 1/5
UT-AlphaTruck off-road autonomous vehicle in both indoor
and outdoor environments and show that compared to other
state-of-the-art approaches, VI-IKD enables more accurate and
robust off-road navigation on a variety of different terrains at
speeds of up to 3.5m/s.

I. INTRODUCTION

Constraining wheeled mobile robot navigation to struc-
tured environments and low speeds allows roboticists to use
simplified assumptions about the robot’s dynamics. Most
state-of-the-art classical autonomous navigation systems [1],
[2] incorporate motion planners that model a complex kino-
dynamic system such as a wheeled mobile robot using sim-
plified kinematic models, often ignoring dynamic effects like
slippage and wheel suspension. In addition to kinodynamic
effects, delays caused by actuation latency inherent in the
vehicle’s hardware are often ignored. While ignoring such
effects at low speeds may be acceptable, the combination of
actuation latency coupled with kinodynamic responses due
to vehicle-terrain interaction can have a magnified effect on
the state of a vehicle when travelling at high speeds, and can
be catastrophic (e.g., cause collisions) if not accounted for
by the controller.

While accurate mathematical modelling of such effects is
difficult [3]–[5], recent learning-based approaches to robot
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navigation have shown promising results in modelling the
kinodynamic effects utilizing information from the Inertial
Measurement Unit (IMU) to sense the vehicle-terrain interac-
tion. Xiao et al. [6] introduce a learned inverse kinodynamics
model (IKD) that enables a ground vehicle to sense the terrain
and adaptively navigate at high speeds. This learned IKD
model (henceforth called IMU-IKD) utilizes inertial sensors
on a vehicle to sense the vehicle-terrain interactions and takes
a data-driven approach to model the kinodynamic effects
experienced by the vehicle on different terrains. However, an
inertial sensor is limited in its capability: it can only sense
interactions with terrain after the vehicle has driven over it.
During high speed navigation, latency inherent in the hard-
ware of a vehicle causes actuation commands to be executed
at a future world position. Thus, when traversing between
terrain types, it is important for the vehicle to proactively
adjust its controls based on the terrain it is about to encounter
in the future, not just the terrain it is currently driving
over. A model relying on inertial information alone cannot
foresee the kinodynamic response at this future position.
Unlike an inertial sensor, a visual sensor from an egocentric
viewpoint enables perception of the world ahead, providing
information about the terrain the vehicle will interact with
in the future. We therefore hypothesize that in addition to
inertial information from the past, conditioning a learned
IKD model on the visual information of the terrain ahead
will improve the vehicle’s capability to accurately navigate
at high speeds.

Towards this end, in this paper, we present Visual-Inertial
Inverse Kinodynamics (VI-IKD), a novel, computationally
tractable learning-based approach for incorporating visual in-
formation into an inverse kinodynamic model. VI-IKD condi-
tions the IKD model on—in addition to inertial information—
a visual patch of terrain in the future, by sub-sampling an
image captured from a forward-facing camera and extracting
only the region where the next actuation command will be
executed, considering actuation delays. Specifically, VI-IKD
learns a viewpoint-invariant representation of visual terrain
patches combined with inertial information captured by an
on-board IMU to learn a terrain cognizant IKD model. The
resultant IKD model is capable of anticipating the effect
of terrain on the robot’s dynamics and proactively adapts
controls to accurately track planned trajectories on varying
types of terrain.

We evaluate the performance of VI-IKD on a scale 1/5
Ackermann-drive vehicle in challenging indoor and outdoor
real-world environments with varying types of terrain and



demonstrate that it can accurately navigate the robot at high
speeds of up to 3.5m/s, resulting in improved success rates
on the task of reference trajectory following, compared to
state-of-the-art approaches.

II. RELATED WORK

In this section, we first review related literature on clas-
sical methods for wheeled robot navigation in the presence
of wheel slippage. We then survey related learning-based
approaches for off-road robot navigation.

A. Physics-Based Kinodynamic Models

There exists a plethora of research on empirically derived
physics-based dynamic and kinodynamic models for wheeled
mobile robots that predict the effects of wheel slippage [7]–
[9]. Seegmiller et al. [7] propose a parametric kinodynamic
model to predict the residual velocity of the robot with
respect to the output of a pure kinematic model, given the
velocity of the robot and the estimated centrifugal forces.
Rabiee et al. [8] incorporate an empirical wheel-terrain
interaction model into the forward kinematic model of skid-
steer robots. All of these approaches include a calibration
phase that is performed separately for each discrete type of
terrain. During inference, these methods rely on perception
modules to classify the terrain into pre-specified classes using
IMU and camera data [10], [11] in order to switch between
different terrain-dependent parameter sets.

B. Error Modelling and Reactive Control

In off-road unstructured environments, the terrain tra-
versed by the robot cannot be easily delineated into large
uniform regions. Instead, there exist frequent transitions
between terrain types, e.g. small patches of grass or loose
leaves on dirt, such that different robot wheels can be in
contact with patches of terrain with significantly different
characteristics. Xiao et al. [6] treat terrain characteristics
in a continuous manner and learn an inverse-kinodynamic
model that uses a history of IMU data along with the robot’s
current and desired state to issue control commands. They
demonstrate that this approach enables the robot to accurately
navigate at high speeds on unstructured terrain without an
explicit enumeration of terrain types. Another line of work
that does not require enumeration of terrain types is closed-
loop motion control for trajectory following in the presence
of slip [12]–[14]. Koppel et al. [15] learn a statistical model
for terrain disturbance using control and visual information.
Ostafew et al. [14] learn a non-parametric disturbance model
online to compensate for slippage that is estimated using
visual odometry. These methods are inherently reactive to the
sensed changes in terrain characteristics, and therefore only
target low-speed navigation applications such as planetary
exploration rovers. In high-speed navigation, however, the
effect of motion control loop delay on trajectory tracking
accuracy is significant, as the robot displacement during the
period of a control loop is considerable. Sensory information
from cameras and LiDAR reveals a great deal about the
characteristics of terrain, and can be leveraged to anticipate

its effects on the robot’s dynamics. While researchers have
recently started to incorporate visual information into gait
planners for legged-robots [16], wheeled mobile robot mo-
tion planners that use visual information have been mostly
limited to end-to-end learning solutions.

C. Learning for Off-Road Navigation

With the initial success of applying machine learning
techniques to mobile robot navigation instead of explicitly
modeling the environment and designing complex navigation
systems [17]–[29], roboticists have also applied learning
for off-road navigation. Pan et al. [30] propose an end-
to-end learning solution that uses camera and odometry
data to navigate a high-speed robot on a race track. While
such learning-based solutions are appealing for their ability
address perception, planning, and control together in a single
model, they require large amounts of training data and
struggle to generalize to new environments. Siva et al. [31]
enhance ground maneuverability consistency on complex off-
road terrain by learning offset behaviors in a self-supervised
fashion to compensate for the inconsistency between the
actual and expected behaviors without requiring the explicit
modeling of various confounding factors. Other prior works
in the literature have taken a hybrid approach, e.g., learning
from visual information for slip-aware robot navigation to
estimate the traversal cost of different regions of terrain [29],
[32], [33]. Angelova et al. [33] propose a non-parametric
method for learning to predict slip on patches of terrain given
the appearance and geometric properties perceived by stereo-
vision. The resultant information is used to inform the robot
to avoid challenging terrain types. Our work, however, seeks
to learn to navigate the robot on such challenging terrain as
it is unavoidable in unstructured off-road environments.

Our approach is similar to the approach by Xiao et al. [6]
in that we learn an inverse kinodynamic model for motion
planning without enumerating discrete types of terrain, but
we incorporate visual information as well as IMU data in a
computationally tractable manner to anticipate the effects of
future terrain on the robot’s dynamics, making our approach
significantly more responsive to variations in terrain charac-
teristics and robust to the effects of actuation latency during
high-speed maneuvers.

III. METHOD

In this section we discuss the formulation of the navigation
problem and our novel Visual-Inertial Inverse Kinodynamic
(VI-IKD) approach.

A. Problem Formulation

The goal of a navigation planner is to incorporate both
global and local information to identify a sequence of actions
to take a robot from its current state x0 to a target state
xn which it attempts to reach as efficiently and safely as
possible. For simplicity of notation, we will treat the robot’s
traversal through the environment as a sequence of timesteps,
which can be arbitrarily small. The planned sequence of
states {x0, x1, ..., xn} is referred to as the navigation plan.



At a given timestep t ∈ [0, n), the navigation planner is
responsible for producing navigation command ut with the
goal of taking the robot from state xt to xt+1.

Given a vehicle state xt, a control input ut, and a world
state w, the robot’s true response upon executing ut is given
by its forward kinodynamic function f

xt+1 = f(xt, ut, w). (1)

The navigation planner is therefore attempting to find ut

such that:
ut = f−1(xt, xt+1, w) (2)

In practice, existing navigation planners struggle to ac-
curately model f−1, and therefore after executing ut, the
resultant robot state x̂t+1 does not match the navigation
planner’s intended subsequent robot state xt+1. There are two
primary reasons for this inconsistency: the navigation planner
uses a simplified model of the robot’s motion response (often
considering only the kinematic response), and the world
state w is not directly observable, and therefore the planner
does not have sufficient information to correctly estimate the
effects of f .

Recent work has made great strides towards enabling
a motion planner to encode complex system dynamics by
leveraging deep neural networks, adding a learned inverse
kinodynamic module which indirectly captures world state
w [6]. For example, Xiao et al. [6] introduce the IMU-IKD
algorithm in which a recent history of the robot’s inertial
state Sh

t = {st−k, ...st−1}, where k is the length of the
history, is used to estimate the world state w for timestep
t. Specifically, the IMU-IKD algorithm [6] estimates f−1 by
learning a function f IMU

θ such that:

f−1(xt, xt+1, w) ≈ f IMU
θ (xt, xt+1, S

h
t ) (3)

Using a history of recent sensor observations relies on the
assumption that the current world state w can be predicted
from a recent history of inertial observations. However, for
an inertial sensor, this may not always be true. For example, a
robot driving on bumpy terrain may subsequently encounter
smooth terrain, where the inertial response is much different;
Even though the smoothness of the terrain ahead where
the next actuation command will be executed is a part of
the world state that significantly affects the state of the
vehicle, an inertial sensor cannot detect this change unless
the vehicle drives over the smooth terrain. To address this
limitation, in this work, we propose using extereoceptive
sensors, specifically RGB images, to help inform the motion
planner of the world state w before the vehicle physically
interacts with the terrain ahead. A front-facing camera can
see parts of the terrain that the robot has not yet encountered,
which enables the use of image observations from previous
timesteps to help estimate the current world state. We define
λt as the visual terrain information obtained for timestep
t. Our visual-inertial inverse kinodynamic module therefore
attempts to find a function fVI

θ which estimates f−1 such
that:

f−1(xt, xt+1, w) ≈ fVI
θ (xt, xt+1, S

h
t , λt) (4)

Fig. 1: Overview of the Visual Patch Extraction process at
time t. The robot’s next location x̃t is estimated (red circle)
based on current velocity, and a visible image patch of terrain
at the same consistent location x̃t is extracted from bird’s eye
view images from previous timesteps of different viewpoints.

The process for obtaining λt is given in Sec. III-B and
shown in Fig. 1. The process for training fVI

θ is given in
Sec. III-C. The resulting navigation system is summarized
in Fig. 2.

Fig. 2: Training setup for the Visual-Inertial Inverse Kino-
dynamic model. VI-IKD samples one image at random from
a set of terrain patches of the same location in ground as
viewed from different viewpoints, in every epoch of training.
This viewpoint-invariant visual representation combined with
inertial information and desired next state is used as input to
the IKD model that produces the action commands.

B. Visual Patch Extraction

When incorporating visual information into the inverse
kinodynamic model, it is important to ensure that the visual
information used is relevant to the prediction task at hand.
Specifically, this should be visual information corresponding
to the terrain under the robot at the time a given command
is executed, as this is the part of the world state relevant to
the kinodynamic response of the robot. As the robot moves
through the environment, the front-facing camera captures an



egocentric view of the terrain the robot is approaching. The
patch of terrain under the robot at any point in time can be
extracted from previous camera images with knowledge of
the pose information of the robot between frames.

For a particular timestep t, a set of captured camera images
I , a set of IMU measurements S, and recent odometry
measurements O, we seek to find λt, the visual information
relevant to the robot’s current navigation command. To this
end, we define a patch extraction operator P : {I, S,O} → Λ
which extracts patches of visual information λt ∈ Λ of a
terrain ahead, from recorded history of observations where
the next actuation command will be executed. This operator
takes as input a camera image ip ∈ I from some timestep
p < t. This camera image is projected to a birds-eye view
(BEV) îp using a homography transform H derived from
the static extrinsic camera calibration and sp, the inertial
data of the robot at time p. We compute the homography
transform H in real-time considering the inertial data from
the robot due to significant roll-pitch motion experienced
during high-speed maneuvers. After this transformation, a
fixed distance in BEV projected pixel-space corresponds to a
fixed distance in the real world along the ground plane. Once
this is done, the robot’s real-time recent history of odometry
estimates O is used to determine the robot’s location relative
to the location from which the image was captured. Finally,
the robot’s current odometry information ot ∈ O is used to
predict the future location, x̃t, of the robot in the bird’s eye
view image plane, where the robot will be at the time when
its next issued command will be executed. Note that for a
command issued at time t and robot state xt, the command
will be executed on the robotic platform at a slightly later
state x̃t due to actuation latency on a real robot platform. The
patch λ is then defined as the region of the image around
location x̃t, and is extracted from îp. This patch extraction
process is shown in Fig. 1. The patches extracted from this
process are significantly smaller than a full camera image,
enabling VI-IKD to run in real-time.

During the training step, VI-IKD uses all observations from
different viewpoints of the same consistent location to learn a
viewpoint invariant visual representation of that location. By
repeating this procedure for different locations in the world,
we ensure that VI-IKD is viewpoint-invariant – that is, it is
invariant to observations of the same location irrespective
of image variations due to differing observing poses. This
procedure also provides robustness to image aberrations and
distortion due to artifacts such as motion blur.

C. Learning Visual-Inertial Inverse Kinodynamics

To train the VI-IKD module, we collect a set of human
demonstrations D in an open environment by teleoperating
the vehicle with a joystick. For each demonstration d ∈ D,
we track joystick commands U , inertial data S, odometry
data O, and image data I , and we record the observed
sequence of robot states Xobs. We then generate training
samples of the form ⟨xt+1, xt, O

h
t , S

h
t , it, ut⟩, where xt+1 ∈

Xobs is the desired robot state, xt ∈ Xobs is the preceding
state, Sh

t ⊂ S is the recent inertial history of the robot,

Oh
t ⊂ O is the recent history of odometry measurements,

ip ∈ I : p < t is a recent camera image, and ut ∈ U is the
command which transitions the robot from state xt to xt+1.
Because we are recording actual observations, these samples
encode the true kinodynamic response of the robot, and we
know f−1(xt, xt+1, w) = ut. Given our patch extraction
operator P , our training loss then seeks to find parameters θ
which minimize

argmin
θ

∑
||ut − fVI

θ (xt, xt+1, S
h
t , P (ip, S

h
t , O

h
t ))||. (5)

This learning objective enforces that the VI-IKD-generated
control for reaching state xt+1 from xt matches the controls
that were actually executed to effect that change. Note
that in this formulation, for each xt, we frequently have
multiple different preceding states from which visual in-
formation ip can be extracted, as each traversed patch of
terrain may appear in multiple preceding image frames. In
these situations, we replicate this for each available choice
of ip ∈ I from which a patch can be extracted, which
helps ensure that regardless of the viewpoint, we learn the
same mapping of visual information to predicted command.
Regularizing the training process with terrain patches from a
consistent location on the ground, but as seen from different
viewpoints at different times provides viewpoint invariance
in the learned visual representations. In the event where there
is no patch information available for a sample, we provide a
vector of zeros as the visual representation to the IKD model.

D. Implementation Details

The Visual Inverse Kinodynamic Module fVI
θ consists of

a visual encoder (2-layer convolutional neural network with
a kernel size of 3 and stride of 2), an IMU encoder (3-
layer Multi-Layer Perceptron (MLP) with skip connections
and hidden layers of size 256), and a final shared 3-layer
MLP with skip connections and hidden layers of size 256. To
ensure fair comparison, the baseline IMU-IKD algorithm uses
the same network architecture for the IMU encoder and the
IKD network. The network architecture along with the inputs
during training time are shown in Fig. 2. The visual encoder
was run off-board at inference time using a GPU-enabled
laptop (Nvidia RTX 2060). We regularize the training by
randomly sampling a visual terrain patch for a data sample
⟨xt+1, xt, O

h
t , S

h
t , it, ut⟩ from a set of visual terrain patches

of the same unique location sub-sampled from observations
recorded at previous timesteps. We maintain a buffer of 30
past images to perform patch extraction. The terrain patches
are RGB images of fixed size 64-by-64. This patch size was
chosen to maximize visual information while ensuring the
VI-IKD model can run at 40hz on the GPU with PyTorch
and CUDA acceleration.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the Visual-Inertial Inverse
Kinodynamic (VI-IKD) model in accurately tracking a tra-
jectory at high speeds, we performed a series of experiments
in a controlled indoor environment and an unstructured
outdoor environment with different terrains. In this section,



Fig. 3: The UT-AlphaTruck scale 1/5th autonomous vehicle
and various attached sensors utilized in this work.

we describe the experimental setup followed by the indoor
and outdoor experiments.

A. Experimental Setup

We used the same robotic platform for all experiments,
pictured in Fig. 3: the UT-AlphaTruck, a 1/5th scale
Ackermann-steer vehicle. The robotic platform is equipped
with a Hokuyo planar LiDAR (for obstacle detection and
localization), an Intel RealSense T265 tracking camera (for
obtaining odometry at 200Hz), a VectorNav VN200 Inertial
Measurement unit (for obtaining 6-axis accelerometer and
gyroscope measurements at 200Hz), an Azure Kinect camera
(for obtaining RGB images at 30Hz), and a Nvidia Xavier
AGX (for on-board compute). For the patch extraction pro-
cedure, we compute the actuation latency of this hardware
to be approximately 0.25 seconds. We do so by subtracting
the sensing latency of the RealSense from the sense-act
latency (between an issued joystick command and its result
as measured by the Intel RealSense). In our experiments,
all methods use a graph-based global planner [1] which
provides the desired next state xt+1 towards a navigation
goal. For the indoor experiments, we use Episodic non-
Markov Localization (EnML) [34] to track the vehicle’s state
by fusing LiDAR observations and Intel RealSense’s visual-
odometry estimates. To collect demonstration data for the
training the IKD models, we teleoperate the vehicle using a
joystick with v ∈ [0, 4]m/s and ω ∈ [−1.8, 1.8]rad/s for 60
minutes, randomly varying the linear and angular velocities
every trajectory. In total, we collect about 32 trajectories
containing 73,238 data samples and split them equally into
train and test sets. Training the VI-IKD model takes less than
10 minutes on a Nvidia RTX 2060 laptop GPU. We use the
same data to train both the IMU-IKD and the VI-IKD models.

We compare our method to two alternate approaches:

• Baseline: The base navigation stack of the Autonomous
Mobile Robotics laboratory, which includes a trajectory-
rollout based receding horizon local planner that uses a
basic kinematic motion model for an Ackermann-drive
vehicle [1], [8].

Fig. 4: Indoor evaluation environment. Evaluation trajectory
is illustrated in red. T1, T2, T3, T4 indicate the four distinct
turns in the trajectory. Striped blue rectangular posts are the
virtual fixtures used to aid indoor localization using EnML
[34].

TABLE I: Navigation Success Rates in Indoor Environment
at 3.2m/s

Turn 1 Turn 2 Turn 3 Turn 4

Navigation Controller Success
Count

Success
Count

Success
Count

Success
Count

Baseline 0 7 8 5
IMU-IKD 9 10 10 10
VI-IKD (Ours) 10 10 10 10

• IMU-IKD: The IMU based IKD model (IMU-IKD), in-
troduced by Xiao et al. [6]. The IMU-IKD model takes
as its inputs inertial history Sh

t of the vehicle and a
desired next state xt+1 to predict a low-level actuation
command (forward velocity v and angular velocity ω).

The Visual-Inertial Inverse Kinodynamic (VI-IKD) model
utilizes both inertial and visual information from on-board
sensors and produces low-level actuation commands based
on the desired next state xt+1 provided by the global planner.

B. Indoor Experiments

To evaluate the effectiveness of VI-IKD in accurately and
successfully tracking a desired trajectory at high speeds, we
set up an indoor course (30 meters long, 15 meters wide)
containing two distinct terrain types with different kinody-
namic responses at high speeds—wooden floor and green
turf—shown in Fig. 4. The scale 1/5 UT-AlphaTruck vehicle
used in these experiments experiences significantly more slip
on the wooden floor than on the green turf at high speeds.
To aid localization in providing accurate state estimates,
we set up virtual fixtures (shown as striped blue posts in
Fig. 4). To obtain a reference trajectory for navigating this
environment, we allowed the robot to autonomously navigate
(counter-clockwise) between manually-defined waypoints us-
ing the baseline navigation implementation at a slow speed
(0.5m/s). At this speed, the impact of dynamics is minimal,
and the baseline kinematic motion planner is sufficient for
accurate trajectory following. We performed 10 trials for all
three navigation systems (baseline, IMU-IKD and VI-IKD)
at a nominal speed of 2.0m/s and at high speeds ranging
from 2.5m/s - 3.2m/s in increments of 0.1m/s. In total,
we perform 270 laps across this loop to evaluate the three
approaches. Due to the limited size of the indoor track, the



Fig. 5: Trajectory traces for the indoor experiments where the vehicle tracks a reference trajectory counter-clockwise at
different speeds. The inset shows Turn 1 as executed by the vehicle at 3.2m/s using the three approaches. We see that
VI-IKD is able to track the reference trajectory more accurately than IMU-IKD [6], confirming our hypothesis. Blue lines
along the track show the virtual fixtures used as a map for vehicle state-estimation using EnML [34].

Fig. 6: Hausdorff distance (lower is better) between the
reference trajectory and trajectories traced by different algo-
rithms at different top speeds of the vehicle in the indoor
evaluation environment. We see that VI-IKD is the most
accurate compared to the receding horizon controller with
no IKD model (baseline) and IMU-IKD [6].

baseline navigation model caused frequent unsafe collisions,
preventing us from running experiments at speeds greater
than 3.2m/s. However, the outdoor experiments presented
in Section IV-C show the potential of VI-IKD to successfully
navigate at high speeds of up to 3.5m/s.

The resultant trajectory traces for each of the navigation
systems at various speeds, as well as the reference trajectory,
are presented in Fig. 5. We see that the VI-IKD model
introduced in this work is more accurate than the baseline
sampling-based local planner and the state-of-the-art IMU-
IKD model [6]. Additionally, we tracked each system’s

success rate at navigating turns in the environment, where
success is any turn that did not result in a collision. We
present these success rates when travelling at a maximum
speed of 3.2m/s in Table I. To obtain a quantitative measure-
ment of the accuracy of each navigation system, we use an
undirected Hausdorff distance, which measures the distance
from each point in the trajectory Γ to the closest point in the
reference trajectory:

H(Γa,Γb) = max(d(Γa,Γb), d(Γb,Γa)), (6)
d(Γa,Γb) = max

a∈Γa

min
b∈Γb

||a− b||.

The results of this numerical evaluation for each navigation
system at different navigation speeds is presented in Fig. 6.
We see that VI-IKD is the most accurate compared to the
receding horizon controller with no IKD model (baseline)
and IMU-IKD [6].

C. Outdoor Experiments

In addition to the controlled indoor environment, we
evaluate VI-IKD in a heterogeneous outdoor environment.
We run each navigation system through a fixed set of
target waypoints in the environment pictured in Fig. 7 at
a speed of 3.5m/s. We provide the reference trajectory
to track by manually teleoperating the vehicle around the
off-road track. For this trajectory following task outdoors,
all algorithms in this experiment use the Intel RealSense’s
visual-odometry estimates for localization because unlike the
controlled indoor experiments, the outdoor track is in off-
road, open-ground conditions, unsuitable for accurate LiDAR
based localization [34]. The outdoor track (50 meters long,
30 meters wide) contains three major turns during which the
robot had the potential to slip and deviate from the desired
trajectory at high speeds of 3.5m/s. Specifically, in Turn 1,
the robot makes a u-turn while transitioning from slippery
fine sand into grass with increased friction. In Turn 2, the



Fig. 7: Outdoor Evaluation Environment. Various traversed
terrain types are highlighted, and the evaluation trajectory is
illustrated in red. T1, T2, and T3 indicate the distinct turns
in the trajectory.

TABLE II: Navigation Results in Outdoor Environment at
3.5m/s.

Turn 1 Turn 2 Turn 3

Navigation Controller Success
Count

Success
Count

Success
Count

Baseline 6 10 3
IMU-IKD 8 7 8
VI-IKD (Ours) 10 10 10

robot transitions between grass, dry leaves, cement and onto
pebbles, each producing different kinodynamic responses at
high speeds. Finally in Turn 3, the vehicle makes a nearly
180 degree turn on pebbles and enters into a dirt track,
which can cause significant slippage at high speeds. Refer to
the supplementary video for visual comparisons of the laps
performed by the vehicle in this off-road track. The three
turns contain significant variance in terrain, requiring an IKD
model to anticipate the kinodynamic responses to navigate
successfully at high speeds.

In our evaluation, each model performs ten laps across
this outdoor loop. We mark a turn as unsuccessful if the
robot deviates from the desired trajectory beyond the point
at which the navigation stack is able to get the robot back on
track. At such a failure, we resume trajectory tracking after
re-initializing the vehicle in the track at a position after the
unsuccessful turn. In this experiment, we measured the rate
at which each navigation system was able to successfully
navigate each turn, and present the results of 10 repetitions
of the course in Table II. We see that unlike the baseline and
IMU-IKD model, VI-IKD is able to successfully complete all
turns at a high speed of 3.5m/s. Although IMU-IKD performs
better than baseline, the different terrain types present in
these turns make it challenging for IMU-IKD model to track
the reference trajectory without anticipating kinodynamic
interactions with the terrain ahead. By anticipating the kin-
odynamic effects, the VI-IKD model is able to proactively
control the vehicle and complete the loops successfully in
all 10 trials without any failures.

V. CONCLUSION

In this work, we introduce Visual-Inertial Inverse Kinody-
namics (VI-IKD), a novel approach for leveraging visual ter-
rain information ahead in addition to inertial information of

the past to enhance accuracy in high-speed navigation using
a learned IKD model. We hypothesized that utilizing visual
information of the terrain helps an IKD model to anticipate
kinodynamic effects of the vehicle-terrain interaction and
proactively control the vehicle to navigate accurately at high
speeds while accounting for actuation delays. Towards this
end, the proposed VI-IKD model leverages visual informa-
tion by learning a viewpoint-invariant representation of the
terrain patch ahead, which is used to anticipate kinodynamic
responses for the next actuation command executed in the
terrain ahead. We validate our hypothesis by comparing VI-
IKD to state-of-the-art approaches on the task of trajectory
following in both indoor and outdoor real-world environ-
ments on a scale 1/5 Ackermann-drive vehicle and observe
that VI-IKD is able to navigate successfully around turns at
high speeds of up to 3.5m/s outdoors, and that VI-IKD is
able to accurately track a reference trajectory at speeds of
up to 3.2m/s indoors.

VI. FUTURE WORK

There are a few avenues one could pursue to further
improve the performance of VI-IKD in future work. First,
one could consider a longer control horizon [35], rather than
the one-step horizon of control we currently use. This would
allow the robot to pursue short-term sub-optimal actions to
improve long-term utility. Additionally, one could investigate
and improve the performance of VI-IKD in unseen terrains,
which is essential in off-road conditions where a high-speed
vehicle may encounter novel terrains. Finally, one could
incorporate additional sensors such as microphones and
ground-facing range sensors to further improve the learned
terrain representations.
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