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Multiagent Interactions in Urban Driving
Patrick Beeson, Jack O’Quin, Bartley Gillan, Tarun Nimmagadda, Mickey Ristroph, David Li, Peter Stone

Abstract—In Fall 2007, the US Defense Advanced Research
Projects Agency (DARPA) held the Urban Challenge, a street race
between fully autonomous vehicles. Unlike previous challenges,
the Urban Challenge vehicles had to follow the California laws for
driving, including properly handling traffic. This article presents
the modular algorithms developed largely by undergraduates at
The University of Texas at Austin as part of the Austin Robot
Technology team. We emphasize the aspects of the system that
are relevant to multiagent interactions. Specifically, we discuss
how our vehicle tracked and reacted to nearby traffic in order
to allow our autonomous vehicle to safely follow and pass, merge
into moving traffic, obey intersection precedence, and park.

Index Terms—autonomous vehicles, interactive systems, sensor
fusion

I. INTRODUCTION

THE DARPA Urban Challenge successfully demonstrated
the possibility of autonomous vehicles driving in traffic.

The main difference between the Urban Challenge and pre-
vious demonstrations of autonomous driving was that in the
Urban Challenge, robots needed to be prepared to interact with
other vehicles, including other robots and human-driven cars.
As a result, robust algorithms for multiagent interactions were
essential. This article introduces Austin Robot Technology’s
autonomous vehicle (Figure 1), one of 89 entries in the Urban
Challenge. The main contribution is a detailed description
of the multiagent interactions inherent in the DARPA Urban
Challenge and how our team addressed these challenges.

Austin Robot Technology’s entry in the Urban Challenge
had two main goals. First, the team aimed to create a fully
autonomous vehicle that is capable of safely and robustly
meeting all of the criteria laid out in the DARPA Technical
Evaluation Criteria document [1], including the multiagent
interactions that we emphasize in this article. Second, and
almost as important, the team aimed to educate and train
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Fig. 1. The vehicle platform is a 1999 Isuzu VehiCross. All actuators were
developed and installed by the Austin Robot Technology team volunteers.

members of the next generation of computer science and
robotics researchers by encouraging and facilitating extensive
participation by undergraduate programmers.

This article emphasizes the first goal; however, the second
goal biases our algorithms to be as straightforward as possible.
Nonetheless, the algorithms described here are reliable enough
for our team to have placed among the top twenty-one teams
at the Urban Challenge National Qualifying Event (NQE).
With slightly more luck from prototyped hardware and with a
bit more time for testing and verifying code, we believe our
autonomous vehicle could have competed well in the final race
along with the eleven finalists.

The remainder of this article is organized as follows. Sec-
tion II provides a brief history of the DARPA autonomous
driving challenges. Section III summarizes our specific ve-
hicle platform, including both the hardware and software
systems. Section IV presents the main contribution, namely
our approach to the multiagent challenges of driving in traffic.
Section V summarizes our experience at the Urban Challenge
event itself, and Section VI concludes.

II. BACKGROUND

The first DARPA Grand Challenge was held in 2004 as
a competition between academics, military contractors, and
amateurs to win a 150 mile autonomous race through the
desert. DARPA offered prize money in an effort to spur
technological advancements that would lead to one-third of
the United States’ ground military vehicles being autonomous
by 2015. That year, none of the teams made it further than 8
miles. In 2005, the Grand Challenge was held again, and the
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course was completed by five teams with Stanford University’s
team finishing first [2].

Austin Robot Technology (ART) formed as a collection of
technologists interested in participating in the 2005 race. In
their spare time and with much of their own money, they
created an autonomous vehicle that made it to the semi-finals
in 2005.

In 2007, DARPA held the Urban Challenge in an attempt
to have vehicles race to complete a 60 mile “urban” course in
under 6 hours. Carnegie Mellon’s Tartan racing team won the
race, and six teams completed the course, though only four of
these finished under the 6 hour deadline. Unlike the previous
races, this race simulated urban (actually more suburban)
driving, where the autonomous vehicles had to obey traffic
laws and interact with other vehicles on the road.

For the 2007 competition, Austin Robot Technology teamed
up with The University of Texas at Austin (UT Austin) via
Peter Stone’s undergraduate course on autonomous driving.
This partnership provided the team with Artificial Intelligence
expertise as well as a group of excited undergraduate program-
mers. It provided the university with an interesting platform on
which to offer invaluable undergraduate research opportunities.

The ART team made it to the National Qualifying Event
(semi-finals) again in 2007, but was not among the top eleven
teams chosen for the final race. Mostly this was due to a
shortened development schedule and a few hardware glitches
during the qualifying events. In particular the algorithms
for interacting with other agents, described in this article,
performed well at the event. These other agents may be other
robots, or they may be human drivers. Our algorithms make
no distinction.

III. VEHICLE OVERVIEW

Here we give a quick overview of the vehicle’s hardware and
software before discussing the specific aspects of interacting
with other vehicles in Section IV. More hardware details,
along with an overview of the software developed by the
undergraduate class, can be found in the technical report
submitted to DARPA as part of the quarter-final site visit [3].

A. Hardware

The Austin Robot Technology vehicle, in its present con-
figuration, is shown in Figure 1. It is a stock 1999 Isuzu
VehiCross that has been upgraded to run autonomously. Austin
Robot Technology team members spent much of their time
in 2004 and 2005 adding shift-by-wire, steering, and braking
actuators to the vehicle. Control of the throttle was achieved
by interfacing with the vehicle’s existing cruise control system.

In addition to actuators, the vehicle is equipped with a
variety of sensing devices. Differential GPS, an inertial mea-
surement unit, and wheel revolutions are combined together
by the Applanix POS-LV for sub-meter odometry information.
SICK LMS lidars are used for precise, accurate planar range
sensing in front and behind the vehicle. A Velodyne High
Definition Lidar (HDL) provides 360◦ 3D range information
(see Figure 2).

The vehicle contains three machines with a total of ten
AMD Opteron cores, which provides more than enough pro-
cessing power for the Urban Challenge domain. Additionally
a 24V alternator provides power to computers, heavy-duty
actuators, and some perception devices, while the vehicle’s
existing 12V system powers many plug in devices such as
network switches, the safety siren, and the safety strobe lights.

B. Software

At the DARPA Urban Challenge, teams were given models
of the roadways via Route Network Definition Files (RNDFs).
An RNDF specifies drivable road segments, GPS waypoints
that make up the lanes in each segment, valid transitions be-
tween lanes, stop sign locations, and lane widths. The direction
of travel for each lane is provided through the ordering of
the GPS waypoints for that lane. An RNDF may also specify
any number of “zones”, which are open areas of travel with
no specific lane information provided. A polygonal boundary
consisting of GPS waypoints is given for each zone. Zones are
used to describe parking lots, and can have designated parking
spots at specified locations. Each RNDF file has one or more
associated Mission Data Files (MDFs) that provide an ordered
list of GPS waypoints that the vehicle must drive over [5].

Thus, the challenge is to design a system that interacts with
the perceptual and actuator devices at the low-level in order
to produce a vehicle that can follow the high-level map given
by the RNDF and MDF (Figure 3). The vehicle must do so
while traveling in legal lanes, using blinkers, following traffic
laws, and not colliding with any obstacles.

Key to our success in the DARPA Urban Challenge is the
observation that avoiding collisions and obstacles while navi-
gating within a lane is a simpler problem then generic robot
navigation. For example, consider driving down a curvy road
with another vehicle traveling towards you in an oncoming
lane. The other vehicles will pass within perhaps a meter
of you, yet the risk of collision is minimal. Without using
lane information, the slightest curve in the road could cause
even a highly accurate tracking algorithm to predict a head-
on collision, necessitating complex path planning. However,
under the assumption that any obstacle being tracked will stay
within its lane, or within a lane to which it can legally switch,
it is safe to continue on in one’s own lane. While seemingly
risky, this is the implicit assumption of human drivers, and a
necessary assumption for any autonomous agent expected to
drive like a human.

We discuss navigation and perception using lane informa-
tion in Section IV. We also discuss the behaviors used for
non-lane navigation in parking areas. But first we introduce
the software architecture to ground the concepts and ideas that
we utilize in modeling other vehicles on the road.

1) Commander: The Commander module operates at the
highest level of reasoning. Using the graph built from the
RNDF, it determines the optimal route from the current
location of the vehicle to the next two goals given by the
MDF. We use A∗ search to find the shortest time path
between waypoints, penalizing graph edges that we know are
at intersections or that go through parking lots.
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Fig. 2. Sample snapshot of Velodyne HDL data. The Velodyne HDL uses lidar technology to return a 360◦ 3D point cloud of data over a 24◦ vertical
window. Intensity of distance returns are correlated with pixel intensity. Notice that buildings and a truck can be seen among the obstacles.

Fig. 3. Software architecture. We utilize the Player [4] robot server as our interface infrastructure. Here each module is a separate server, running in its
own thread. There is a single client which connects to the top-level server to start the system. Hardware interfaces are shown at the bottom. Perceptual filters
and models are on the left side of the diagram while control—planning (commander), behaviors (navigator), low-level actuation control (pilot)—are shown
on the right side.
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Fig. 4. A simplified illustration of the vehicle’s Run state machine.
Most of the time, the vehicle is in the Follow state. The Navigator module
can decide to pass a stalled vehicle, if a passing lane exists, without having
the higher-level Commander module replan. Entering other states depends on
current traffic conditions or whether the vehicle must enter a parking zone.
Many of these are detailed in Section IV.

2) Navigator: The Navigator module is essentially a hi-
erarchical state machine that runs a variety of behaviors on
the vehicle. At the highest level is a simple run/pause/disable
machine. The Run state contains another state machine, which
is illustrated in Figure 4. When running, Navigator uses the
next several waypoints in the plan it receives from Commander
and runs the appropriate behavior.

Most of the time the vehicle is following its current lane,
though many of the interesting behaviors from a multiagent
point-of-view occur in the other control states. Due to a
shortened development time1, we did not utilize a traditional
model-based route planner for most behaviors. Instead each
behavior here uses a snapshot of the world at each cycle to
quickly compute a desired travel and turning velocity. The
Pilot module transforms this velocity command into low-level
throttle, brake pressure, and steering angle commands.

3) Velodyne HDL Processing: The Velodyne High Defi-
nition Lidar (HDL) provides around one million points of
data every second. Following our design principle of trying
simple algorithms first, we use “height-difference” maps to
identify vertical surfaces in the environment without the need
for computationally intensive algorithms for 3D, real-time
modeling [6]. Our solution can be thought of as a “slimmed
down” version of the terrain labeling method performed by the
2005 Grand Challenge Stanley team [2]. At each cycle (i.e.
every complete set of 360◦ data), we create a 2D (x, y) grid
map from the 3D point cloud, recording the maximum and
minimum z (vertical) values seen in each grid cell.

Next, a simulated lidar scan is produced from the 2D grid—
the algorithm casts rays from the sensor origin, and an obstacle
is “detected” whenever the difference between the max and
min z values is above a threshold. The result is a 360◦ 2D
simulated lidar scan, which looks very similar to the data

1Because the undergraduate class’ code was designed as a prototype to pass
the regional site visit, we overhauled the software completely between July
and the October NQE events.

Fig. 5. Processed Velodyne lidar information. Raw Velodyne HDL point
cloud (bird’s eye view of Figure 2 is shown) gets processed into a 2D scan.
Notice corresponding features between the two data formulations. This method
creates possible occlusions, but allows fast, efficient processing of the million
points per second the Velodyne HDL transmits.

output by the SICK lidar devices (see Figure 5); however, this
2D lidar scan is non-planar and only returns the distances
to the closest obstacles that have a predetermined vertical
measure (currently, 25 cm tall with at least a 45◦ slope).

4) MapLanes: Initially conceived as a temporary substitute
for visual lane recognition, the MapLanes module has become
an important piece of our current software infrastructure.
MapLanes is designed to parse an RNDF and to create a lane
map in the global Cartesian coordinate system provided by
the Applanix odometry. Its dual purposes are i) to create lane
information useful for vehicle navigation and ii) to provide a
way of classifying range data as being in the current lane, in
an adjacent lane, or off the road entirely.

The MapLanes road generation algorithm uses standard
cubic splines [7], augmented with a few heuristics about
roadways, to connect the RNDF waypoints (Figure 6). We first
create a C1 continuous Hermite spline [7] from the discrete
series of waypoints that define a lane in the RNDF. We
chose the Hermite form because its representation allows us
to control the tangents at the curve end points. We can then
specify the derivatives at the waypoints in such a way that
the spline that we create from these curves has the continuity
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Fig. 6. Guessing the road shape. Given waypoints that define a lane, a cubic
spline gives a rough approximation of the road. We utilize a few non-standard
heuristics to detect straight portions of roadway, which improves the spline
tangents at each point. The quadrilaterals that we utilize for the MapLanes
module are built on top of the curves. The collection of these labeled
quadrilaterals are called polygons in our current implementation jargon.

properties we desire.
We then convert the spline from a Hermite basis to the

Bézier basis. This step allows us to use any of a large number
of algorithms available to evaluate Bézier curves. At this
time, we express the curve in terms of nth degree Bernstein
polynomials which are defined explicitly by:

Bn
i (t) = (n

i ) ti (1− t)n−i
i = 0, . . . , n.

Any point on the curve can be evaluated by:

bn (t) =
n∑

j=0

bjB
n
j (t) .

We set n = 3. The coefficients bj are the Bézier control points.
This spline, along with the lane widths defined in the RNDF,

gives the vehicle an initial, rough guess at the shape of the
roadway (see Figures 7&8). Each lane is then broken into
adjacent quadrilaterals (referred to as polygons in our soft-
ware) that tile the road model. These quadrilaterals are passed
through a Kalman filter where vision-based lane detection can
fine tune the lane model or overcome incorrect GPS offsets.2

5) Polygon Operations: Each polygon created by Map-
Lanes is placed into a data structure that contains, among other
information, the Cartesian coordinates of its four corners, the
midpoint of the polygon, the length, the width, the heading of
the lane at the polygon’s midpoint, the waypoints which the
polygon lies between (thus the lane the polygon lies on), the
type of lane markings which lie on its boundaries, and a unique
ID. An ordered list of polygons for each lane is maintained
and published to the perceptual and control modules discussed
in Section IV.

We created a polygon library that provides numerous
methods for extracting information from the ordered list of
polygons. This library performs the bulk of the computation

2For the NQE event, the decision was made to run without vision, as issues
such as false positives (shadows, sun flares) and illumination changes are still
not adequately handled by our software. To our knowledge only two of the
six teams to complete the final course strongly relied on visual lane tracking.

Fig. 7. MapLanes model of the NQE Area C. The MapLanes module
estimates the continuous shape of the roadway from a simple connected graph
of the course extracted from the provided RNDF. Above left is a satellite image
of the course. Above right is a graph of the connected RNDF waypoints. The
bottom diagram illustrates the MapLanes data structure.

Fig. 8. Polygons at an intersection. Lane polygons model each lane while
overlapping transition polygons fill in the connections between lanes. This
overlapping is how the vehicle determines which lanes to observe when pulling
into an intersection: transition polygons of the current lane overlap polygons
of lanes that must be assigned obstacle trackers.

pertaining to the current state of the world surrounding the
vehicle. Examples include: filtering out range data not on the
road, determining distances along curvy lanes, and determin-
ing which lanes will be crossed when passing through an
intersection.

IV. MULTIAGENT INTERACTIONS

The overall hardware and software architecture sketched in
Section III forms the substrate system for the main research
reported in this article, namely the vehicle’s multiagent in-
teractions. There are two main components to the multiagent
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interactions that we consider. First, in Section IV-A, we focus
on the ability to perceive and represent other vehicles. Second,
in Section IV-B, we detail our vehicle’s behaviors based on
those perceptions.

A. Perception

We describe the perception necessary for multiagent inter-
action in two parts. First, we describe obstacle tracking in a
lane using the range data received by lidar sensors. Second,
we define a set of observers, each of which instantiates an
obstacle tracker on the appropriate set of nearby lanes, and
reports the situation to the control modules. In a sense, each
observer is like a “back-seat driver” that continuously calls
out the appropriate information: “unsafe to merge left,” “your
turn to go,” etc.

1) Obstacle Tracking: For autonomous driving, a robot
needs good approximations of the locations and velocities
of surrounding traffic. Recent approaches to obstacle tracking
have often utilized a Cartesian-based occupancy grid [8] for
spatial and temporal filtering of obstacles. This occupancy grid
is used to estimate the state X = (x, y, θ), Ẋ = (ẋ, ẏ, θ̇), and
sometimes the shape or extent of surrounding obstacles [9].

Our design differs from omni-directional tracking in that
we utilize the MapLanes model of the roadway to solve the
obstacle tracking problem. The key insight in simplifying the
problem of obstacle tracking in the urban driving domain is
that the vehicle only needs to track obstacles that are within
lanes.3 We further reduce the dimensionality of the problem
by observing that it is sufficient to track the velocity of each
obstacle only along the lane.

By partitioning the world into lanes and defining an order
on the quadrilaterals comprising each lane, we impose a
linearization on the space. Thus we can easily track the
distance to the closest obstacle in each direction of a lane. The
distance function in this space is not Euclidean but rather an
approximation of the lane distance as reported by the polygon
library. The distance computation between two points first
projects each point onto the midline of the lane begin tracked.
The lane distance is approximated by using the summation of
piecewise line segments connecting the lane polygons.

For a particular lane and direction (in front of or behind
our vehicle), we build an obstacle tracker using lidar data.
The obstacle tracker for each lane receives a laser scan which
specifies the positions of all obstacles that are within its lane.
It then iterates through all these obstacles to find the closest
one in the specified direction. It maintains a history of these
nearest observations using a queue of fixed size. We then filter
out noise using acceleration and velocity bounds and estimate
the relative velocity from the queue of recent observations.
Figure 9 illustrates an experiment where our vehicle was sitting
still and tracking another vehicle driving in an adjacent lane.

One advantage of this obstacle tracking approach is that it
scales linearly with respect to the number of lanes the vehicle
attends to, not the number of obstacles. We found that, even
though it had a lossy model of the world, it was powerful

3The 2007 Urban Challenge specifically ruled out pedestrians or any other
obstacles that might move into traffic from off the roadway.

enough to complete the various requirement that DARPA
outlined in the Technical Evaluation Criteria, and therefore
sufficient for most urban driving tasks. During the NQE event,
we used a 10 frame queue of distances, which reduced the risk
of inaccurate measurements from sensor noise, but introduced
a lag of about 1 second in the measurements given the 10Hz
lidar updates (see Figure 10). We accepted this lag as a trade-
off in favor of robust, safe driving over aggressive behavior.

2) Observers: We define an observer as an object focusing
on a subset of MapLanes polygons and lidar range data to
determine whether that specific area of the world is deemed
free from traffic by our vehicle. Think of an observer as
a back-seat driver in charge of reporting whether a specific
section of the road is safe to enter or occupied by traffic or
obstacles. Each observer sends its report to Navigator every
cycle. Navigator chooses which observers are appropriate to
use for decision making given its current plan. The primary
information each observer provides is a single bit, which
represents whether its area is clear or unclear. When an
observer reports “unclear,” it also provides useful quantitative
data such as estimated time to the nearest collision.

Our system uses six observers: Nearest Forward, Nearest
Backward, Adjacent Left, Adjacent Right, Merging, and Inter-
section Precedence. In order for the observers to track vehicles
and other objects on the road, they need information about the
nearby road lanes. Using the current vehicle odometry and
the polygon library, each observer determines whether it is
applicable or not based on whether lanes exist relative to the
vehicle’s pose.

a) Nearest Forward Observer: The Nearest Forward
observer reports whether the current lane is clear forward of
the vehicle’s pose. This perception data is from the Velodyne
HDL and the front SICK lidars. This observer reports potential
collisions in the current lane.

b) Nearest Backward Observer: The Nearest Backward
observer is just like the Nearest Forward observer except that
it looks behind the vehicle’s current pose. This observer is
rarely used by Navigator, as often our vehicle ignores anything
approaching from behind in the current lane.

c) Adjacent Left Observer: The Adjacent Left observer
reports whether the lane immediately to the left of the vehicle’s
current lane is safe to enter, for example to pass a stopped
vehicle. If a vehicle is in the left lane but the time to collision
is larger than 10 seconds, the lane is considered to be clear.
Unlike the Nearest Forward and Nearest Backward observers,
this observer has two trackers, one in front and one behind. It
reports the most imminent threat to Navigator.

d) Adjacent Right Observer: The Adjacent Right ob-
server is just like the Adjacent Left observer except that it
looks to the lane immediately right of the vehicle. If there is
no lane to the right of the observer, then the observer reports
that it is not applicable.

e) Merging Observer: The Merging observer is used to
check when it is safe for the vehicle to proceed across any
type of intersection: driving through an intersection or turning
into/across traffic. Like other observers, it uses trackers to
estimate relative velocity of obstacles in lanes and makes a
binary safe/unsafe decision based on collision time: t = d/v,
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Fig. 9. Obstacle Tracking Experiment Results. In this experiment, our vehicle was stopped on a road and tracking another vehicle in the lane to the left.
The driver of the tracked vehicle reported an estimated speed of 9 m/s. Other than a brief initial transient, the obstacle tracker accurately models the oncoming
vehicle starting from about 60 meters away.

where d is the lane distance, which as described above can be
computed between two obstacles in different lanes.

In merging scenarios, the observer currently checks whether
all lanes the vehicle can possibly traverse are safe. For
example, at an intersection, if it is unsafe to turn left, the
vehicle will wait, even if it plans to turn right. This behavior
is necessitated by the modular design of our system, in that
the observers are not aware of the vehicle’s plan of action.
Note that the effect is more conservative behavior, which may
be appropriate given the fact that other vehicles can also be
autonomous, thus perhaps unpredictable.

Choosing the set of lanes to assign trackers to is a critical

task. A general polygons-based solution was developed for
this purpose that looks at lane versus transition polygons.
Lane polygons are the quadrilaterals that are adjacent along
the lane (illustrated in Figure 6), while transition polygons
connect up different lanes (see Figure 8). We build a table that
holds information regarding which lanes overlap each other in
the nearby surround. We know a lane crosses another if any
transition polygon in the current lane intersects any polygon
(lane or transition) of the other lane. Thus a simple point-in-
polygon algorithm can be looped over polygons to build the
table.
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Fig. 10. Obstacle Tracking Experiment Results. In this setup, our vehicle drove up to another vehicle that was stopped in the same lane. Our vehicle then
passed before returning to the original lane of travel. The above graphs show the relative state of the obstacle estimated by two trackers: one forward and one
behind in the current lane.

f) Intersection Precedence Observer: Upon stopping at
a stop sign (defined as a special waypoint in the RNDF and
marked by a white stop line on the roadway), the vehicle
needs to yield to other vehicles that are already stopped at
the intersection. The vehicle must then proceed through the
intersection when its turn arrives, even if other vehicles have
arrived at the intersection later.

The Intersection Precedence observer is used to indicate
whether or not it is appropriate to start moving through the
intersection. By default, the observer reports that the vehicle
should wait. Once it becomes the vehicle’s turn to move, the
observer reports that it is time to go. This observer does not

rely on obstacle tracking as it can be difficult to separate
vehicles that pass each other in the intersection. Instead the
simple yet effective idea behind this observer is to notice
which lanes at the intersection have obstacles (presumably
other vehicles) waiting at the instant that our vehicle arrives,
and then to notice when these obstacles disappear from each
such lane.

There are 3 main components to our intersection precedence
observer.

1) Locate the other stop signs at the same intersection. The
RNDF does not explicitly define the structure of inter-
sections. It can be deduced through complex modeling;
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however, we simply locate all stops that are within 20
meters of our vehicle’s stop waypoint and are in front
of our vehicle.4

2) Determine which stop signs have vehicles with higher
priority. Immediately when the vehicle stops, it needs
to determine which stop signs are “occupied.”
First, we filter all range readings that fall outside lanes
that have stop signs at the intersection. Then we throw
out any readings further than 2 meters of a stop sign
location—stopped vehicles are supposed to be within
1 meter of the stop sign. Next, we bin all remaining
range data for forward facing angles into 180 bins, each
representing 1◦, and we determine the closest reading in
each bin to the vehicle.
The resulting 180 element vector, µ, is our model of the
intersection. Most elements in µ will have a zero range
(because most range readings have been filtered out);
non-zero elements are assumed to indicate vehicles that
arrived at the intersection before us, and thus have the
right of way. To reduce false positives/false negatives,
we collect this data over several cycles immediately
upon arriving at the stop sign.

3) Determine when all higher priority vehicles have gone.
On each subsequent cycle, the vehicle gathers new range
readings, and produces a new 180 element vector of the
closest ranges at 1◦ intervals, ν. We update the model
of the intersection by declaring that if νi − µi ≥ 2,
then µi = 0. Note that once an element of µ is zero, is
remains zero. Once all elements of µ equal zero, it is our
vehicle’s turn to go. This procedure works even when
multiple vehicles are queued up in other lanes due to the
fact that a small gap always exists between a vehicle
leaving and another vehicle pulling up. Note that we
actually produce ν using several cycles of range data in
order to handle false negatives.

B. Behaviors

Perception and tracking of other vehicles as described in
Section IV-A are necessary prerequisites for designing effec-
tive multiagent behaviors. This section details the behaviors
that we created to interact with traffic in the Urban Challenge
domain. With good input from the perception subsystem, these
behaviors can be relatively straightforward.

The behaviors are all implemented in the Navigator thread
using a hierarchy of controllers. Every 50 msec cycle, Navi-
gator creates a Pilot command indicating a desired velocity v
and yaw rate ω for the vehicle. Pilot, running at the same rate
in a separate thread, translates those commands into steering,
brake, throttle and shifter servo motor instructions.

Each controller in the Navigator module provides an inter-
face that can modify the next Pilot command according to the
current situation. Some controllers are finite state machines,
others simple code sequences. Every control method also
returns a “result” code, which the calling controller often uses
to determine its future states and activities.

4This does not handle degenerate cases, but it is suitable for most environ-
ments.

Figure 4 illustrates how these behaviors are connected in the
main Navigator state machine, which is itself a controller. Its
states and state transitions all have associated actions, which
support the same controller interface. Most Navigator con-
trollers follow lanes in the road network, utilizing MapLanes
data to orient the vehicle within its lane. The major exception
is the “Zone” controller, which operates in unstructured areas
such as parking lots.

1) Follow Lane: The FollowLane controller, designed to
follow an open lane, is the behavior that is executed most
often. It is executed in the Follow state which appears at the
center of Figure 4. Due to a shortened development period
between the regional site visit and the NQE, we chose not
spend time developing a planner that models vehicle dynamics.
Instead we implemented a simple linear spring system.

The spring system is based on an assumed constant veloc-
ity v, the lateral offset with respect to the center of the lane ∆l,
and the heading offset with respect to the lane ∆θ. The value
of v is set before this computation based on local obstacles,
the distance to a stop sign, or the curvature of the lane ahead.
We gather the lane heading and location using the closest lane
polygon just past the front bumper of the vehicle. The vehicle
steers in the lane using the following equation:

ω = −kθ∆θ − kl

v
∆l,

where both kθ and kl were experimentally determined to be
0.5.

Avoidance of obstacles near the edge of lanes is accom-
plished by simply changing ∆l to edge the vehicle to the
other side of the lane. When the obstacle is far into the lane,
the vehicle stops with the Blocked result code, which may
eventually lead to passing in another lane or performing a U-
turn.

2) Follow at a safe distance: While following a lane, this
controller checks whether there is another vehicle or obstacle
ahead, matching speeds while maintaining a safe distance.
Note that the obstacle may be stationary, in which case the
vehicle will stop at an appropriate distance behind it, with the
controller returning a Blocked result. This behavior can be
used in smooth-flowing traffic to maintain at least the standard
2-second following distance, or in stop-and-go traffic. The
pseudocode for follow safely is in Algorithm IV.1.

3) Intersection Precedence: When the Follow controller
reaches a stop sign way-point, it returns Finished, causing
a transition to the WaitStop Navigator state. This transition
runs ActionToWaitStop(), followed by ActionInWaitStop() in
each subsequent cycle. Algorithm IV.2 gives the pseudocode
for these two subcontrollers.

The guidelines for the Urban Challenge specify that if
another vehicle fails to go in its turn, the vehicle should wait
10 seconds before proceeding cautiously. Our implementation
uses two timers. The stop line timer gives the Intersection
Precedence observer one second to gather information about
other vehicles already stopped at this intersection. Meanwhile,
the precedence timer starts counting up to 10 seconds each
time the number of vehicles ahead of us changes.

When there are none left or the precedence timer expires,
we set the pending event class variable to Merge, which
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Algorithm IV.1: FOLLOWSAFELY(speed)

result← OK
distance← range of closest obstacle ahead in this lane
if distance ≥ maximum range

then return (result)
following time← distance/speed

if
{

following time ≤ min following time or
distance ≤ close stopping distance

then

{
speed← 0
if already stopped

then result← Blocked
else if following time < desired following time
then decrease speed to match obstacle

else if
{

already stopped or
following time > desired following time

then increase speed to match obstacle

if
{

Nearest Forward observer reports obstacle approaching and
closing velocity is faster than our current velocity

then result← Collision
return (result)

Algorithm IV.2: WAITSTOP(speed)

procedure ACTIONTOWAITSTOP(speed)
set turn signal depending on planned route
start 1 second stop line timer
start 10 second precedence timer
prev nobjects← −1
return (ACTIONINWAITSTOP(speed))

procedure ACTIONINWAITSTOP(speed)
speed← 0
if stop line timer expired and Intersection observer reports clear

then pending event← Merge
obs← current Intersection observation data
if obs.applicable and obs.nobjects 6= prev nobjects

then
{

prev nobjects← obs.nobjects
start 10 second precedence timer

if precedence timer expired
then pending event← Merge

return (OK)

triggers a transition in the next cycle, in this case to the
WaitCross state, which handles Intersection Crossing.

4) Intersection Crossing: When the vehicle has reached an
intersection and is ready to proceed, Navigator changes to its
WaitCross state. As the state transition diagram in Figure 4
shows, this may either happen from the WaitStop state after
intersection precedence is satisfied, or directly from the Follow
state if there is no stop sign in our lane (e.g. turning left
across traffic). In either case, the vehicle has already stopped.
It remains stopped while waiting for the intersection to clear.

The WaitCross control simply activates the appropriate turn
signal based on the planned route and waits until the Merging
observer reports at least a 10 second gap in surrounding traffic.
It then transitions to the Follow controller, which guides the
vehicle through the intersection and cancels the turn signals
after reaching the next lane of the desired route.

5) Pass: The intersection state transitions provide a simple
introduction to the more complex transitions involved in pass-

ing a stopped vehicle or other obstacle blocking the desired
travel lane.

Our current implementation never passes moving vehicles.
In the Follow state, Navigator matches speeds with any vehicle
ahead in our lane. As described in section IV-B2, it only
returns a Blocked result after the vehicle comes to a complete
stop due to a stationary obstacle, which could be a parked
vehicle or a roadblock.

A Blocked result in the Follow state initially triggers a
transition to the WaitPass state (Algorithm IV.3). Next, Nav-
igator attempts to find a passing lane using the polygon library.
If none is available, the situation is treated as a roadblock,
causing a transition to the Block state, and initiating a request
for the Commander module to plan an alternate route to our
next checkpoint, usually beginning with a U-turn. Because a
roadblock is a static obstacle not representing a multiagent
interaction, we focus more deeply on the case where a passing
lane exists, allowing us to pass a parked vehicle blocking our
lane.

When waiting to pass, two things can happen. If the
obstacle moves within several seconds, Navigator immediately
returns to the Follow state. If the obstacle remains stationary,
Navigator changes to the Pass state as soon as no vehicle is
approaching in the passing lane.

In the Pass state (Algorithm IV.4), Navigator saves the
polygon list of the selected passing lane, and invokes the
Passing controller. This controller uses the same linear spring
system as the FollowLane controller to follow the polygons in
the passing lane. It returns Finished when it detects that the
vehicle has passed all obstacles in the original lane. Navigator
then returns to the Follow state, where the FollowLane con-
troller uses the polygons for the original travel lane to guide
the vehicle back.

6) Evade: This controller runs when the main Navigator
state machine is in the Evade state. We reach that state after
some other controller returns a Collision result, having noticed
that the Nearest Forward observer saw something driving
towards our vehicle in the current lane. Having a closing
velocity with respect to an obstacle does not imply a collision
event. Only if the relative velocity is significantly greater than
our vehicle’s velocity, do we decide to evade.

The Evade controller’s job is to leave the lane to the right,
wait until there is no longer a vehicle approaching, then return
Finished. Navigator then returns to the Follow state. Other
evasion techniques could be used. Our approach implements
the recommended behavior in the DARPA Technical Evalua-
tion Criteria document [1].

This controller has a simple state machine of its own.
Algorithm IV.5 gives pseudocode for each state, the appro-
priate procedure being selected by the state variable in each
20Hz Navigator cycle. When reset on transition to Evade,
it begins in the Init state. The Leave state invokes a private
leave lane right() method, also shown. It calls the LaneEdge
controller as long as the lane to the right is clear. That
controller steers the vehicle outside the right lane boundary
to avoid a head-on collision.

7) Obstacle Avoidance in Zones: In our compressed devel-
opment schedule, driving in zones was largely put off until
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Algorithm IV.3: WAITPASS(speed)

procedure ACTIONTOWAITPASS(speed)
if FIND PASSING LANE()

then

{
set turn signal for passing direction
start 5 second passing timer
return (ACTIONINWAITPASS(speed))

else

{
pending event← Block
speed← 0
return (Blocked)

procedure ACTIONINWAITPASS(speed)
if passing timer expired and observer reports passing lane clear

then pending event← Pass
result← FOLLOWSAFELY(speed)
if result = OK

then pending event← FollowLane
else if result = Collision
then pending event← Collision

speed← 0
return (result)

Algorithm IV.4: PASS(speed)

procedure ACTIONTOPASS(speed)
if SWITCH TO PASSING LANE()

then
{

reset Passing controller
return (ACTIONINPASS(speed))

else

{
pending event← Block
speed← 0
return (Blocked)

procedure ACTIONINPASS(speed)
result← PASSING(speed)
if result = Finished

then
{

pending event← FollowLane
result← OK

else if result = Blocked and blockage has lasted a while
then pending event← Block

else if result = Collision
then pending event← Collision

speed← 0
return (result)

just before the NQE. Not having implemented a model-based
planner for lane navigation left us with a large piece missing
when it came to driving in the less restricted zone areas. Rather
than writing a model-based planner, we utilized an off-the-
shelf skeleton algorithm called EVG Thin [10] to get a coarse
route that the vehicle could follow between the zone entry, the
zone exit, and any parking spots.

Inside of a zone, we use the perimeter polygon given by
the RNDF, the parking waypoints, and any observed obstacles
to generate a new skeleton every cycle (see Figure 11). The
thinning-based skeleton is an approximation of the Voronoi
graph [11], thus it connects points that are maximally far from
any two obstacles (a criterion we find quite nice in its aversion
to danger). Because we use a Voronoi-style skeleton, we also
have the distance to the closest obstacle for each point. We
call this distance the point’s safety radius.

Our controller relies on the fact that if two points are within

Algorithm IV.5: EVADE(speed)

procedure EVADE INIT(speed)
set right turn signal on
state← Leave
return (EVADE LEAVE(speed))

procedure EVADE LEAVE(speed)
if still in lane

then


if Nearest Forward observer reports vehicle approaching

then result← LEAVE LANE RIGHT(speed)

else

{
speed← 0
set left turn signal on
result← Finished

else


set both turn signals on
start evade timer
state←Wait
result← EVADE WAIT(speed)

return (result)

procedure EVADE WAIT(speed)
speed← 0
if evade timer expired

then

{
set left turn signal on
state← Return
return (EVADE RETURN(speed))

return (OK)

procedure EVADE RETURN(speed)
cancel evade timer
speed← 0
if Nearest Forward observer reports vehicle approaching

then return (OK)
else return (Finished)

procedure LEAVE LANE RIGHT(speed)
limit speed to 3 meters/second
result← Unsafe
if Adjacent Right observer reports clear

then result← LANEEDGE(speed, outside right)
return (result)

Fig. 11. Thinning-based skeleton of parking zone. The black lines connect
the perimeter points that define the zone boundaries. The black dots represent
the locations of five parking spots. The zone boundaries and parking spots
are seen as obstacles along with any obstacles (e.g. the circle in right image)
detected by the lidar sensors. The lighter line illustrates the thinned skeleton
given local obstacles. This coarse path that avoids obstacles is created at every
timestep.
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Algorithm IV.6: ZONECONTROLLER(zone, obstacles, current location, goal)

procedure PATHTHROUGHZONE()
graph← EVG THIN(zone, obstacles)
start node← NULL
end node← NULL
for each node ∈ graph

do



if node.safety radius ≤ minimum safety radius
then remove node from graph

else



if
{

current location within node.safety radius of node and
goal within node.safety radius of node

then return (empty path)

if
{

current location within node.safety radius of node and
node is closer to curent location than start node

then start node← node

if
{

goal within node.safety radius of node and
node is closer to goal than end node

then end node← node
path← A∗(graph, start node, end node)
return (path)

procedure NEXTAIMPOINTINZONE()
path← PATHTHROUGHZONE()
if path is empty

then

{
comment: Straight shot to goal.

return (goal)

node← last node in path
while start location is not within node.safety radius of node

do node← previous node in path
if goal is within node.safety radius of node

then aim← goal
else aim← node

return (aim)

the safety radius of the same skeletal node, the straight line
between those two points will not cross any obstacles. This
fact allows us to find potentially far away nodes along the
skeleton which the vehicle can aim straight for without running
into obstacles. In this manner, we ensure the vehicle avoids
all obstacles, without going unreasonably far out of its way to
follow the Voronoi diagram precisely. Algorithm IV.6 details
the procedures that are called 10 times per second, attempting
to constantly move the vehicle directly towards the furthest
safe point.

This controller does not consider the exact vehicle dynamics
when planning a path, and does not respect parking lot navi-
gation conventions, such as passing an approaching vehicle on
the right. However, by using the safety radius information to
aim at far away points, we still get reasonably smooth control.

8) Park: Some MDFs require the autonomous vehicle to
park before it exits a zone. A parking spot is defined in the
RNDF by two GPS waypoints (see Figure 12) and a spot
width. One waypoint defines the location of the entry to the
spot, and the other indicates the desired location of the front
bumper when the vehicle is properly parked.

There are three main components to the parking behavior.
First, the vehicle must get close to the parking spot. This step
is done by using the Voronoi zone planner to get to a point
near the entry to the parking spot.

Second, the vehicle must determine the exact location of
the spot. Given no surrounding obstacles, the vehicle simply
uses its GPS-based odometry to define the spot location. With

Fig. 12. Geometric constraints used in parking. Behavior-based parking
tries to minimize both the bearing offset between the front of the vehicle and
the beginning of the spot (β) and the heading offset of the vehicle with the
parking spot (γ = α + β).

obstacles nearby, the spot location is fine-tuned. The fine-
tuning is done by simply defining a rectangle that corresponds
to the width of the spot and the length of the spot (the two
waypoints plus some extra room determines the length). A
discrete search over a predetermined area (1x1 meter offset)
is performed to find the spot location that keeps farthest from
nearby obstacles.

Third, the vehicle must pull into the spot then reverse out
of the spot. This can be broken into four sub-behaviors. i) The
vehicle ensures its front bumper is over the GPS waypoint at
the spot entry and that it is aligned with the spot. ii) It then
pulls straight into the spot until the front bumper is over the
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Algorithm IV.7: ALIGN WITH SPOT(spot pose)

if too far away from spot entry

then

{
comment: go back to zone controller

return (NotApplicable)

comment: In Figure 12, γ = α + β

β ← Bearing to spot pose
γ ← Heading offset wrt spot pose
comment: Angles are normalized to be between (-180,180]

if |β| < 15◦ and |γ| < 15◦

then

{
comment: aligned with spot entry

return (Done)

comment: The space around vehicle is divided into 4 quadrants:

in front, in back, left, and right of vehicle.

comment: front ≡ [-45◦,45◦), left ≡ [45◦,135◦),

back ≡ [135◦,225◦), right ≡ [225◦,315◦)

comment: v is forward velocity; ω is rotational velocity

v ← 0.5 (m/s)
ω ← β (degrees/s)
if β is in front quadrant

then
{

if γ is in front quadrant and |γ| > |β|
then ω ← γ

if β is in left quadrant

then


if γ is in front quadrant or γ is in right quadrant

then v ← −v
else if γ is in left quadrant and |γ| > |β|
then ω ← γ

if β is in right quadrant

then


if γ is in front quadrant or γ is in left quadrant

then v ← −v
else if γ is in right quadrant and |γ| > |β|
then ω ← γ

if β is in back quadrant

then


if γ is in front quadrant

then
{

v ← −v
ω ← 0

else if γ is in left quadrant or γ is in right quadrant

then
{

v ← −v
ω ← γ

comment: η is a tuning parameter

ω ← η · ω
if (v, ω) is unsafe

then

{
v ← −0.5
ω ← η · γ
return (Done)

second waypoint. iii) It reverses straight back until the front
bumper is again over the entry waypoint. iv) Finally it reverses
further, turning to face the appropriate direction to continue
its plan.

Pulling into and out of the spot once aligned with the spot
is straightforward. The pseudocode in Algorithm IV.7 explains
the more complex behavior that gets the vehicle aligned to pull
directly into the spot.

9) Escape (or Traffic Jam): In cases where the vehicle
cannot make progress, it must get unstuck. To do this, we
construct a “zone” on the fly. This temporary zone is large
enough to encompass our vehicle, the next waypoint in the
current plan, and nearby obstacles. We then invoke the same
zone controller used in parking lots. In this manner, we
continue to make forward progress, though the vehicle may

Fig. 13. Waypoint graph of Area A. Vertices correspond to GPS waypoints
from the RNDF, and edges denote explicit connections from the RNDF.

leave the road if there is no alternative path forward. If forward
progress is unsafe, the vehicle attempts to reverse. If no safe
action can be taken, the vehicle waits until a safe action is
applicable.

V. THE URBAN CHALLENGE NQE EXPERIENCE

The multiagent behaviors described in Section IV were put
the test at the Urban Challenge National Qualifying Event
(NQE), where our vehicle was placed in several challenging
multiagent environments. This section describes our experi-
ences at the October NQE as one of the 35 teams invited to
participate after having successful site visits in July.

The NQE had three areas meant to test the abilities nec-
essary to safely and effectively navigate the Urban Challenge
final course. Area A required the vehicle to merge into and
turn across a continuous stream of traffic (eleven human-driven
cars operating at 10 mph). This area was the most challenging
and was deemed “the essence of the Urban Challenge” by
DARPA director Dr. Tony Tether. The challenges in Area B
were focused on parking, avoiding static obstacles on the road,
and long-term safe navigation. No moving vehicles or dynamic
obstacles were encountered in this area. Area C required
vehicles to pass a combination of intersection precedence
scenarios with human drivers. Roadblocks were added in the
middle of the course to force vehicles to perform U-turns and
replan routes. This area was similar to the site visit test, which
teams were required to complete before being invited to the
NQE.

The algorithms described above were reliable enough for
our team to place in the top twelve to twenty-one teams at the
NQE. With a bit more time for integration testing, we believe
that we could have done better. After diagnosing an Ethernet
cable failure and tracking down a memory leak in third-party
software, we believe we could have competed well in the final
race along with the eleven finalists.

A. Area A

The Area A course consisted of a two lane road in a loop
with a single lane bypass running north-south down the middle
(see Figure 13). Eleven human-driven cars made laps in both
directions on the outer loop, while the autonomous vehicles
were commanded to perform counter-clockwise laps on the
east half of the course. The autonomous vehicle was required
to turn across traffic when turning into the bypass, as well as
merging back into the main loop when exiting the bypass.

Key to this course was the ability to successfully judge
when a sufficient opening was available in traffic. Being
overconfident meant cutting off the human drivers and getting



28 JOURNAL OF PHYSICAL AGENTS: MULTI-ROBOT SYSTEMS, VOL. 2, NO. 1, MARCH 2008

Fig. 14. MapLanes outline of Area B. Note the starting chutes in the top
left. There are also two large zones, the lower of which has defined parking
spaces.

penalized, while being too cautious could result in waiting
indefinitely. Our observers were able to successfully detect
openings in traffic, resulting in very good multiagent behavior.
Our vehicle was able to complete seven laps in the first half-
hour run without contact with either vehicles or barriers.

The south edge of the course was lined with k-rails (3
feet high concrete barriers) at the curb for the safety of the
judges and spectators. The proximity of the k-rails to the
road caused problems for many teams when turning out of
the bypass. When making this sharp left turn, these k-rails
were seen by our vehicle as obstacles in our path, resulting
in our low-level safety controller returning a Blocked event,
and thus prohibiting completion of the turn before merging
back into the loop (the center bottom of Figure 13). The
vehicle eventually called the Escape controller, backed up, and
continued down the lane.

This problem was easily overcome by turning down the
safety thresholds slightly. However, by the time of our second
run in Area A, the race officials had moved these barriers
away from the lane boundary by a few feet, since many teams
were having problems with this one turn. The vehicle was
only able to complete two partial laps during our second run
due to a defective Ethernet cable, which dropped most of
the data packets from our Velodyne lidar unit. This was an
unfortunate hardware failure that was unrelated to our trackers
or behaviors.

B. Area B
In Area B, each autonomous vehicle was randomly assigned

to one of the start chutes that were used for the start of the
final race. The vehicles needed to make their way out of the
start zone, down a narrow corridor, and around a traffic circle
before proceeding west to the main section of the course,
which tested parking and avoiding many static obstacles in
the road. Figure 14 illustrates the course.

Our vehicle successfully exited the start zone and made
it through the corridor, which had given several prior teams

trouble. It then followed the course through several turns
before arriving at the first parking lot. The lot contained
three parked vehicles surrounding the designated parking spot.
Our vehicle parked into and reversed out of the parking
space flawlessly. As the vehicle was turning from the path
leading out of the parking lot to the main road, a previously
undetected memory leak in third-party software caused our
control program to crash, ending our run.

Unfortunately, this memory leak occurred in both of our
Area B runs, both times just after leaving the parking test
area. We eventually traced the root cause back to building
Player/Stage [4] with a buggy version of the C++ Standard
Template Library.5 The parking lot was large enough to trigger
a memory leak in the STL vector code, which we had never
seen in testing. Recompiling Player with the current STL
libraries eliminated this memory leak, but unfortunately this
solution was not discovered until after both of our Area B
runs.

C. Area C

Area C consisted of a large loop with a road running east-
west through the center, forming two four-way intersections
(Figure 7). Challenges on this course included intersection
precedence as well as roadblocks that required replanning the
route to the next checkpoint. Human-driven cars provided the
traffic at the intersections; however, there was no traffic on
other sections of the course. The human drivers retreated to
driveways alongside the road when not needed.

Our vehicle made a perfect run, successfully handling
intersections with two, three, and four cars queued up when
it arrived. Intersections with either two or three cars queued
required the vehicle to wait until they had all cleared the
intersection before proceeding. The intersection test with four
cars had two of the cars queued up in the same lane, which
required our vehicle to only wait for the first three cars to clear
the intersection and proceed without waiting for the fourth car.

VI. CONCLUSION AND FUTURE WORK

This article presented the autonomous vehicle developed
by Austin Robot Technology for the 2007 DARPA Urban
Challenge. Specifically we focused on the effective multiagent
algorithms programmed in part by UT Austin students in only
a few months time. We detailed the perceptual algorithms
necessary to model other vehicles and the behaviors necessary
to drive in the presence of other vehicles. We provided
algorithms used in the system to merge, pass, follow, park,
track dynamic obstacles, and obey intersection laws.

While our system presents a novel autonomous robot plat-
form, there are many ways to improve the current state by
incorporating more sophisticated robotics research into our
software. To start, we plan to utilize more of the Velodyne
HDL 3D data in order to attempt real-time 3D scene recon-
struction and object recognition. Similarly, our system tracks
dynamic objects within road lanes, but it does not distinguish

5g++-4.1 was updated in Ubuntu Dapper to fix this bug after Player was
built on our vehicle’s computers.
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between vehicles and non-vehicles, nor does it track obstacles
outside of the road which may still be on a collision path with
our vehicle. Thus, the vehicle cannot yet deal appropriately
with pedestrians crossing the road. For more robust navigation,
vision needs to be integrated in order to correct MapLanes
information due to GPS drift and inaccurate curve estimation.
Vision is also needed for dealing with traffic signals, the
other main omission from the Urban Challenge scenario (in
addition to pedestrians). Finally, we aim to include a model-
based planner to provide more human-like local control in
open zones and for getting unstuck.

These avenues for future work notwithstanding, we now
have an autonomous vehicle that is fully capable of driving
in traffic, including the complex multiagent interactions that
doing so necessitates. All in all, the research presented in
this article takes a large step towards realizing the exciting
and imminent possibility of incorporating autonomous vehicles
into every day urban traffic.
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