
Positioning to Win: A Dynamic Role Assignment and Formation
Positioning System

Patrick MacAlpine, Francisco Barrera, and Peter Stone

Department of Computer Science, The University of Texas at Austin

June 24, 2012

Patrick MacAlpine (2012)



2011 RoboCup 3D Simulation Domain

Teams of 9 vs 9 autonomous agents play soccer
Realistic physics using Open Dynamics Engine (ODE)
Agents modeled after Aldebaran Nao robot
Agent receives noisy visual information about environment
Agents can communicate with each other over limited bandwidth channel

Patrick MacAlpine (2012)



Formation

Every player assigned to a role (position) on the field
Positions based on offsets from ball or endline
onBall role assigned to the player closest to the ball
Goalie positions itself independently

Patrick MacAlpine (2012)



Role Assignment Mapping and Assumptions
One-to-one mapping of agents to positions
Can be thought of as a role assignment function

Assumptions:
1. No two agents and no two roles occupy the same position
2. All agents move at constant speed along a straight line

Patrick MacAlpine (2012)



Role Assignment Mapping and Assumptions
One-to-one mapping of agents to positions
Can be thought of as a role assignment function

Assumptions:
1. No two agents and no two roles occupy the same position
2. All agents move at constant speed along a straight line

Patrick MacAlpine (2012)



Desired Properties of a Role Assignment Function

1. Minimizing longest distance - it minimizes the maximum distance
from a player to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

3. Dynamically consistent - role assignments don’t change or switch
as agents move toward target positions

Patrick MacAlpine (2012)



Desired Properties of a Role Assignment Function

1. Minimizing longest distance - it minimizes the maximum distance
from a player to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

3. Dynamically consistent - role assignments don’t change or switch
as agents move toward target positions

Patrick MacAlpine (2012)



Desired Properties of a Role Assignment Function

1. Minimizing longest distance - it minimizes the maximum distance
from a player to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

3. Dynamically consistent - role assignments don’t change or switch
as agents move toward target positions

Patrick MacAlpine (2012)



Desired Properties of a Role Assignment Function

1. Minimizing longest distance - it minimizes the maximum distance
from a player to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

3. Dynamically consistent - role assignments don’t change or switch
as agents move toward target positions

Patrick MacAlpine (2012)



Role Assignment Function (fv )

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

Mapping cost = vector of distances sorted in decreasing order
Optimal mapping = lexicorgraphically sorted lowest cost mapping

Patrick MacAlpine (2012)



Positioning Video Brute Force

Click to start

Brute force requires evaluating n! mappings, for n = 8 is 40,320

Patrick MacAlpine (2012)


dead.mp4
Media File (video/mp4)



Positioning Video Brute Force

Click to start

Brute force requires evaluating n! mappings, for n = 8 is 40,320

Patrick MacAlpine (2012)


dead.mp4
Media File (video/mp4)



Recursive Property of Role Assignment Function fv

Theorem
Let A and P be sets of n agents and positions respectively. Denote the mapping m :=
fv (A,P). Let m0 be a subset of m that maps a subset of agents A0 ⊂ A to a subset of
positions P0 ⊂ P. Then m0 is also the mapping returned by fv (A0,P0).

Translation: Any subset of a lowest cost mapping is itself a lowest
cost mapping

If within any subset of a mapping a lower cost mapping is found,
then the cost of the complete mapping can be reduced by
augmenting the complete mapping with that of the subset’s lower
cost mapping

Patrick MacAlpine (2012)



Dynamic Programming Algorithm for Role Assignment

{P1} {P2,P1} {P3,P2,P1}

A1→P1 A1→P2, fv (A2→P1) A1→P3, fv ({A2,A3}→{P1,P2})
A2→P1 A1→P2, fv (A3→P1) A2→P3, fv ({A1,A3}→{P1,P2})
A3→P1 A2→P2, fv (A1→P1) A3→P3, fv ({A1,A2}→{P1,P2})

A2→P2, fv (A3→P1)
A3→P2, fv (A1→P1)
A3→P2, fv (A2→P1)

Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by fv
Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)

Patrick MacAlpine (2012)



Dynamic Programming Algorithm for Role Assignment

{P1} {P2,P1} {P3,P2,P1}
A1→P1

A1→P2, fv (A2→P1) A1→P3, fv ({A2,A3}→{P1,P2})

A2→P1

A1→P2, fv (A3→P1) A2→P3, fv ({A1,A3}→{P1,P2})

A3→P1

A2→P2, fv (A1→P1) A3→P3, fv ({A1,A2}→{P1,P2})
A2→P2, fv (A3→P1)
A3→P2, fv (A1→P1)
A3→P2, fv (A2→P1)

Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by fv
Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)

Patrick MacAlpine (2012)



Dynamic Programming Algorithm for Role Assignment

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, fv (A2→P1)

A1→P3, fv ({A2,A3}→{P1,P2})

A2→P1 A1→P2, fv (A3→P1)

A2→P3, fv ({A1,A3}→{P1,P2})

A3→P1 A2→P2, fv (A1→P1)

A3→P3, fv ({A1,A2}→{P1,P2})

A2→P2, fv (A3→P1)
A3→P2, fv (A1→P1)
A3→P2, fv (A2→P1)

Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by fv
Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)

Patrick MacAlpine (2012)



Dynamic Programming Algorithm for Role Assignment

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, fv (A2→P1) A1→P3, fv ({A2,A3}→{P1,P2})
A2→P1 A1→P2, fv (A3→P1) A2→P3, fv ({A1,A3}→{P1,P2})
A3→P1 A2→P2, fv (A1→P1) A3→P3, fv ({A1,A2}→{P1,P2})

A2→P2, fv (A3→P1)
A3→P2, fv (A1→P1)
A3→P2, fv (A2→P1)

Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by fv
Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)

Patrick MacAlpine (2012)



Positioning Video

Click to start

Each position is shown as a color-coded number corresponding to the agent’s uniform
number assigned to that position. Agents update their role assignments and move to

new positions as the ball or an agent is beamed (moved) to a new location.

Patrick MacAlpine (2012)


positioning.mp4
Media File (video/mp4)



Voting Coordination System

Each agent broadcasts ball position, own position, and suggested
role mapping during allotted time slot
Sliding window stored of mappings received over last n time slots
evaluated and mapping with the most number of votes is chosen
If two mappings both have greatest number of votes then tie
breaker goes to mapping with most recent vote received

Syncronization: With voting system = 100%, without = 36%

Patrick MacAlpine (2012)



Voting Coordination System

Each agent broadcasts ball position, own position, and suggested
role mapping during allotted time slot
Sliding window stored of mappings received over last n time slots
evaluated and mapping with the most number of votes is chosen
If two mappings both have greatest number of votes then tie
breaker goes to mapping with most recent vote received
Syncronization: With voting system = 100%, without = 36%

Patrick MacAlpine (2012)



Positioning System Evaluation Agents

AllBall No formations and every agent except for the goalie goes to the ball.

NoCommunication Agents do not communicate with each other.

Static Role statically assigned to agents based on uniform number.

Offensive Offensive formation in which all agents except for the goalie are
positioned in a close symmetric formation behind the ball.

NearestStopper The stopper role position is mapped to nearest agent.

PathCost Agents add in the cost of needing to walk around known obstacles
(using collision avoidance), such as the ball and agent assuming the
onBall role, when computing distances of agents to role positions.

Patrick MacAlpine (2012)



Positioning System Evaluation

UTAustinVilla Apollo3D CIT3D
Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)

AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)
PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)

NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Static -0.19 (.07) 0.81 (.13) 2.87 (.11)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

PositiveCombo Offensive + PathCost + NearestStopper agents

PositiveCombo agent beat AllBall agent by average of .31 goals.
Record of 43 wins, 20 losses, 37 ties

Patrick MacAlpine (2012)



Positioning System Evaluation

UTAustinVilla Apollo3D CIT3D

PositiveCombo 0.33 (.07) 2.16 (.11) 4.09 (.12)
Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)

AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)
PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)

NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Static -0.19 (.07) 0.81 (.13) 2.87 (.11)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

PositiveCombo Offensive + PathCost + NearestStopper agents

PositiveCombo agent beat AllBall agent by average of .31 goals.
Record of 43 wins, 20 losses, 37 ties

Patrick MacAlpine (2012)



Positioning System Evaluation

UTAustinVilla Apollo3D CIT3D

PositiveCombo 0.33 (.07) 2.16 (.11) 4.09 (.12)
Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)

AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)
PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)

NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Static -0.19 (.07) 0.81 (.13) 2.87 (.11)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

PositiveCombo Offensive + PathCost + NearestStopper agents

PositiveCombo agent beat AllBall agent by average of .31 goals.
Record of 43 wins, 20 losses, 37 ties

Patrick MacAlpine (2012)



Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

Dynamic roles with an aggressive formation does the best

Communication and path planning are important

Patrick MacAlpine (2012)



Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

Dynamic roles with an aggressive formation does the best

Communication and path planning are important

Patrick MacAlpine (2012)



Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

Dynamic roles with an aggressive formation does the best

Communication and path planning are important

Patrick MacAlpine (2012)



Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

Dynamic roles with an aggressive formation does the best

Communication and path planning are important

Patrick MacAlpine (2012)



Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

Dynamic roles with an aggressive formation does the best

Communication and path planning are important

Patrick MacAlpine (2012)



Related Work

P. MacAlpine, D. Urieli, S. Barrett, S. Kalyanakrishnan, F. Barrera,
A. Lopez-Mobilia, N. Ştiurcă, V. Vu, and P. Stone. UT Austin Villa
2011 RoboCup 3D Simulation Team Report, 2011.
W. Chen and T. Chen. Multi-robot dynamic role assignment based
on path cost, 2011.
N. Lau, L. Lopes, G. Corrente, and N. Filipe. Multi-robot team
coordination through roles, positionings and coordinated
procedures, 2009.
L. Reis, N. Lau, and E. Oliveira. Situation based strategic
positioning for coordinating a team of homogeneous agents, 2001.
P. Stone and M. Veloso. Task decomposition, dynamic role
assignment, and low-bandwidth communication for real-time
strategic teamwork, 1999.

Patrick MacAlpine (2012)



Future Work

Implement passing and create formations to support this

Attempt to learn better formations with machine learning

Improve efficiency in calculating fv

Explore other role assignment functions

Extensions for heterogenous agents

Patrick MacAlpine (2012)



More Information

UT Austin Villa 3D Simulation Team homepage:
www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Email: patmac@cs.utexas.edu

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by
NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).

Patrick MacAlpine (2012)



Dynamic Programming Algorithm for Role Assignment

HashMap bestRoleMap = ∅
Agents = {a1, ..., an}
Positions = {p1, ..., pn}
for k = 1 to n do

for all a in Agents do
S =

(n−1
k−1

)
sets of k − 1 agents from Agents − {a}

for all s in S do
Mapping m0 = bestRoleMap[s]
Mapping m = (a→ pk ) ∪mo

bestRoleMap[{a} ∪ s] = mincost(m, bestRoleMap[{a} ∪ s])
return bestRoleMap[Agents]

As
(n−1

k−1

)
agent subset mapping combinations are evaluated for mappings of each

agent assigned to the kth position, the total number of mappings computed for each of
the n agents is thus equivalent to the sum of the n − 1 binomial coefficients. That is,

n∑
k=1

(
n − 1
k − 1

)
=

n−1∑
k=0

(
n − 1

k

)
= 2n−1

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1) A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1) A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2) A2→P2,A1→P1=(
√

2,1) A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1)

A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1)

A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2)

A2→P2,A1→P1=(
√

2,1) A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1)
A1→P2,A2→P1=(2,1)

A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1)
A1→P2,A3→P1=(2,

√
2)

A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2) A2→P2,A1→P1=(
√

2,1)

A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A2→P2,A3→P1=(
√

2,
√

2)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1)
A1→P2,A2→P1=(2,1)

A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1)
A1→P2,A3→P1=(2,

√
2)

A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2) A2→P2,A1→P1=(
√

2,1)

A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A2→P2,A3→P1=(
√

2,
√

2)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1) A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1) A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2) A2→P2,A1→P1=(
√

2,1) A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Dynamic Programming Example for n = 3

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

(P1) (P2,P1) (P3,P2,P1)

A1→P1=(1) A1→P3,A3→P2,A2→P1=(3,
√

2,1)

A2→P1=(1) A2→P3,A3→P2,A1→P1=(
√

5,1,1)

A3→P1=(
√

2) A2→P2,A1→P1=(
√

2,1) A3→P3,A2→P2,A1→P1=(
√

2,
√

2,1)

A3→P2,A1→P1=(1,1)

A3→P2,A2→P1=(
√

2,1)

Patrick MacAlpine (2012)



Set Plays

Click to start

Patrick MacAlpine (2012)


friendly_ut_vs_ap_366_goal.mp4
Media File (video/mp4)



Validation of Role Assignment Function fv

fv minimizes the longest distance traveled by any agent (Property 1)
as lexicographical ordering of distance tuples sorted in descending
order ensures this.

Triangle inequality will prevent two agents in a mapping from
colliding (Property 2) it can be shown, as switching the two agents’
targets reduces the maximum distance either must travel.

fv is dynamically consistent (Property 3) as, under assumption all
agents move toward their targets at the same constant rate, lowest
cost lexicographical ordering of chosen mapping is preserved
because distances between any agent and target will not decrease
any faster than the distance between an agent and the target it is
assigned to.

Patrick MacAlpine (2012)



Validation of Role Assignment Function fv

Example collision scenario. If the mapping (A1-P2,A2-P1) is chosen the agents will
follow the dotted paths and collide at the point marked with a C. Instead fv will choose

the mapping (A1-P1,A2-P2) as this minimizes maximum path distances and the agents
will follow the path denoted by the solid arrows thereby avoiding the collision.

If two agents in a mapping are to collide (Property 2) it can be
shown, through the triangle inequality, that fv will find a lower cost
mapping as switching the two agents’ targets reduces the maximum
distance either must travel.

Patrick MacAlpine (2012)



Validation of Role Assignment Function fv Continued

It is trivial to see that fv minimizes the longest distance traveled by
any agent (Property 1) as the lexicographical ordering of distance
tuples sorted in descending order ensures this.

As we assume all agents move toward their targets at the same
constant rate, the distance between any agent and target will not
decrease any faster than the distance between an agent and the
target it is assigned to. This serves to preserve the lowest cost
lexicographical ordering of the chosen mapping by fv across all
timesteps thereby providing dynamic consistency (Property 3)

Patrick MacAlpine (2012)



Other Role Assignment Functions

Figure: Example where minimizing the sum of path distances fails to hold desired properties. Both mappings of
(A1→P1,A2→P2) and (A1→P2,A2→P1) have a sum of distances value of 8. The mapping (A1→P2,A2→P1)
will result in a collision and has a longer maximum distance of 6 than the mapping (A1→P1,A2→P2) whose
maximum distance is 4. Once a mapping is chosen and the agents start moving the sum of distances of the two
mappings will remain equal which could result in thrashing between the two.

Figure: Example where minimizing the sum of path distances squared fails to hold desired property of
minimizing the time for all agents to have reached their target destinations. The mapping (A1→P1,A2→P2) has
a path distance squared sum of 19 which is less than the mapping (A1→P2,A2→P1) for which this sum is 27.
fv will choose the mapping with the greater sum as its maximum path distance (proportional to the time for all
agents to have reached their targets) is

√
17 which is less than the other mapping’s maximum path distance of√

18.

Patrick MacAlpine (2012)



Collision Avoidance

Proximity Thresh Move at angle tangent to obstacle

Collision Thresh Move along vector combination of angle tangent to
and 180◦ from obstacle

Patrick MacAlpine (2012)



Collision Avoidance Video

Click to start

Clear Path Unblocked path to target
Blocked Path Blocked path to target
Corrected Path Path to avoid obstacle
Proximity Thresh Proximity threshold around obstacle
Collision Thresh Collision threshold around obstacle

Patrick MacAlpine (2012)


collision.mp4
Media File (video/mp4)


	Introduction
	Formation
	Extra Slides

