
To appear in Proceedings of the RoboCup International Symposium 2015 (RoboCup 2015),

Hefei, China, July 2015.

A Study of Layered Learning Strategies

Applied to Individual Behaviors in Robot Soccer

David L. Leottau
1
, Javier Ruiz-del-Solar

1
, Patrick MacAlpine

2
, Peter Stone

2

1 Advanced Mining Technology Center, Department of Electrical Engineering,

Universidad de Chile, Santiago, Chile

{dleottau,jruizd}@ing.uchile.cl
2 Department of Computer Science, The University of Texas at Austin, Austin, TX 78712 USA

{patmac,pstone}@cs.utexas.edu

Abstract. Hierarchical task decomposition strategies allow robots and agents in

general to address complex decision-making tasks. Layered learning is a hierar-

chical machine learning paradigm where a complex behavior is learned from a

series of incrementally trained sub-tasks. This paper describes how layered

learning can be applied to design individual behaviors in the context of soccer

robotics. Three different layered learning strategies are implemented and ana-

lyzed using a ball-dribbling behavior as a case study. Performance indices for

evaluating dribbling speed and ball-control are defined and measured. Experi-

mental results validate the usefulness of the implemented layered learning strat-

egies showing a trade-off between performance and learning speed.

Keywords: Reinforcement Learning, Layered Learning, Machine Learning,

Soccer Robotics, Biped Robot, NAO, Behavior, Dribbling, Fuzzy Logic.

1 Introduction

The use of computational/machine learning (ML) techniques such as Reinforcement

Learning (RL) allows robots, and agents in general, to address complex decision-

making tasks. However, one of the main limitations of the use of learning approaches

in real-world problems is the large number of learning trials required to learn complex

behaviors. In addition, many times the learning of abilities associated with a given

behavior cannot be directly used, i.e. combined or transferred to other behaviors.

These drawbacks can be addressed by transfer learning [1] or hierarchical task de-

composition strategies [2].

Layered Learning (LL) [3] is a hierarchical learning paradigm that enables learning

complex behaviors by incrementally learning a series of sub-behaviors. LL considers

bottom-up hierarchical learning, where low-level behaviors (those closer to the envi-

ronmental inputs) are trained prior to high-level behaviors [4].

The main contribution of this paper is describing and analyzing how LL can be ap-

plied to design individual behaviors in the context of soccer robotics. Three different

layered learning strategies are implemented and analyzed using the ball-dribbling

behavior as a case study [5]. Ball-dribbling is a complex behavior where a robot play-

er attempts to maneuver the ball in a very controlled way while moving towards a

desired target. Very few works have addressed ball dribbling behavior with humanoid

biped robots [5–9]. Furthermore, few details are mentioned in these works concerning

specific dribbling modeling [10, 11], performance evaluations for ball-control, or

obtained accuracy to the desired path.

 After modeling ball-dribbling behavior, some conditions needed to learn ball-

dribbling under the LL paradigm are described. Afterwards, sequential, concurrent,

and partial concurrent LL strategies are applied to the dribbling task and analyzed.

Results from these experiments show a trade-off between performance and learning

time, as well as between autonomous learning versus previous designer knowledge.

The paper is organized as follows: In Section 2 the Layered Learning paradigm and

different LL strategies are detailed. Section 3 describes the ball-dribbling behavior,

and Section 4 presents the application of the LL paradigm to the modeling and learn-

ing of ball-dribbling behavior. Experimental results are presented in Section 5, and

conclusions are given in Section 6.

2 Layered Learning

Layered learning (LL) [3] is a hierarchical learning paradigm that enables learning

complex behaviors by incrementally learning a series of sub-behaviors (each learned

sub-behavior is a layer in the learning progression) [12]. LL considers bottom-up

hierarchical learning, where high-level behaviors depend on behaviors in lower layers

(those closer to the environmental inputs) for learning. From LL literature, three gen-

eral strategies can be identified:

 Sequential Layered Learning (SLL): In the original formulation of the LL para-

digm [3], layers are learned in a sequential bottom-up fashion. Lower layers are

trained and then frozen (their behaviors are held constant) before advancing to

learning of the next layer. While a higher layer is trained, lower layers are not al-

lowed to change, which reduces the search space. However, it can also be restric-

tive because it limits the space of possible solutions that agents could search com-

bining behaviors.

 Concurrent Layered Learning (CLL): CLL [4] allows lower layers to keep

learning concurrently during the learning of subsequent layers. The agent may ex-

plore a behavior’s joint search space combining all layers. Since CLL does not re-

strict the search space, its dimensionality increases, which can make the learning

process more difficult.

 Overlapping Layered Learning (OLL): OLL [12] seeks to find a trade-off be-

tween freezing each layer once learning is complete (SLL) and leaving previously

learned layers open (CLL). This extension of LL allows some, but not necessarily

all, parts of newly learned layers to be kept open during the training of subsequent

layers. In the context of learning parameterized behaviors this means that a subset

of a learned behavior's parameters are left open and allowed to be modified during

learning of the proceeding layer. The parts of previously learned layers left open

“overlap” with the next layer being learned. Three general scenarios for overlap-

3

ping layered learning are distinguished in [12]: Combining Independently Learned

Behaviors (CILB), Partial Concurrent Layered Learning (PCLL), and Previous

Learned Layer Refinement (PLLR). This work considers the implementation of

Partial Concurrent Layered Learning, where only part, but not all, of a previously

learned layer’s behavior parameters are left open when learning a subsequent layer

with new parameters. The part of the previously learned layer’s parameters left

open is the “seam” or overlap between the layers [12].

3 Case Study: Soccer Dribbling Behavior

Soccer dribbling behavior with humanoid biped robot players is used as a case study

[5]. Fig. 1 at left shows the RoboCup SPL soccer environment where the NAO hu-

manoid robot [13] is used. The proposed modeling of dribbling behavior will use the

following control actions: [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′, the velocity vector; and the following state

variables: ρ, the robot-ball distance; γ, the robot-ball angle; and, φ, the robot-ball-

target complementary angle. These variables are shown in Fig. 1 at right, where the

desired target (⊕) is located in the middle of the opponent’s goal, and a robot’s ego-

centric reference system is considered with the x axis pointing forwards. A more de-

tailed description of the proposed modeling can be found in [5, 14].

Ball-dribbling behavior can be split into three sub-tasks which must be executed in

parallel: ball-turning, which keeps the robot tracking the ball-angle (𝛾 = 0), target-

aligning, which keeps the robot aligned to the ball-target line (𝜑 = 0); and ball-

pushing, whose objective is that the robot walks as fast as possible and hits the ball in

order to push the ball towards a desired target, but without losing possession of the

ball. So, the proposed control actions are the requested speed to each axis of the biped

walk engine, where [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′ are respectively involved with ball-pushing, target-

aligning, and ball-turning [15].

From a behavioral perspective, ball-dribbling can also be split in two more general

tasks, alignment and ball-pushing. This division into two behaviors has been proposed

in [5], based on the idea that alignment can be designed off-line, unlike ball-pushing,

which needs interaction with its dynamic environment in order to learn a proper poli-

cy. In this way, alignment is composed of ball-turning and target-aligning. A behav-

ior scheme of ball-dribbling is depicted in Fig. 2.(a).

Fig. 1. A picture of the NAO robot dribbling during a RoboCup SPL game (left) and definition

of variables for ball-dribbling modeling (right).

(a) (b)

Fig. 2. (a) Behavioral scheme of the ball-dribbling problem. (b) Different layered learning

strategies implemented; open behaviors are colored meanwhile frozen behaviors are white.

With respect to ball-pushing, the modeling of the robot’s feet–ball–floor dynamics

is complex and inaccurate because kicking the ball could generate several unexpected

transitions, due to uncertainty of foot-ball interaction and speed when the robot kicks

the ball (note that the robot's foot’s shape is rounded and the foot’s speed is different

from the robot’s speed 𝑣𝑥). Moreover, an omnidirectional biped walk intrinsically has

a delayed response, which varies depending on the requested velocity [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′. To

learn when and how much the robot must slow down or accelerate is a complex prob-

lem, hardly solvable in an effective way with methods based on identification of sys-

tem dynamics and/or kinematics and mathematical models [14]. To solve this prob-

lem as a Markov Decision Process (MDP) with an RL scheme for learning simultane-

ously, ball-dribbling dynamics have been successfully applied previously in the same

domain [5, 14]. Thus, all the learning methods presented in this paper use an RL

scheme for tackling the ball-pushing task.

4 Layered Learning of Dribbling Behavior

This section presents how three different strategies of the Layered Learning paradigm

can be applied to the ball-dribbling task: PCLL, SLL, and CLL. These strategies are

implemented by using a behavior in the first layer called go-to-target, where the robot

goes to a desired target pose on the field. Go-to-target is composed in a very similar

way to the ball-dribbling behavior depicted in Fig. 2.(a); it also uses alignment but

uses go-to instead of ball-pushing as depicted at the top of Fig. 2.(b). Go-to behavior

(see Table 1) is similar to ball-pushing as it also modifies 𝑣𝑥, but instead of directing

the forward motion of the robot toward a ball it moves the robot forward toward a

specific target location on the field. Go-to-target behavior is designed based on a

Takagi-Sugeno-Kang Fuzzy Logic Controller (TSK-FLC) [16] which acts over the

walk engine velocity vector. This behavior is currently part of the control architecture

of the UChile Robotics Team [5, 17]. See Table 1 for descriptions of the behaviors'

parameters and how they relate to each other.

5

Table 1. Summary of implemented behaviors and their learning methods

Behavior
LL

strategy

What is learned

in 1st layer

What is learned

in 2nd layer

go-to -
FLC parameters of 𝑣𝑥 by using

CMA-ES
-

alignment -
FLC parameters of 𝑣𝑦 and 𝑣𝜃 by

using CMA-ES
-

go-to-target - go-to and alignment -

Dribbling with

RL-FLC

Partial

concurrent

(PCLL)

go-to-target

ball-pushing:

A partial policy for 𝑣𝑥

observing 𝜌, by using RL

Dribbling with

 eRL-FLC

Sequential

(SLL)
alignment

ball-pushing:

A policy for 𝑣𝑥 observing

[𝜌, 𝛾, 𝜑]′, by using RL

Dribbling with

DRL-NASh

Concurrent

(CLL)
go-to-target

Three policies, for

𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃 , which are

learned in parallel

observing the joint state

[𝜌, 𝛾, 𝜑]′, by using RL.

Dribbling with

 DRL
-

ball-pushing (𝑣𝑥),

target-aligning (𝑣𝑦), and

ball-turning (𝑣𝜃)

by using Decentralized-RL [14]

-

For this work, the go-to-target controller parameters have been learned by using

the RoboCup 3D simulation optimization framework of the LARG lab within the

Computer Science Department at the University of Texas at Austin. This optimization

framework uses the Covariance Matrix Adaptation Strategy (CMA-ES) [18], per-

formed on a Condor [19] distributed computing cluster.

4.1 Partial Concurrent Layered Learning

The RL-FLC work reported in [5] proposes a methodology for modeling dribbling

behavior by splitting it into two sub-problems: alignment, which is achieved by using

a Fuzzy Logic Controller (FLC), and ball-pushing, which is learned by using a RL

based controller. This methodology has been successfully used during RoboCup 2014

in the SPL robot soccer competitions by UChile Robotics Team [17] and it is current-

ly the base of their dribbling engine.

Table 2. Description of states and actions for the RL-FLC scheme

States space: s = [𝜌]

 Min Max # bins

Feature 𝜌 0mm 600mm 13

Actions space: 𝑎 = [𝑣𝑥]

 Min Max # discrete actions

Action 𝑣𝑥 0mm/s 150mm/s 16

The PCLL strategy is applied as follows: The go-to-target behavior is learned in

the first layer for tuning FLC’s parameters. During learning of the second behavior

layer the entire alignment behavior is frozen while the ball-pushing behavior is par-

tially re-learned. That means, only the parameter for how 𝜌 affects 𝑣𝑥 is opened to the

RL agent, meanwhile parameters for how γ and 𝜑 influence 𝑣𝑥 are kept frozen. So, γ

and 𝜑 are not considered in the state space. Thus, ball-pushing parameters are partial-

ly refined in the context of the fixed alignment behavior. Please see top Fig. 2.(b) and

Table 1.

Desired characteristics for a learned ball-dribbling policy are to have the robot

walk fast while keeping the ball in its possession. That means 𝜌 must be minimized

(to keep possession of the ball), while at the same time maximizing 𝑣𝑥 , which is the

control action. Proposed RL modeling for learning the speed 𝑣𝑥 depending on the

observed state of 𝜌 is detailed in Table 2. The proposed reward function is expressed

in Eq.(1). This reward function reinforces walking forward at maximum speed

(𝑣𝑥.𝑚𝑎𝑥′) without losing the ball possession (𝜌 < 𝜌𝑡ℎ).

 𝑟𝑥 = {
1, 𝜌 < 𝜌𝑡ℎ ∧ 𝑣𝑥 ≥ 𝑣𝑥.𝑚𝑎𝑥′

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

4.2 Sequential Layered Learning

An enhanced version of the RL-FLC method is implemented using a SLL strategy.

This enhanced approach (eRL-FLC) learns the ball-pushing behavior mapping the

whole state space [ρ,γ,φ] by using a RL scheme. The modeling description is present-

ed in [14]; it is designed to improve ball control because the former RL-FLC ap-

proach assumes the ideal case where target, ball, and robot are always aligned ignor-

ing γ and φ angles, which is not the case during a real game situation.

The SLL strategy is applied as follows: The alignment behavior is learned in the

first layer; then, during learning of the second layer, alignment is frozen and the

whole ball-pushing behavior is learned by performing the ball-dribbling task in the

context of the fixed alignment behavior. This is depicted at the bottom-left of Fig.

2.(b) and summarized in Table 1.

The proposed RL modeling is depicted in Table 3, where only ball-pushing is

learned. The proposed reward function is expressed in Eq.(2).

7

Table 3. Description of States and Actions for eRL-FLC and DRL schemes

Joint state space: 𝑠 = [𝜌, 𝛾, 𝜑]𝑇

 Min Max # bins

Feature1 𝜌 0mm 600mm 13

Feature2 𝛾 -50° 50° 11

Feature3 𝜑 -50° 50° 11

Actions space: 𝑎 = [𝑣𝑥, 𝑣𝑦, 𝑣𝜃]

 Min Max # discrete actions

ball-pushing 𝑣𝑥 0 mm/s 150 mm/s 21

target-aligning 𝑣𝑦 -50 mm/s 50 mm/s 21

ball-turning 𝑣𝜃 -45 °/s 45 °/s 21

4.3 Concurrent Layered Learning

A Decentralized Reinforcement Learning (D-RL) strategy is proposed in [14], where

each component of the omnidirectional biped walk [𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃]′ [20] is learned in par-

allel with single-agents working in a multi-agent task. Furthermore, this D-RL scheme

is accelerated by using the Nearby Action Sharing (NASh) approach [15], which is

introduced for transferring knowledge from continuous action spaces, when no infor-

mation different to the suggested action in an observed state is available from the

source of knowledge. In the early training episodes, NASh transfers actions suggested

by the source of knowledge (former layer) but progressively explores its surroundings

looking for better nearby actions for the next layer.

In order to learn dribbling behavior with the DRL-NASh approach, the CLL strate-

gy is applied as follows: The go-to-target behavior is learned in the first layer. During

learning of the second layer go-to and alignment behaviors parameters are left opened

and relearned to generate ball-pushing and alignment behaviors, thereby transferring

knowledge from go-to-target through use of the NASh method. This is depicted at the

bottom-right of Fig. 2.(b) and summarized in Table 1.

Again, the expected policy is to walk fast towards the desired target while keeping

the ball in the robot's possession. That means: maintaining 𝜌 < 𝜌𝑡ℎ; minimizing

𝛾, 𝜑, 𝑣𝑦 , 𝑣𝜃; and maximizing 𝑣𝑥. The proposed RL modeling is detailed in Table 3.

The corresponding reward functions per agent are expressed in Eq.(2-4).

 𝑟𝑥 = {
1, 𝜌 < 𝜌𝑡ℎ ∧ |𝛾| < 𝛾𝑡ℎ ∧ |𝜑| < 𝜑𝑡ℎ ∧ 𝑣𝑥 ≥ 𝑣𝑥.𝑚𝑎𝑥′

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

 𝑟𝑦 = {
1, |𝛾| < 𝐴𝑛𝑔𝑡ℎ

 −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

 𝑟𝜃 = {
1, |𝛾| < 𝐴𝑛𝑔𝑡ℎ ∧ |𝜑| < 𝐴𝑛𝑔𝑡ℎ

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

where 𝜌𝑡ℎ , 𝛾𝑡ℎ, 𝜑𝑡ℎ are desired thresholds where the ball is considered controlled,

meanwhile 𝑣𝑥.𝑚𝑎𝑥′ reinforces walking forward at maximum speed.

5 Experimental Results and Analysis

5.1 Experimental Setup

As mentioned in the previous section, proposed LL schemes are implemented using

the go-to-target behavior in the first layer, which is learned using CMA-ES. The sec-

ond layer of all these schemes are performed by using a RL (SARSA(𝜆)) episodic

procedure. After a reset, the robot is set in the center of its own goal (black right ar-

row in Fig. 1), the ball is placed in front of the robot, and the desired target is defined

in the center of the opponent’s goal (⊕). The terminal state is reached if the robot

loses the ball, or, the robot leaves the field, or, the robot crosses the goal line and

reaches the target, which is the expected terminal state. Due to the comparative study

purposes of this work, all the experiments are carried out in simulation. The training

field is 6x4 meters. Ang𝑡ℎ=5°, 𝑣𝒙.𝒎𝒂𝒙′ = 0.9 ∙ 𝑣𝒙.𝒎𝒂𝒙 , and fault-state constraints are

set as: [𝜌𝑡ℎ , 𝛾𝑡ℎ, 𝜑𝑡ℎ] = [500𝑚𝑚, 15°, 15°].
Four different learning schemes are presented in this paper: RL-FLC implemented

with PCLL; eRL-FLC implemented with SLL; DRL-NASh implemented with CLL;

and Decentralized RL scheme (DRL) as a base of comparison. The DRL scheme is

proposed in [14] and briefly introduced in Table 1, it learns from scratch without any

type of transfer learning or LL strategy.

The evolution of the learning process of each proposed scheme is evaluated by

measuring and averaging ten runs. In this way, the following performance indices are

considered to measure dribbling-speed and ball-control respectively:

 % of maximum forward speed (%𝑆Fmax): given 𝑆Favg, the average dribbling for-

ward speed of the robot, and 𝑆Fmax , the maximum forward speed:

%𝑆Fmax = 𝑆Favg/𝑆Fmax.

 % of time in fault-state (%𝑇FS): the accumulated time in fault-state 𝑡𝐹𝑆 during the

whole episode time 𝑡𝐷𝑃. The fault-state is defined as the state when the robot loses

possession of the ball, i.e., 𝜌 > 𝜌𝑡ℎ ∨ |𝛾| > 𝛾𝒕𝒉 ∨ |𝜑| > 𝜑𝒕𝒉 , then:

% 𝑇𝐹𝑆 = 𝑡𝐹𝑆 𝑡𝐷𝑃⁄ .

 Global fitness (𝐹): introduced for the sole purpose of evaluating and comparing

both performance indices together. It is computed as follows:

𝐹 = 1/2 ∙ [(100 − %𝑆Fmax) + %𝑇𝐹𝑆], where F=0 is the optimal policy.

5.2 Results and Analysis

Figure 3 shows the learning evolution of the four proposed schemes. Additionally, the

policy of the run with the best performance from each scheme is tested and measured

separately using 100 runs; average and standard error of those performances are pre-

sented in Table 4. The time to threshold index in Table 4 (learning speed) is calculat-

ed with a threshold of F=27%, according to global fitness plots in Fig. 3.

The time to threshold of the DRL scheme is the longest between all the tested

schemes; this is the expected result, taking into account that no LL or transfer

knowledge strategies have been implemented for this scheme. However, DRL learns

9

from scratch exploring the whole state-action space, allowing each sub-behavior

(ball-pushing, target-aligning, and ball-turning) to learn about actions of the other

two sub-behaviors. Even so, although DRL shows the lowest percentage of faults, it

does not show the best global performance. The best performance is shown by the

DRL-NASh scheme using CLL, which evidences the usefulness of CLL for this prob-

lem.

The DRL-NASh using CLL scheme shows the best global performance, the highest

dribbling speed and the second best percentage of faults; however it takes on average

around 1390 learning episodes before achieving asymptotic convergence, just around

13% faster than the DRL scheme. It validates the fact that by using concurrent layered

learning it is possible to find better performance; the drawback is that increasing the

search space dimensionality makes learning slower. Discussion about the NASh strat-

egy and how the performance of first-layer-behavior influences the learning time and

final performance is presented in [15]. Exploring this subject is a potential alternative

to speed-up learning times when Concurrent LL is used with RL agents.

The RL-FLC using PCLL approach shows the fastest asymptotic convergence and

the lowest accuracy. This is expected because RL-FLC is the least complex learning

agent, which has frozen the major part of its search space, decreasing its performance

but accelerating its learning.

Benefits of opening and learning the whole ball-pushing behavior for the eRL-FLC

using SLL scheme are noticeable when observing standard deviation bars in Fig. 3.

For this case, ball-pushing learns its policy interacting with alignment during the sec-

ond layer of SLL, which does not dramatically increase the dribbling speed though it

reduces the amount of faults, just as it was designed.

According to global fitness versus time to threshold in Table 4, a trade-off in terms

of performance and learning speed can be noticed. Additionally, there is another non-

measured but important trade-off between autonomous learning versus previous de-

signer knowledge. Those LL strategies that reduce the search space’s dimensionality

require previous knowledge of the problem for determining effectively what part of

former learned layers should be opened, and what type of LL strategy is better for

each particular problem. On the other hand, more autonomous learning strategies as

CLL or merely learning from scratch require less designer knowledge but can make

learning difficult.

Some videos showing the learned policies for dribbling can be seen at
1
. Currently

the learned policy is transferred directly to the physical robots, thus, the final perfor-

mance is dependent on how realistic the simulation platform is. On the other hand,

since state variables are updated and observed frame by frame acting like a closed

loop control action, which tries to minimize the error, a different initialization of ro-

bot, ball, and target positions does not affect performance dramatically. The robot

always tries to follow a straight-line between the ball and desired target emulating the

training environment.

1 https://www.youtube.com/watch?v=HP8pRh4ic8w

https://www.youtube.com/watch?v=_i8aNYSd6Iw&feature=youtu.be

https://www.youtube.com/watch?v=HP8pRh4ic8w
https://www.youtube.com/watch?v=_i8aNYSd6Iw&feature=youtu.be

Fig. 3. Learning evolution with standard deviation bars of the four proposed schemes.

11

Table 4. Performance indices

Method
%𝑆𝐹𝑚𝑎𝑥 %𝑇𝐹𝑆 F Time to Th.

(Episodes) Avg. Std.Err Avg. Std.Err Avg.

DRL-NASh (CLL) 74.83 0.049 14.69 0.080 19.92 1391

eRL-FLC (SLL) 61.49 0.032 16.84 0.061 27.67 66

RL-FLC (PCLL) 57.50 0.04 26.32 0.069 34.4 53

DRL 64.35 0.12 13.87 0.19 24.76 1594

6 Summary and future work

This paper has described how different Layered Learning strategies can be applied to

design individual behaviors in the context of soccer robotics. Sequential LL, Partial

Concurrent LL, and Concurrent LL strategies have been implemented and analyzed

using ball-dribbling behavior as a case study.

Experiments have shown a trade-off between performance and learning speed. For

instance, the PCLL scheme is capable of learning in around 53 episodes. This opens

the door to make achievable future implementations for learning similar behaviors

with physical robots. This is one of our short term goals and part of our future work.

 Acknowledgments.

This work was partially funded by FONDECYT under Project Number

1130153. Research within the Learning Agents Research Group (LARG) at UT Aus-

tin is supported in part by NSF (CNS-1330072, CNS-1305287), ONR (21C184-01),

and AFOSR (FA8750-14-1-0070, FA9550-14-1-0087). David Leonardo Leottau was

funded under grant CONICYT-PCHA/Doctorado Nacional/2013-63130183.

References.
1. Taylor, M., Stone, P.: Transfer learning for reinforcement learning domains: A survey. J.

Mach. Learn. Res. 10, 1633–1685 (2009).

2. Takahashi, Y., Asada, M.: Multi-controller fusion in multi-layered reinforcement learning.

Multisensor Fusion and Integration for Intelligent Systems, 2001. MFI 2001. International

Conference on. pp. 7–12 (2001).

3. Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic

Soccer. MIT Press (2000).

4. Whiteson, S., Stone, P.: Concurrent Layered Learning. Second International Joint

Conference on Autonomous Agents and Multiagent Systems. pp. 193–200. {ACM} Press,

New York, NY (2003).

5. Leottau, D.L., Celemin, C., Ruiz-del-solar, J.: Ball Dribbling for Humanoid Biped Robots:

A Reinforcement Learning and Fuzzy Control Approach. In: Reinaldo A. C. Bianchi, H.

Levent Akin, Subramanian Ramamoorthy, K.S. (ed.) RoboCup 2014: Robot World Cup

XVIII - Lecture Notes in Computer Science 8992. pp. 549–561. Springer (2015).

6. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and Optimization of an

Omnidirectional Humanoid Walk: A Winning Approach at the RoboCup 2011 3D

Simulation Competition. Twenty-Sixth AAAI Conference on Artificial Intelligence

(AAAI-12). , Toronto, Ontario, Canada, (2012).

7. Alcaraz, J., Herrero, D., Mart, H.: A Closed-Loop Dribbling Gait For The Standard

Platform League. Workshop on Humanoid Soccer Robots of the IEEE-RAS Int. Conf. on

Humanoid Robots (Humanoids). , Bled, Slovenia (2011).

8. Meriçli, Ç., Veloso, M., Akin, H.: Task refinement for autonomous robots using

complementary corrective human feedback. Int. J. Adv. Robot. Syst. 8, 68–79 (2011).

9. Latzke, T., Behnke, S., Bennewitz, M.: Imitative Reinforcement Learning for Soccer

Playing Robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D., and Takahashi, T. (eds.)

RoboCup 2006: Robot Soccer World Cup X SE - 5. pp. 47–58. Springer (2007).

10. Tilgner, R., Reinhardt, T., Kalbitz, T., Seering, S., Fritzsche, R., Eckermann, S., Müller,

H., Engel, M., Wünsch, M., Mende, J., Freick, P., Stadler, L., Schließer, J., Hinerasky, H.:

Nao-Team HTWK Team Description Paper 2013. RoboCup 2013: Robot Soccer World

Cup XVII Preproceedings. RoboCup Federation, Eindhoven, The Netherlands (2013).

11. Röfer, T., Laue, T., Judith, M., Bartsch, M., Jenett, D., Kastner, T., Klose, V., Maaß, F.,

Maier, E., Meißner, P., Sch, D.: B-Human Team Description for RoboCup 2014. RoboCup

2014: Robot Soccer World Cup XVIII Preproceedings. , Joao Pessoa, Brazil. (2014).

12. MacAlpine, P., Depinet, M., Stone, P.: UT Austin Villa 2014: RoboCup 3D Simulation

League Champion via Overlapping Layered Learning. AAAI-15 29th AAAI Conference

on Artificial Intelligence. , Austin, Texas, USA (2015).

13. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier,

B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. 2009 IEEE

International Conference on Robotics and Automation. pp. 769–774. IEEE, Kobe, Japan

(2009).

14. Leottau, D.L., Ruiz-del-solar, J.: An Accelerated Approach to Decentralized

Reinforcement Learning of the Ball-Dribbling Behavior. AAAI-2015, Workshop on

Knowledge, Skill, and Behavior Transfer in Autonomous Robots. pp. 23–29. , Austin,

Texas USA (2015).

15. Leottau, D.L., Ruiz-del-Solar, J.: An Accelerated Approach to Decentralized

Reinforcement Learning : A Humanoid Soccer Robots Validation. Intelligent Robots and

Systems, 2015. IROS 2015. IEEE/RSJ International Conference on, submitted. , Hamburg,

Germany (2015).

16. Takagi, T., Sugeno, M.: Fuzzy identi cation of systems and its application to modeling and

control. IEEE Trans. Syst. Man, Cybern. 15, 116–132 (1985).

17. Yanez, J.M., Cano, P., Mattamala, M., Saavedra, P., Leottau, D.L., Celemin, C., Tsutsumi,

Y., Miranda, P., Ruiz-del-solar, J.: UChile Robotics Team Team Description for RoboCup

2014. RoboCup 2014: Robot Soccer World Cup XVIII Preproceedings, July 2014. , Joao

Pessoa, Brazil. (2014).

18. Hansen, N.: The CMA Evolution Strategy: A Tutorial,

https://www.lri.fr/~hansen/cmatutorial.pdf.

19. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor

experience: Research Articles. Concurr. Comput. Pract. Exp. 17, 323–356 (2005).

20. Leottau, D.L., Yañez, J.M., Ruiz-del-solar, J.: Integration of the ROS Framework in

Soccer Robotics: the NAO Case. In: Behnke, V., Veloso, M., Visser, A., and Xiong, R.

(eds.) RoboCup 2013: Robot World Cup XVII, Lecture Notes in Computer Science

Volume 8371. pp. 664–671. Springer (2014).

