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Abstract. “Perhaps a thing is simple if you can describe it fully in sev-
eral different ways, without immediately knowing that you are describing
the same thing” – Richard Feynman

This articles examines multiagent learning from several paradigmatic
perspectives, aiming to bring them together within one framework. We
aim to provide a general definition of multiagent learning and lay out the
essential characteristics of the various paradigms in a systematic manner
by dissecting multiagent learning into its main components. We show
how these various paradigms are related and describe similar learning
processes but from varying perspectives, e.g. an individual (cognitive)
learner vs. a population of (simple) learning agents.

1 Introduction

Multiagent systems (MAS) are distributed systems of independent actors, called
agents, that are each independently controlled, but that interact with one an-
other in the same environment [47]. In their recent book entitled Multiagent
Systems, Shoham and Leyton-Brown define multiagent systems as “those sys-
tems that include multiple autonomous entities with either diverging information
or diverging interests, or both.” [36] Examples of multiagent systems applica-
tions include automated driving, disaster rescue aided by teams of robots, and
autonomous bidding agents for electricity power markets. Because of the com-
plexity of most MAS it is often impossible, or at least impractical, to engineer
effective agent behaviors by hand. Rather, it is preferable for agents to be able to
learn to behave effectively from experience in the environment, and from inter-
actions with other agents. Tom Mitchell, in his book Machine Learning defines
machine learning (ML) as “the study of computer algorithms that improve au-
tomatically through experience.” [27] Using these definitions of MAS and ML as
bases, we consider “multiagent learning” to be:

The study of multiagent systems in which one or more of the au-
tonomous entities improves automatically through experience.

As stated, this definition is quite broad, leaving open the possibility for many
types of autonomous entities, systems of these entities, and foci of learning. For



example, there could be many simple agents (like an ant colony), or a small
number of sophisticated agents (like a soccer team). The agents could interact
over long periods of time with exactly the same other agents, or with a series
of different randomly chosen other agents, each for a short interaction. And the
agents could learn about the environment itself, about the behaviors of the other
agents, or directly about what actions are most effective. The main commonality
in all of these above scenarios, and indeed the prerequisite for learning in the
first place (as pointed out by Shoham and Leyton-Brown), is that there is a
temporal nature to the scenario that exhibits regularity across time. Thus past
experience is somehow predictive of future expectations.

Multiagent learning has received most attention from the reinforcement learn-
ing community [23, 7, 17, 39]. For an overview see [18, 44]. In [37] Shoham et al.
explore what research questions multiagent learning is trying to answer by defin-
ing five research agenda’s that MAL research is pursuing and classifying the state
of the art therein. As not all work falls into one of these agenda’s, this implies
that either we need more agenda’s, or some work needs to be revisited. The pur-
pose of the paper was to inititiate a discussion within the community leading to
several response articles, e.g. [38, 34, 41]. The current paper is different, in that
it considers several multiagent learning paradigms, and not only RL, and fur-
thermore aims to understand what the different MAL components are, bringing
several of the paradigms together within one framework.

1.1 Multiagent Learning Components

In this paper, we consider the full spectrum of such scenarios, in which multiagent
learning is possible. As illustrated in Figure 1, we think of a multiagent learning
scenario as consisting of four distinct components: the environment, the agents,
the interaction mechanism, and the learning mechanism itself.

First, the environment, or domain, specifies the state space, action space, and
transition function. The state space specifies the set of states that an individual
agent can be in at any given time. The action space is the set of actions avail-
able to an individual agent at any given time, and the transition function, or
the environment dynamics, specifies the (possibly stochastic) way in which the
environment changes as a result of each agent (or a subset of agents) executing
an action in a given state. For the purposes of exposition, we assume that the
environment proceeds in discrete, evenly-spaced time steps and that all actions
are available at all times. But these assumptions are easily relaxed, and indeed
must be in many practical settings.

Second, the agents are defined by their communication channels with the
environment for sensing the (possibly partial) state and for specifying actions;
their communication channels between one another; their utility functions indi-
cating their preferences over environmental states; and their policies for selecting
actions.

Third, the interaction mechanism defines how long agents interact with one
another, with which other agents, and what they observe about other agents. For



Fig. 1. A depiction of the general multiagent learning scenario.



example, at one extreme, agents may be fully aware of each other’s behavior poli-
cies; or, at the other extreme, they may only observe the effects of their actions
on the environment. As intermediate possibilities, they may observe each other’s
selected actions, their utilities (payoffs), or both. The interaction mechanism
also dictates the frequency (or number) of interactions among any given agents,
as well as whether their actions are selected simultaneously or sequentially (the
timing of action selections).

Fourth, the learning mechanism is defined by the learning entity, learning
target, the learning experiential data, the learning update, and the objective
of learning. The learning entity specifies whether the learning happens at the
individual agent level, e.g. by an intelligent cognitive agent, or at the group level,
e.g. by a population of cognitively limited agents. The learning target describes
what is being learnt. For example, it could be the interaction mechanism that is
being learnt, or the policies of the individual agents. The learning experiential
data describes what information is available to the learning entity as the basis
for learning. The learning update defines how the learning entity is updated
during the learning process; and the objective is a representation of the goal, or
evaluation function, of the learning process.

1.2 Classes of multiagent learning

Multiagent learning scenarios are challenging both to design and to analyze for
a number of reasons. To begin with, even defining an objective function is far
from trivial. For example, is the goal to achieve some desired configuration for
the entire set of agents with no regard for individual utility (e.g. disaster rescue
with multiple robots); to achieve a game theoretic equilibrium (e.g. autonomous
cars selecting travel routes); or to achieve maximum utility for some subset of
designated agents (e.g. agents bidding in a marketplace on one person’s behalf)?
In addition, from the algorithmic perspective, as long as multiple agents are
learning, multiagent learning scenarios are inherently non-stationary, meaning
that they violate the Markov assumption that is typically leveraged by sequential
decision making algorithms.

For the purpose of description and analysis, in this paper we divide multi-
agent learning scenarios into three distinct classes based on how many of the
agents, and to what extent the system of interactions is “in our control” as de-
signers of algorithms. Since each class has historically been addressed by differ-
ent types of algorithms, we divide the paper into sections accordingly. However,
we find that ultimately there are many commonalities among these algorithms,
which we emphasize and unify throughout.

First, we consider the case in which just one of the agents is in our control as
it interacts repeatedly with the same small set of relatively sophisticated agents.
This class of scenarios, which we refer to as individual learning scenarios, is
traditionally the realm of multiagent reinforcement learning (RL) algorithms.
Second, we consider the case in which we have control over all of the agents and
their interactions as they interact repeatedly with randomly chosen members
of a large population of relatively simple agents. In such population learning



scenarios, the next “state” may be defined by the distribution of other agents in
the population (in particular their behaviors) that defines who the agents will
interact with. This class of scenarios is traditionally the realm of co-evolutionary
approaches and swarm algorithms. Third, we consider the case in which none of
the agents are in our control, but we can define the system of interactions. We
refer to this case as protocol learning. While much less common than the prior
two cases, protocol learning covers multiagent systems research such as adaptive
mechanism design for autonomous bidding agents.

While the distinctions among the three types of scenarios may appear sharp
as stated, in practice they are quite fuzzy. For example, multiagent reinforcement
learning algorithms can be analyzed from the perspective of all agents being in
our control, and swarm algorithms can include relatively sophisticated agents.

In the next section we further refine the three classes of problems into five
paradigmatic settings in which to consider the multiagent learning problem.

2 Paradigms

As stated above multiagent learning is a process by which agents learn to behave
in order to achieve their goal(s), while interacting with other agents (possibly
co-operative or adversarial) that are potentially learning as well. These learned
behaviours can be generated by a variety of techniques coming from different
paradigms. We distinguish five such paradigms from which such learning can be
studied.

We distinguish between three higher level types of agents or learning scenar-
ios, i.e., individual learning in which a relatively sophisticated agent learns at the
individual level; population learning in which a population of cognitively-limited
agents learn at the group level by using simple local interactions; and protocol
learning in which the interaction mechanism among the agents is itself learned.
The five paradigmatic settings we consider are:

1. Online RL towards individual utility
2. Online RL towards social welfare
3. Co-evolutionary learning
4. Swarm Intelligence
5. Adaptive mechanism design

Paradigms 1 and 2 concern individual learners, paradigms 3 and 4 concern
population learners, and paradigm 5 concerns protocol learning. In addition to the
5 paradigms we also consider MAL tools for analyzing and predicting learning
behaviour, and for building opponent models. Specifically, we consider:

– Analysis and prediction tools, for example to analyze the resulting equilib-
rium behavior of coevolutionary approaches; and

– Teammate and opponent modeling tools that can be useful for predicting
agent behaviors in any of the five paradigms.

In the next section we describe the five paradigms systematically in prototyp-
ical multiagent learning scenarios that fully specify the environment, the agents,
the interaction, and the objective, following the taxonomy laid out in Figure 1.



3 Paradigm Descriptions

This section describes the five paradigms introduced above in more detail, and
categorizes them according to the taxonomy introduced above.

3.1 Paradigm 1: Online RL towards individual utility

One of the most-studied scenarios in multiagent learning is that in which multiple
independent agents take actions in the same environment, and learn online to
maximize their own individual utility functions.

This paradigm, in turn, is most often reduced to the abstract game-theoretic,
artificial scenario of a repeated normal form game. In a normal form game,
each agent (or “player”) has a set of possible actions, players select an action
simultaneously, and each player gets a payoff that is a function of the full set of
actions. Perhaps the most famous normal form game is the Prisoner’s Dilemma,
a 2-player game with actions and utilities shown in Figure 2. The motivation
is that two prisoners committed a crime together and are being interrogated
separately. If neither of them confesses to the crime (they both “cooperate”),
then they will both get a small punishment (corresponding to a payoff of 3 in
the figure). If one of them confesses (or “defects”) but the other does not, then
the one that confesses gets off for free (payoff of 5), but the other gets the worst
punishment possible (payoff of 0). If they both defect, they both get a fairly bad
punishment (payoff of 1). Normal form games can also have more than 2 players,
and more than 2 actions per player.

D
C

D C(
1, 1
0, 5

5, 0
3, 3

)
Fig. 2. Payoff tables of the PD game. Strategies D and C correspond with Defect and
Cooperate respectively.

Normal form games were initially introduced and studied as one-shot in-
teractions. The players knew each other’s full utility functions, and played the
game only once. It was in this setting that the famous Nash equilibrium was
introduced as a set of actions such that no player would be better off deviating
given that the other players’ actions are fixed. Games can have one, or multiple
Nash Equilibria. In the prisoner’s dilemma, the only Nash Equilibrium is for
both agents to defect.

In these traditional one-shot settings, there is no opportunity for learning
because there is no temporal nature to the scenario. However, it is also possible
to consider repeated normal form games such that the same players interact with
one another multiple times in the same game, with the objective of maximizing



their (possibly discounted)4 sum of utilities over time. In repeated normal form
games, the repetition provides the temporal nature. The regularity across time
comes from the assumption that players’ past actions are somehow predictive of
their future actions.

While normal form games are the most common way to formulate this paradigm,
it has also been studied extensively in the context of the pursuit domain [4], and
applies also to a wide variety of more complex domains. The essential defining
characteristics for multiagent learning settings that fall under this paradigm (i.e.
the characteristic necessary to fall under this paradigm), are as laid out in Ta-
ble 1. When many options are possible, they are enumerated, or the field is left
blank.

Online RL towards individual utility

Component Description

Agent Environment

state space:
action space:
transition function:

Agents

state observations:
action channel:
utility functions: (discounted) sum of rewards
behavior policies: the other agents’ policies are unknown; our agent’s policy

is the target of the learning (this is what is in our control)

Interaction mechanism

who interacts: same set of agents
frequency of interactions: repeat multiple times or in one continual process
timing of action selections: actions taken simultaneously or sequentially
observations of interactions: agents may or may not observe the other agents’ actions,

payoffs, or policy

Learning

learning entity: individual learner
learning target: agent’s policy
learning experiential data: agents’ joint action, reward, next state observation
learning update: behavior update from last experience
objective: maximize our own agent’s sum of utilities over time

Table 1. The essential characteristics of paradigm 1. When many options are possible,
they are enumerated, or the field is left blank.

4 Discounted utilities are used to represent that near-term payoffs are more important
to the agent than longer term payoffs.



3.2 Paradigm 2: Online RL towards social welfare

A slight variation on the above scenario is that we may assume that all agents are
using exactly the same learning-based behavior policy, and adopt the objective
that, perhaps after some transient initial phase, they arrive at a steady state
of always both selecting the cooperate action (which maximizes their sum of
utilities).

In this case, the main things that change from Paradigm 1 are the behavior
policies (in particular, what is in our control), and the objective.

The essential characteristics for this paradigm are laid out in Table 2.

Online RL towards social welfare

Component Description

Agent Environment

state space:
action space:
transition function:

Agents

state observations:
action channel:
utility functions: (discounted) sum of rewards
behavior policies: all agents’ policy is the target of the learning (this

is what is in our control)

Interaction mechanism

who interacts: same set of agents
frequency of interactions: repeat multiple times or in one continual process
timing of action selections: actions taken simultaneously or sequentially
observations of interactions: each agent observes the other agents’ actions and

payoffs, but not policy

Learning

learning entity: each agent learns individually
learning target: each agent’s policy
learning experiential data: agents’ joint action, reward next state observation
learning update: behavior updates from last experience
objective: maximize the sum of all agents’ utilities over time

Table 2. The essential characteristics of paradigm 2. When many options are possible,
they are enumerated, or the field is left blank. The differences from Paradigm 1 are
highlighted in bold.

3.3 Paradigm 3: Co-evolutionary approaches

Evolution can be used to learn agent behaviors as well. In this paradigm, abstract
Darwinian models of evolution are applied to refine populations of agents (known



as individuals) representing candidate solutions to a given problem [26, 11, 32].
This process consists of five steps: representation, selection, generation of new
individuals (crossover and mutation), evaluation, and replacement. An evolu-
tionary algorithm (EA) begins with an initial population of randomly-generated
agents. Each member of this population is then evaluated and assigned a fitness
value. The EA then uses a fitness-oriented procedure to select agents, breeds and
mutates them to produce child agents, which are then added to the population,
replacing older agents. One evaluation, selection, and breeding cycle is known as
a generation. Successive generations continue to refine the population until time
is exhausted or a sufficiently fit agent is discovered. Coevolution is an intuitive
extension of evolutionary algorithms for domains with multiple learning agents.
In co-evolution, the fitness of an individual is based on its interaction with other
individuals in the population.

In essence EAs are training a “policy” to perform a state to action mapping.
In this approach, rather than update the parameters of a single agent interacting
with the environment as is done in reinforcement learning, one searches through
a population of policies to find one that is appropriate for the task. This type
of policy search approach is well suited to domains with continuous states and
actions where traditional reinforcement learning approaches generally encounter
difficulties. One can use a probability vector or distribution as representation of
the policy, but an often-used policy in conjunction with evolutionary algorithms
is a feed-forward neural network with non-linear activation functions (referred to
as neuro-evolution [35, 10, 45, 20]). The aim of the neural network is to perform
a mapping between its inputs (state) and its outputs (actions), that satisfies the
agent’s task. For example, a mobile robot using a neural network to navigate can
map the sensory inputs it receives to direction and velocity. The key then is to
find the correct parameters for the neural network that will provide the desired
behavior.

The essential characteristics of this paradigm are laid out in Table 3.

3.4 Paradigm 4: Swarm Intelligence

Swarm Intelligence is a bio-inspired machine learning technique, largely based on
the behavior of social insects (e.g. ants and honeybees), that is concerned with
developing self-organized and decentralized adaptive algorithms [9, 24]. The type
and form of learning in a swarm intelligence is characterized by a large population
of cognition-limited agents that locally interact. Rather than developing complex
behaviors for single individuals, as is done in reinforcement learning, swarm
intelligence investigates the emerging (intelligent) behavior of a group of simple
individuals that achieve complex behavior through their interactions with one
another. Consequently, swarm intelligence can be considered as a cooperative
multiagent learning approach in that the behavior of the full set of agents is
determined by the actions of and interactions among the individuals.

In swarm intelligence, each individual in the group follows simple rules with-
out central control structures. By interacting locally, a global behavior emerges,
yet the individual has no knowledge of this ’big picture’ behavior. Examples of



Co-evolutionary approaches

Component Description

Agent Environment

state space:
action space:
transition function:

Agents

state observations:
action channel:
utility functions: payoff accumulated from utility matrix
behavior policies: agents’ policies are fixed parameterized functions

Interaction mechanism

who interacts: many sets of 2 agents, one from each population, ran-
domly grouped

frequency of interactions: repeat multiple times
timing of action selections: actions taken simultaneously or sequentially
observations of interactions: each agent may or may not observe the other agents’

actions, payoffs, or policies

Learning

learning entity: population
learning target: proportion of populations with each set of possible pa-

rameters
learning experiential data: groupings of agents to generate utilities
learning update: change of populations based on utilities of the individuals
objective: maximize the sum of utilities over a group-wise interac-

tion for the best agents in the populations

Table 3. The essential characteristics of paradigm 3. When many options are possible,
they are enumerated, or the field is left blank.



such systems are ant foraging, bird flocking, fish schooling, and animal herding
[12, 3, 21, 14]. Currently the most well-known swarm intelligence algorithms are
pheromone-based (stigmergic), such as Ant Colony Optimization [8].

Ant Colony Optimization is a class name for ant-inspired algorithms solving
combinatorial optimization problems. Algorithms belonging to it are stochas-
tic search procedures in which the central component is the pheromone model.
Pheromone-based algorithms are inspired by the behavior of ants and are the
most well-known swarm intelligence algorithm. The algorithms are based on the
fact that ants deposit a pheromone trail on the path they take during travel.
Using this trail, they are able to navigate toward their nest or food. Ants employ
an indirect recruitment strategy by accumulating pheromone trails in the envi-
ronment. The ants communicate indirectly via the environment, a phenomenon
called stigmergy. When a trail is strong enough, other ants are attracted to it
and, with high probability, will follow this trail toward a destination. In other
words, the more ants follow a trail, the more that trail becomes attractive for
being followed. However, pheromones evaporate over time, meaning that unless
they are reinforced by other ants, they will disappear. Since long paths take
more time to traverse, and pheromones evaporate, it will require more ants to
sustain a long path. As a consequence, short paths will eventually prevail. The
dissipation of pheromones ensures that ”old” solutions can be forgotten, and
that the ants will not get stuck in a local optimum.

Optimization problems best suited to be solved by ant colony optimization
are those that can be cast as computational problems on a graph, implying that
optimal solutions will correspond to specific paths in such a graph. Successful
examples of such problems include the traveling salesman problem, various rout-
ing problems, job shop scheduling and even ”coverage problems” with robots [9,
2, 6].

The essential characteristics of this paradigm are laid out in Table 4.

3.5 Paradigm 5: Adaptive mechanism design

Thus far, the thing under our control has been the algorithms of the agents, while
their method of interaction has been taken as given. For example, in repeated
games, it was given that the agents play the same game over and over again,
taking actions simultaneously. The MAL algorithm defined the behavior(s) of
the agent(s).

However, it is also possible to think of a multiagent learning setting as being
one in which the agents are fixed (or at least beyond our control — so to the
extent that they learn, they do so in a way that we cannot affect), but the
interaction mechanism is to be learned [33].

Consider, for example, an auction house that interacts with a population of
bidders. When auctioning several artworks, there are several parameters that can
be adjusted, such as the reserve price, whether the auctions are simultaneous or
sequential, and the mechanism by which the winner is determined and the price
is set (e.g. English auction, Vickrey auction, Dutch auction, etc.). The auction



Swarm Intelligence

Component Description

Agent Environment

state space: pheromone levels and, or agent locations in the environ-
ment

action space:
transition function: changes in pheromone levels and, or agent locations after

all take actions

Agents

state observations: pheromone levels and/or agent locations either globally
or locally

action channel:
utility functions:
behavior policies: agent’s policy is a fixed function (simple control rules

based on pheromone levels and/or agent locations

Interaction mechanism

who interacts: agents operate in the same environment
frequency of interactions: repeated task executions by each agent
timing of action selections: actions taken simultaneously
observations of interactions: each agent alters the environment, affects other agents’

decisions via stigmergy

Learning

learning entity: population
learning target: proportion of pheromones in the environment dropped

by the entire population
learning experiential data: amounts of pheromones dropped in the environment that

will determine optimal path (or utilities)
learning update: change of pheromones levels in the environment based on

ant utility
objective: maximize the level of pheromones on the optimal path in

the environment

Table 4. The essential characteristics of paradigm 4. When many options are possible,
they are enumerated, or the field is left blank.



house presumably wants to maximize the selling prices of the items, which will
in turn maximize its commission.5

In this case, the auction house is not able to control the bidders (the in-
teraction agents) themselves. As people tend to be, they may be irrational to
varying degrees. Instead, it can only control the rules of interaction, in this case
the bidding rules.

Note that the ideal auction mechanism may depend on the characteristics of
the goods being auctioned. Compared to artwork, people bidding on electronic
equipment may bid differently (or the auction may simply attract a different
population). Furthermore, the population’s bidding strategies as a whole may
change over time (for example due to changes in the overall economy). Thus the
auction house will need to continually adapt the parameters of its auctions if it
is to maximize its profits [31, 30].

The essential characteristics of this paradigm are laid out in Table 5.

4 Multiagent Learning Tools

In addition to the five MAL paradigms presented in Section 3, in this Section we
summarize two useful tools for the study and development of MAL algorithms.
The first, using evolutionary game theory, is an analysis tool designed to enable
researchers to predict the eventual stable state (fixed point) of an MAL system
assuming self-interested agents continually adapt to each other’s behaviors using
known learning rules.

The second, opponent modeling, is a tool used by agents within a multiagent
system themselves to predict the future actions of other agents in the environ-
ment. An opponent model could itself be learnt, in which case it falls under the
“learning target” within our taxonomy shown in Figure 1. However it may also
be provided to the agent a priori. For this reason we treat it here as a tool to be
used by an agent in a MAL system.

4.1 Analysis and prediction tool

The first MAL tool we discuss leverages Evolutionary Game Theory (EGT) as an
analysis and prediction tool for the dynamics of MAL. It is well known that by
using concepts from EGT, such as replicator equations and evolutionary stability,
we can say something useful about the properties of learning trajectories and
equilibria that are learnt by a variety of multi agent learning algorithms [43,
40, 48, 22, 13]. We now first briefly outline the differences between EGT and
traditional Game Theory, and present some intuitions of the replicator equations
and how they can be used as an analysis tool in MAL. For a good overview see
[5].

5 In some public auctions, the objective may instead be to maximize social welfare —
striving to sell each item to the bidder who values it most.



Adaptive mechanism design

Component Description

Agent Environment

state space:
action space:
transition function: determined by the auction mechanism - how the prices

change over time as a function of bids. This is one of the
things we control

Agents

state observations:
action channel:
utility functions:
behavior policies: various - not in our control

Interaction mechanism

who interacts: random subsets from populations of agents interact in a
series of auctions

frequency of interactions: repeat continually
timing of action selections: Under our control, the subject of the adaptive algorithm
observations of interactions: Under our control, the subject of the adaptive algorithm

Learning

learning entity: the mechanism; the entity that sets the rules of interac-
tion

learning target: the current mechanism:

– do agents observe each other’s bids? just prices?
– is price set by highest bid or 2nd highest?
– are auctions run sequentially or simultaneously?
– are bids sequential or simultaenous?

learning experiential data: alteration of the mechanism for next round
learning update: objective value with new mechanism
objective: maximize profit or social welfare

Table 5. The essential characteristics of paradigm 5. When many options are possible,
they are enumerated, or the field is left blank.



Classical game theory assumes that full knowledge of the normal form game
is available to all players, which together with the assumption of individual ra-
tionality, or perfectly logical players, does not necessarily reflect the dynamic
nature of real world interactions. EGT relaxes the rationality assumption and
replaces it by biological operators such as natural selection, crossover and mu-
tation [46, 25, 16, 15]. Central to evolutionary game theory are the replicator
dynamics that describe how a population of individuals or agents evolves over
time under evolutionary pressure. Each individual has a certain phenotype, using
the same pure strategy during its lifetime, and individuals are randomly paired
in interaction. The population mix evolves over time according to the reproduc-
tion rates of strategies under exponential growth or decay. Their reproductive
success is determined by their fitness, which results from these interactions.

The replicator dynamics dictate that the population share of a certain phe-
notype will increase if the individuals of this type have a higher fitness than the
population average when interacting with the current distribution of agents; oth-
erwise their population share will decrease. The population can be described by
the state vector x = (x1, x2, ..., xn), with 0 <= xi <= 1 for all i and

∑
i xi = 1,

representing the fractions of the population belonging to each of the phenotypes
or strategies. Now suppose the fitness of type i is given by the fitness function
fi(x), and the average fitness of the population is given by f (x) =

∑
j [xjfj(x)]

The population change over time can then be written as: dxi

dt = xi[fi(x) − f(x)]
or,

ẋi = xi
[
fi(x) − f̄(x)

]
(1)

which is known as the single population replicator equation.
Let us now consider an example of a population playing the prisoner’s dilemma

with payoff tables shown in Figure 2. An individual playing the strategy i = 1,
i.e. cooperate, on average encounters x1 individuals also cooperating and x2 in-
dividuals defecting. This means that the average fitness of an individual playing
cooperate is (Ax)1 = 3x1 + 0x2 Similarly, the average payoff of an individual
playing defect is (Ax)2 = 5x1 + 1x2. The payoff matrix A determines the payoff
an individual receives when interacting with others. The state vector x describes
the frequencies of all pure strategies within the population. Success of a strategy
i is measured by the difference between its current payoff (Ax)i and the average
payoff of the entire population xAx. Hence, strategies that perform better than
average grow in population share and those performing worse than average di-
minish. We can now also plot the phase plot of the trajectories of the dynamical
system, which will predict learning traces of various learning algorithms, for an
extensive overview see [5]. An RL researcher or experimentalist can now easily
investigate the directional field plot of the learning behavior described by various
replicator dynamics models, providing insight into the equilibrium structure of
games and their basins of attraction when various learning strategies are exam-
ined. Figure 3 shows the directional field plot for the prisoner’s dilemma using
equation 1.

On the one hand a population is a collection of individuals, each represent-
ing a certain phenotype, i.e., a pure strategy. An individual never changes its



Fig. 3. Directional field plot of the replicator dynamics in the Prisoner’s Dilemma
Game. The Nash equilibrium is situated at the top right corner.

phenotype during the course of its lifetime. Individuals are randomly matched
and play the game according to their predetermined phenotypes; subsequently,
phenotypes replicate according to the realized payoffs. Thus phenotypes com-
pete with each other, fitter strategies prevail while inferior strategies eventually
die out. On the other hand, a population might also represent the behavior of
a particular agent. The population shares reflect the current preferences over
different strategies and thus defines the agent’s policy. The asymmetric replica-
tor dynamics provide a model for two learning agents pitted against each other
and thus, two populations co-evolving.

The single population replicator dynamics are only applicable to symmetric
games. An asymmetric two-player game comprises different payoff tables for the
two players and possibly different action sets (e.g. matching pennies). Likewise
we need two separate populations to describe the dynamics. At each time step
a random individual from one population interacts with a randomly matched
individual from the other population. Instead of one payoff matrix we will now
have two payoff matrixes A and B, which are of size m× n. m is the number of
actions the row player can choose from and n the number of actions the column
player can choose from. The state vectors of the two populations will now be
denoted as x and y, and the dynamics are now specified by a coupled dynamical
system consisting of m + n equations. m for the replicators of x and n for the
replicators of y. The fitness of an individual of population x playing strategy
i against population y is fi(x) = (Ay)i, and the expected fitness of a random
individual of x against y is f(x) = xTAy. Similarly we can compute the fitness
for individuals of population y. For the two populations the replicator equations
now look as follows:



ẋi = xi
[
(Ay)i − x>Ay

]
ẏi = yi

[
(x>B)i − x>By

]
.

(2)

Note that a recent result shows how to decompose an asymmetric game into
its symmetric counterparts (using replicator dynamics), allowing to discover the
Nash structure of an asymmetric game using its symmetric counterparts, for
details see [42].

There exist RD models of various reinforcement learning algorithms such
as: Q-learning [43], lenient Q-learning [29, 28], regret minimization [19], FAQ-
learning [18] etc. These are derived by constructing a continuous time limit of
the difference equation of two consecutive updates of the respective learning
update rule. Taking the limit for δt approaching zero of this difference equation,
i.e. the time between the two updates becomes infinitesimally small, yields the
RD model of the respective learning algorithm. These models can now be used by
researchers to gain insight in the learning behavior by examining the respective
phase-plots of the various dynamical systems in a specific game.

4.2 Opponent modeling tool

In contrast to replicator dynamics, which is a tool used by an MAL experimen-
talist, the second MAL tool we consider is one used by an agenet within an MAL
system. An opponent model predicts the future actions of other agents in the
systems, and may be given a priori or itself learned. In the latter case, it is one
example of a “learning target within our taxonomy show in Figure 1.

A recently-published survey of methods for agents modeling other agents pro-
vides a comprehensive review of types of opponent modeling methods that can
be used for constructing such a tool [1]. These methods include policy reconstruc-
tion, type-based reasoning, classification, plan recognition, recursive reasoning,
graphical models, and group modeling.

An extended version of the current paper will describe opponent modelling
in greater detail. For further details, we refer the reader to the survey [1], which
compares and contrasts these methods in Table 1, and summarizes numerous
examples from the literature in Tables 2-9.

5 Conclusion

The purpose of this paper has been to identify, compare, and contrast the main
prevalent research paradigms within the multiagent learning literature. To this
end, we begin with an overarching taxonomy of multiagent learning, as illustrated
in Figure 1. We then identify three high-level types of agent learning scenarios
— individual learning in which a relatively sophisticated agent learns at the
individual level; population learning in which a population of cognitively-limited
agents learn at the group level by using simple local interactions; and protocol
learning in which the interaction mechanism among the agents is itself learned —



and then further subdivide them into the five paradigms specified in Section ??.
We then conclude with coverage of two classes of MAL tools in Section ??: one
for use by researchers or experimentalists to predict the dynamics of an MAL
system, and one for use by the agents themselves.

While this paper provides a high-level classification of MAL paradigms, it
does not survey the literature in any particular detail. We hope that the pro-
vided perspective and terminology will prove to be useful to the community for
description of existing and future multiagent learning approaches.
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