
In Daniele Nardi, Martin Riedmiller and Claude Sammut, editors, RoboCup-2004: Robot Soccer World Cup VIII,
pp. 636--644, Springer Verlag, Berlin, 2005.

The UT Austin Villa 2003 Champion Simulator

Coach: A Machine Learning Approach

Gregory Kuhlmann, Peter Stone and Justin Lallinger

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{kuhlmann,pstone,hosty}@cs.utexas.edu

http://www.cs.utexas.edu/~{kuhlmann,pstone,hosty}

Abstract. The UT Austin Villa 2003 simulated online soccer coach was
a first time entry in the RoboCup Coach Competition. In developing the
coach, the main research focus was placed on treating advice-giving as
a machine learning problem. Competing against a field of mostly hand-
coded coaches, the UT Austin Villa coach earned first place in the com-
petition. In this paper, we present the multi-faceted learning strategy
that our coach used and examine which aspects contributed most to the
coach’s success.

1 Introduction

The Coach Competition is a fairly recent addition to the RoboCup Simulated
Soccer League. The competition aims to encourage research in multiagent mod-
eling and advice-giving. The challenge is to create a coaching agent that signifi-
cantly improves a team’s performance by providing strategic advice.

In the RoboCup simulator [1], an online coach agent has three main advan-
tages over a standard player. First, a coach is given a noise-free omniscient view
of the field at all times. Second, the coach is not required to execute actions in
every simulator cycle and can, therefore, allocate more resources to high-level
considerations. Third, in competition, the coach has access to logfiles of past
games played by the opponent, giving it access to important strategic insights.

On the other hand, the coaching problem is quite difficult due to two main
constraints. First, to avoid reducing the domain to a centralized control task,
a coach agent is limited in how often it can communicate with its team mem-
bers. In addition, the coach must give advice to players that have been devel-
oped independently, often by other researchers. For this to be possible, coaches
communicate with coachable players via a standardized coach language called
Clang [1].

Our UT Austin Villa coach was a first time entry in the coach competition.
Similarly to some previous approaches to coaching ([5],[6],[7]), we treat advice-
giving as a machine learning problem. Competing against a field of mostly hand-
coded coaches, the UT Austin Villa coach earned first place in the competition.
In this paper, we present the multi-faceted learning strategy that our coach used
and examine which aspects contributed most to the coach’s success.

2 Coach Framework

The basic operation of our UT Austin Villa1 coach is as follows. Prior to a match,
the coach examines the provided logfiles of games played by the fixed opponent.
We call this team the fixed opponent, because in competitions it is determined
by the league organizers and is the common opponent for all coach entries. The
logfiles contain data from the fixed opponent’s previous games. In particular, the
coach does not see log files of the coachable team itself playing against the fixed
opponent. All coaches advise the same coachable team consisting of players that
understand and react to Clang messages.

The coach collects data about players on the fixed opponent team as well as
the players on the team the fixed opponent is playing against. For each player,
the coach collects aggregate data such as the player’s average location, as well
as data about high-level events, such as passes and dribbles. After every change
in possession, the coach’s game analysis module attempts to classify the prior
possession as a sequence of high-level events. The details of the identification
procedure are described in our team description [2].

The data collected during logfile analysis are fed into a group of learning
algorithms that generate player models for both teams. The models are then used
to produce three different kinds of advice: formational, offensive, and defensive.
The learned advice is combined with a few hand-coded rules and sent to the
coachable team at the beginning of the match.

In past years’ competitions, the team to be coached consisted of players de-
veloped at a single institution. Even in the absence of a coach, the players con-
stituted a coherent team. In order to magnify the impact of a coach, in the 2003
competition, coachable teams were assembled from players developed at three
different institutions: UT Austin Villa (our own), Wyverns from Carnegie Mel-
lon, and WrightEagle from USTC in China. Furthermore, the coachable players
were designed with only limited default strategy.

As a result, it was necessary to provide the players with advice about general
game play. After brief experimentation with the coachable players, we identified
the basic skills that they were missing and added hand-coded rules to help them
overcome these weaknesses.

While the coach is best able to reason about players in terms of their roles,
Clang requires players to be specified by their uniform numbers. For this reason,
the coach maintains a mapping between roles and uniform numbers for each
player on both teams. Learned rules and hand-coded advice are created with
role variables in the place of uniform numbers. When the rules are sent, the
coach uses the current role map to insert the uniform numbers corresponding
to each role variable. If during the course of the game players change roles, the
affected rules are sent again with the updated player numbers. The details of
how role mapping was used in the 2003 competition are described in our team
description [2].

1 http:/www.cs.utexas.edu/~AustinVilla

3 Learning

The core of the UT Austin Villa coach is its ability to learn player models from
logfiles of past games. Similarly to Riley et al. [7], we break this problem down
into learning three basic types of strategies: offensive (how the player should try
to score), defensive (how they should act near their own goal), and formational
(where the players should position themselves by default). This paper describes
an independent formulation and implementation of these three basic strategies
which differs in many of the particulars from previous work.

We assume that the set of available logfiles of the fixed opponent includes
some games in which the opponent wins and some games in which it loses;
in competition, we were given two of each. In the logfiles in which the fixed
opponent performs well, we model the fixed opponent’s offense and attempt to
learn defensive advice to counter it. For the games in which the fixed opponent
loses, we model the winning team and learn formational and offensive action
selection advice.

For both offensive and defensive advice, the product of our learning algorithm
is a classifier that is able predict the next high-level event to occur, given the
current state of the game. To encode the simulator’s state, we used a large set
of features including the positions of all 22 players, the position of the ball, and
the distances between them.

We used the J48 decision tree algorithm, implemented in the Weka machine
learning software package [8], to train a series of decision trees, one for each
modeled player. Because the structure of a decision tree is easily understandable,
it is fairly straightforward to convert a tree into Clang advice. The details of
the example creation and advice generation procedures for the offensive and
defensive advice are described in the following two sections. We then present the
methods behind our formational advice learning.

3.1 Offensive Advice

When learning offensive advice, the coach attempts to model the behavior of the
player with the ball. During the learning process, the coach builds a classifier
for each player that tries to predict what that player will do with the ball in any
given situation. For player i, we define the possible classes to be:

– Pass(k): Pass to teammate with uniform number k ∈ {1..11} − {i}.
– Shot: Take a shot on goal.

During logfile analysis, when a shot or pass is identified, the state of the envi-
ronment at the last kickable time is stored in the database along with the true
class label and the player number: i. A classifier is then built for each player
using only the examples corresponding to its own player number.

Once we have trained a decision tree for player i, we can convert it into
advice to be given to our own corresponding player. To understand the advice
generation process, consider the example decision tree for player 5 shown in Fig-
ure 1. Each leaf node of the decision tree is an action. The path from the root
to the leaf defines a conjunction of conditions under which that action should

be executed. Therefore we can construct a rule, {condition}→{action}, for each
leaf node in the decision tree. For example, the rule for the leftmost leaf of the
example decision tree is:

(BallX < 10) ∧ (BallY < 10)->Pass(6)

< 10

< 10 >= 10

>= 10

BallX

BallY Shot

Pass(8)Pass(6)

Fig. 1: Example de-
cision tree learned
for offensive advice.

Or in Clang:

(define

(definerule OffRule1 direc

((and (bpos (rec (pt -52.5 -34) (pt 10 34)))

(bpos (rec (pt -52.5 -34) (pt 52.5 10))))

(do our {5} (pass {6})))

)

)

3.2 Defensive Advice

To generate defensive advice, we model the behavior of the opponent and attempt
to foil its predicted strategy. Here, we aim to predict how a given player will
acquire the ball. The set of classes is Pass(k) where k is the uniform number of
the player by whom the pass was made. Because we are interested in predicting
a pass before it is made, we don’t just record the state at the last kick time as
we did in the offensive case. Instead, we record the 10 cycles (1 second) prior
to the last kickable time and label each instance with the true class label and
the player number of the pass receiver. An example tree learned for player 5 is
shown in Figure 2.

We use a heuristic model to convert the learned predictions regarding oppo-
nent behaviors to defensive actions that can prevent that action. To prevent a
pass, it is a good idea to position a defender along a passing lane closer to the
intended receiver than to the passer. We found that positioning
the defender at about 70% of the pass length away from

< 10 >= 10

Pass(6) Pass(8)

BallY

>= 0

Opp6Y

Pass(6) Pass(9)

BallX

< 0

< 5 >= 5

Fig. 2: Example deci-
sion tree learned for
defensive advice.

the ball was a reasonable choice. Assuming that our player
7 is guarding opponent 5, then the Clang rule corre-
sponding to the leftmost branch of the decision tree in
Figure 2 is:

(define

(definerule DefRule1 direc

((and (bpos (rec (pt -52.5 -34) (pt 0 34)))

(bpos (rec (pt -52.5 -34) (pt 52.5 10))))

(do our {7} (pos (((pt opp 6) * (pt .7 .7)) +

(pt opp 5) * (pt .3 .3)))))

)

)

3.3 Learning Formations

Our approach to learning a team formation is similar to our approach to learning
offensive advice. The coach observes a team that can beat the opponent and then
attempts to mimic that team’s behavior. We model the formation as a home

position (X,Y) and ball attraction vector (BX,BY) for each player. In Clang,
a formation is a positioning rule of the following form for each player, P :

(do our {$P} (pos ((pt $X $Y) + ((pt ball) * (pt $BX $BY)))))

The X and Y values are calculated as the average x and y coordinates of
the observed player during the course of the game. Values for BX and BY were
handpicked for each position and were found through brief experimentation. In
some cases, we found that the ball attraction would cause the forwards to play
too far towards the opponent goal, so to compensate, we manually moved the
home positions back a bit.

4 Experimental Results

In this section we present the results of several experiments involving our learned
coach, both in competition and in more controlled settings.

4.1 The Competition

The UT Austin Villa coach came in first place out of 12 entries in the 2003
RoboCup Coach competition. The competition consisted of three rounds. In
each round, the coached team played three ten-minute games against a fixed
opponent. Coaches were evaluated based on goal difference: the number of goals
scored by the coachable team minus the number of goals scored by the oppo-
nent. The fixed opponents were all teams that competed in the main simulator
competition: Boldhearts in round 1, Sirim in round 2, and EKA-PWr2 in round
3.

The score differences and rankings for the top four finishing teams are shown
in Table 1.3 Our coach was ranked 7th after the first round. After making im-
provements to the hand-coded advice (but still retaining the learned offensive
and formation advice as described above), we moved into first place after the
second round. Four coaches (our own UT Austin Villa along with FC Portugal4,
Iraniansand Helli-Amistres5) progressed to the final round with UT Austin Villa
coming out on top.

Because the number of games in the coach competition is too small to provide
statistically significant results, we reran the final round for 50 games on our
own. The advice sent by the other coaches was extracted from the logfiles of
the competition and duplicated verbatim. We used the same team of coachable
players as the one used in the competition so as to reproduce the exact conditions.
The results of the comparision are summarized in Table 2.

In our tests, our coach had the highest average, but based on a two-tailed
student’s t-test the results are not statistically better than those of the second
place team, FC Portugal. Even after 50 games, the results were not significant
(p > 0.9). However, the scores for FC Portugal and our UT Austin Villa coach

2 http://autonom.ict.pwr.wroc.pl/RoboCup/english/english.html
3 Complete results are available from www.uni-koblenz.de/~fruit/orga/rc03/
4 http://www.ieeta.pt/robocup/
5 http://www.allamehelli.net/pages/robo.html

1st Round 2nd Round 3rd Round
Coach (Boldhearts) (Sirim) (EKA-PWr)

UT Austin Villa 0:19 7th 0:2 1st 8:2 1st

FC Portugal 1:21 8th 0:8 4th 7:3 2nd

Iranians 0:14 4th 0:5 3rd 3:2 3rd

Helli-Amistres 1:12 2nd 0:3 2nd 7:7 4th

Table 1: Total scores and rankings for the top four finishing teams in the 2003
RoboCup coach competition. The score consists of the number of goals scored by the
coached team followed by the number scored by the fixed opponent.

were significantly6 better than the next best team: Helli-Amistres. Therefore,
under controlled conditions our coach tied with FC Portugal for first place.

Coach Score StdDev Rank

UT Austin Villa 2.38 2.61 1st

FC Portual 2.24 1.53 1st

Iranians -0.4 1.74 4th

Helli-Amistres 0.85 1.81 3rd

Table 2: Summary of 50 runs of the final round of the 2003 RoboCup Coach Com-
petition. Average goal differences are shown along with their standard deviations and
overall ranking.

4.2 Additional Experiments

After the competition, we conducted additional controlled experiments to isolate
the key components of our learned coach agent. For all tests, we used the same
fixed opponents as in the competition (BoldHearts, Sirim, and EKA-PWr), and
the same scoring metric. All reported scores have been averaged over 25 games.

Our first experiments were aimed at isolating the impact of each variety of
advice given by our coach. We tested several different configurations of advice
using a coachable team consisting of only our (UT Austin Villa) players.

The results of these first experiments are presented in Table 3. In the table,
the column labled “w/ HC” indicates whether or not the hand-coded advice was
included (Yes/No). The column labeled “Formation” contains the results for
learned formation advice only. The “Offensive” and “Defensive” columns show
the results of adding offensive and defensive advice, respectively. “Full” includes
all three types of learned advice. These advice configurations were compared
with the default behavior of the coachable players without any advice, labeled
“None”.

From the table, it is clear that both with and without hand-coded rules,
across all opponents, the learned advice did significantly better than no advice
at all (p < 0.05).

Another observation that is true across the board is that the learned forma-
tion advice had the most significant impact of all advice types. On the other

6 For all of the results presented in this paper, significance was determined by using
a two-tailed student’s t-test with p < 0.05.

Opponent w/ HC None Formation Offensive Defensive Full

BoldHearts N -8.8 -3.3 -2.9 -2.9 -2.7
Y -6.8 -0.5 -1.4 -5.7 -6.5

Sirim N -4.1 2.6 1.2 0.9 1.7
Y -5.4 -1.6 -0.3 0.8 -0.4

EKA-PWr N -0.6 2.8 2.9 3.4 2.7
Y 1.0 3.62 2 2.12 2.43

Table 3: Average goal differences with varying levels of advice.

hand, with the exception of EKA-PWr, it appears that the offensive and defen-
sive advice conflicted with the hand-coded advice. During the competition, we
noticed that this was occuring after the first round. As a result, we decided to
turn off the learned defensive advice for the remaining rounds. In retrospect,
this was a very prudent decision.

Except in the case of Boldhearts (with defensive advice removed), we would
have probably achieved higher scores in the competition, had we not added
the hand-coded rules. This is a surprise considering the preliminary tests we
performed with the coachable players, which suggested that hand-coded advice
was necessary.

5 Related Work

Some previous work has been done on learning to give advice to RoboCup sim-
ulated soccer players. Similarly to our own work, Riley et al. [7] approached
advice-giving as an action-prediction problem. Both offensive and defensive mod-
els were generated using the C4.5 [3] decision tree learning algorithm. Their
work also stressed the importance of learned formation advice. While our de-
composition of the problem is similar to theirs, our model representations and
advice-generation procedures are quite different. For example, whereas our ap-
proach learns the player’s average position and then considers the positioning of
the players with respect to the ball when giving advice, theirs ignores the ball
and instead focuses on correlations between players. In addition, the semantics
of our learned defensive rules, which aim to learn not what the player with the
ball will do, but how it will get the ball in the first place differs from what was
done previously.

In other work, Riley and Veloso [6] used Bayesian modeling to predict op-
ponent movement during set plays. The model was used to generate adaptive
plans to counter the opponent’s plays. In addition, Riley and Veloso [5] have
tried to model high-level adversarial behavior by classifying opponent actions as
belonging to one of a set of predefined behavioral classes. Their system was able
to classify fixed duration windows of behavior using a set of sequence-invariant
action features.

ISAAC [4] is a game analysis system created as tool for simulated soccer
team designers. Similar to a coach, this system analyzes logfiles of a game in
order to suggest advice for how a team’s play can be improved. However, this
advice is meant to be understood by the team’s developers instead of the agents
themselves.

6 Conclusion and Future Work

We have presented our multi-facted learning approach to giving advice in RoboCup
simulated soccer. Using this approach, our UT Austin Villa coach won first place
in the 2003 RoboCup Coach Competition. Through controlled experiments, we
found that our coach was significantly better than the third and fourth place
finishing teams and at least as good as the second place finisher. In addition, we
have identified the learned formation rules as the most effective type of advice.

In our research we are continuing to enhance and carefully test the learned
defensive and offensive advice, and we plan to test the degree to which each type
of learned advice is opponent-specific. Meanwhile, we plan to continue working on
finding ways to learn better, more adaptive formations. In addition, we intend
to explore various methods for generating set play advice. Finally, we will be
adapting our learning strategy to include online learning.

Acknowledgments

We thank Patrick Riley for helpful comments and suggestions. This research is sup-
ported in part by NSF CAREER award IIS-0237699.

References

1. Mao Chen, Ehsan Foroughi, Fredrik Heintz, Spiros Kapetanakis, Kostas Kostiadis,
Johan Kummeneje, Itsuki Noda, Oliver Obst, Patrick Riley, Timo Steffens, Yi Wang,
and Xiang Yin. Users manual: RoboCup soccer server manual for soccer server
version 7.07 and later, 2003. Available at http://sourceforge.net/projects/

sserver/.
2. Gregory Kuhlmann, Peter Stone, and Justin Lallinger. The champion UT Austin

Villa 2003 simulator online coach team. In Daniel Polani, Brett Browning, Andrea
Bonarini, and Kazuo Yoshida, editors, RoboCup-2003: Robot Soccer World Cup VII.
Springer Verlag, Berlin, 2004.

3. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

4. Taylor Raines, Milind Tambe, and Stacy Marsella. Automated assistants to aid
humans in understanding team behaviors. In M. Veloso, E. Pagello, and H. Kitano,
editors, RoboCup-99: Robot Soccer World Cup III, pages 85–102. Springer Verlag,
Berlin, 2000.

5. Patrick Riley and Manuela Veloso. On behavior classification in adversarial en-
vironments. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), 2000.

6. Patrick Riley and Manuela Veloso. Recognizing probabilistic opponent movement
models. In A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup-2001: The
Fifth RoboCup Competitions and Conferences. Springer Verlag, Berlin, 2002.

7. Patrick Riley, Manuela Veloso, and Gal Kaminka. An empirical study of coaching. In
H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors, Distributed Autonomous
Robotic Systems 5, pages 215–224. Springer-Verlag, 2002.

8. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, October 1999. http:

//www.cs.waikato.ac.nz/ml/weka/.

