
In Visser, Ribeiro, Ohashi, and Dellaert, editors, RoboCup-2007,

Springer Verlag, 2008.

A Neural Network-Based Approach to Robot

Motion Control

Uli Grasemann, Daniel Stronger, and Peter Stone

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712, USA
{uli,stronger,pstone}@cs.utexas.edu

Abstract. The joint controllers used in robots like the Sony Aibo are
designed for the task of moving the joints of the robot to a given position.
However, they are not well suited to the problem of making a robot move
through a desired trajectory at speeds close to the physical capabilities
of the robot, and in many cases, they cannot be bypassed easily. In this
paper, we propose an approach that models both the robot’s joints and
its built-in controllers as a single system that is in turn controlled by a
neural network. The neural network controls the entire trajectory of a
robot instead of just its static position. We implement and evaluate our
approach on a Sony Aibo ERS-7.

1 Introduction

Commercially available robots like the Sony Aibo usually come with built-in con-
trollers that are designed to allow precise control over the robot’s joint positions.
In many applications, however, the goal is not simply to make the robot move
to a given position, but rather to make it execute a given motion, i.e. to control
the robot’s position at all points in time. Furthermore, tasks like robot soccer,
in which speed is an important factor, require the robot to execute motions like
walks or kicks both precisely and at speeds close to the physical limits of the
robot’s effectors. The built-in controllers that come with robots like the Aibo
are not designed for this task.

Most approaches that would allow precise control over a robot’s motion re-
quire exact knowledge of all properties of the joints and motors involved, as well
as the ability to bypass the built-in controllers and access the robot’s effectors
directly. Inexpensive, commercially available robots like the Sony Aibo usually
do not meet these conditions.

In this paper, we explore an alternative approach to the problem, which uses
neural networks that learn to predict the commands that are necessary in order
to make the robot execute a predefined motion. The robot and its built-in joint
controllers are both treated as part of system to be modeled. We implement and
evaluate the proposed approach on a Sony Aibo ERS-71.

2 Background

1 http://www.aibo.com

1

2

3

Fig. 1. A Sony Aibo ERS-
7. The arrows point to the
shoulder (1), abductor (2),
and knee joint (3) of the
Aibo’s right front leg.

Standard control theory [1] focuses on the task
of finding a controller H that, given an observation
of the state x of a system, provides an appropri-
ate action at every time step such that the system
eventually reaches a given target state. This paper
considers the goal of enabling a robot to accurately
execute a desired movement: a trajectory through
its state space over time. The classical approach to
robotic trajectory planning involves controlling the
forces or torques exerted by the joints directly [2].
Applying this technique requires the parameters
and specifications of the robot to be known, as
well as low-level access to the robot’s effectors. In-
expensive, commercially available robots like the
Aibo usually meet neither of these conditions.

On the Sony Aibo robot, all control of the joints
goes through the robot’s API, which at the lowest level uses PID control [3].
However, previous work [4] suggests that each joint (at least on the Aibo ERS-
210) can not be completely understood based on the theory of PID control.
Nevertheless, because it is only possible to issue commands to the robot’s joints
through the PID controller, this paper considers that controller as part of the
dynamical system, and therefore part of the problem. If the target is close to
the actual position, for example, it will not move at maximum speed, even if
maximum speed is required at the present part of the trajectory.

Several alternative approaches are commonly used to make a robot execute
a given movement more reliably. For example, one way to increase precision is
to slow down the movement of the robot so that the angle speeds involved are
well below the maximum angle speeds possible. Another possibility is to search
for a set of parameters used to create a sequence of angle requests, where an end
goal like overall robot speed is used as a reward function [5, 6].

Ideally, we would like some kind of an equivalent of classical controllers for
motion control. As in standard control theory, there are two basic options. First,
the equivalent of an open-loop controller would be a functional Hopen that maps
a desired trajectory T through the system’s state space onto a sequence of ap-
propriate actions U for any given time: Hopen : T 7→ U . This sequence can
then be used on the robot in order to achieve the desired movement. Second,
the equivalent of a feedback-controller would take as its input the present time
t, the target trajectory T , and the current observation y of the robot’s state
x. Its output would be an appropriate action u that keeps the robot’s motion
sufficiently close to the target trajectory at any time:

Hfeedack : (T, t, y) 7→ u

In the real world, defining and finding such functionals is simplified by the
fact that both time and the state space of a robot are effectively discrete, and
the dependencies between the motor commands and the robot’s trajectory are

highly local. This allows us to define Hopen in terms of a function hopen that
maps a finite neighborhood ±l of T around a time t onto a single action u at
the same time t: hopen : (T (t − l), . . . , T (t + l)) 7→ u. Hopen is then defined
by computing hopen for every discrete time step of T . For example, Stronger
and Stone [4] construct such a function hopen for piecewise-linear trajectories by
first constructing an empirical joint model of a Sony Aibo ERS-210, and then
inverting that model to obtain hopen. By contrast, the approach described in
this paper uses a neural network to obtain such functions directly using data
acquired from a robot.

Finally, a wide range of previous work has also used neural networks to con-
trol robotic motion. Lewis et al. [7] show how neural networks can be used to
approximate nonlinearities in the robot’s dynamics. This method can be used for
trajectory planning, but doing so requires direct control of the robot’s motors,
which is not available on many commercial robots. On a Sony AIBO, Billard
and Ijspeert [8] use a neural network to generate qualitative variations on a type
of motion, such as different gaits for walking. Angulo et al. [9] apply neuroevo-
lution to a Central Pattern Generator (CPG) to demonstrate the emergence of
a walking behavior. To the best of the authors’ knowledge, these approaches
have not been applied to the task addressed in this paper: performing accurate
motion along an arbitrary trajectory.

3 A Neural Network-Based Approach to Robot Motion

Control

s
h
o
u
l
d
e
r

a
n
g
l
e

s
h
o
u
l
d
e
r

a
n
g
l
e

a
b
d
u
c
t
o
r

a
n
g
l
e

a
b
d
u
c
t
o
r

a
n
g
l
e

a
b
d
u
c
t
o
r

a
n
g
l
e

s
h
o
u
l
d
e
r

a
n
g
l
e

t

k
n
e
e

a
n
g
l
e

t

k
n
e
e

a
n
g
l
e

t

k
n
e
e

a
n
g
l
e

Angle Requests Resulting TrajectoryTarget Trajectory

Fig. 2. The basic structure of the proposed motion controller
at time t. A neural network maps a neighborhood of the target
trajectory around t onto appropriate motor commands at time
t. The motor commands are used by the Aibo and result in a
motion close to the target trajectory.

The basic idea
behind our ap-
proach to robot
motion control
is simple: We use
a neural network
to predict which
motor commands
will cause the
robot to execute
a given move-
ment. The robot’s
joints and their
controllers to-
gether form the
system we are
trying to control.

Figure 2 illustrates the structure of our approach: A neural network maps a
finite neighborhood of the target trajectory around the present time step onto
a set of motor commands that is supposed to keep the robot on that trajectory.
Computing the output of the neural network for each time step of a target
trajectory gives a sequence of angle requests that can then be used by the robot

to execute the desired motion. Note that the neural network plays the role of the
function hopen defined in the previous section, implicitly defining an open-loop
motion controller Hopen.

The neural network, which represents the inverse of the system in question,
can be learned directly from raw data: All that is needed is a sequence of angle
requests U and the resulting movement T . For each time t, the neighborhood
T (t−l) . . . T (t+l), together with the angle request U(t), forms a training pattern
for the network.

4 Experiments

The experiments reported in this paper were conducted using a Sony Aibo ERS-
7, a commercially available four-legged robot with 17 degrees of freedom. All
joints are equipped with PID controllers that cannot be bypassed to control
the Aibo’s movements on a lower level, and the precise specifications of both
the Aibo’s effectors and of the PID controllers are not documented. The ERS-
7 has sensors on each joint that allow precise recording of the actual effects
of any motion command. The motion commands are given in the form of one
angle requests for each joint every 8ms. We used this maximum frequency in all
experiments.

For the reported results, we focused on the task of controlling the Aibo’s
right front leg while the robot was not touching the ground. Figure 1 shows an
ERS-7 and points out the joints involved in the reported experiments.

The first set of experiments served two separate purposes. First, it aimed to
establish that the approach described in the last section leads to a significant
improvement over just using the raw trajectory as motion commands. The ex-
periment’s second purpose was to find out whether a single neural network model
of all joints involved performs better than having separate neural networks for
each joint.

The first step was to create the neural network models of the Aibo’s joints. As
mentioned before we focused on controlling the Aibo’s right front leg, which has
three degrees of freedom: The shoulder, the abductor, and the knee (see Figure
1.) The Aibo was held in the air such that the leg never touched the ground.

4.1 Experiment I

We acquired training data for the neural networks by first creating a random
continuous sequence of angle requests, then running those requests through an
Aibo and recording the resulting movements using its sensors. Comparing the
original angle requests and the resulting target trajectory in Figure 3 should
give an impression of the kind of data used, although the data shown there
were not part of the training set. Note how the actual trajectory lags behind
the angle requests used to create it. Using about 80 seconds of training data,
we then trained two different motion controllers for the Aibo’s front leg: The
first controller was intended to model all three joints at the same time using one
neural network; the second controller used a separate network for each joint.

The input and output of the neural networks were exactly as described in
section 3. Based on the estimated time it takes the Aibo to react to motor

commands [4], we chose ±10 time steps as the size of the neighborhood on
the target trajectory. This meant that the single-network model had 60 inputs
(three joints × 20), and three output nodes (one for each joint.) The networks
that modeled a single joint had 20 input nodes and one output node.

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.5 1 1.5

a
b
d
u
c
t
o
r

a
n
g
l
e

time/s

target trajectory
original requests

NN requests

Fig. 3. Part of the test trajectory used in the first
experiment (dotted line). Compare the original angle
requests used to create the trajectory with the angle
requests output by a neural network controller.

All networks were fully
connected feedforward-networks
with one hidden layer. The
size of the hidden layer
was the same as the in-
put layer. The networks
were trained for 2000 epochs
using standard backprop-
agation with a small mo-
mentum term (0.2). The
training rate was 0.1 for
the first 1000 epochs, and
0.05 for the rest of the
time. We used SNNS (the
Stuttgart Neural Networks
Simulator [10]) to create and train the networks.

We then created a fresh sequence of random angle requests, and recorded
the resulting movements of the Aibo’s leg. Using these movements as a target
trajectory, we used both neural network controllers independently to try and
replicate the target trajectory on the Aibo.

In order to establish a reasonable baseline with which to compare our results,
we also used the target trajectory as angle requests, after shifting it back by 12
time steps to allow for the lag. This is the equivalent of a controller that models
only the time lag of the Aibo’s joints. Additionally, we ran the original sequence
of angle requests through the Aibo again, to find a practical upper performance
limit due to motor and sensor precision.

Figure 3 shows part of the target trajectory for the Aibo’s abductor joint,
together with the original angle requests used to create it, and the angle requests
that the single-network model thinks will reproduce the target trajectory. It
seems like the requests created by the neural network stay reasonably close to
the original.

Figure 4 compares the trajectories controlled by the two neural network
controllers to the baseline trajectory. Both neural network controllers perform
visibly better than the baseline, especially at sharp turns in the trajectory. Figure
5 compares the two neural network controllers. The height of each bar is the
average Euclidean distance of the Aibo’s foot from the target trajectory. The
leftmost bar is the upper performance limit established by using the original
set of angle requests again, and comparing the result to the target trajectory.
The two bars in the center belong to the two neural network controllers. The
bar on the right is the baseline error. The error bars denote the 95% confidence

intervals for the distance averaged over 12 seconds. All differences are statistically
significant (p < .05).

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.5 1 1.5

a
b
d
u
c
t
o
r

a
n
g
l
e

time/s

target trajectory
single NN

separate NNs
baseline

Fig. 4. Comparing trajectories controlled by neural net-
works with the baseline trajectory. Both neural network
controllers perform visibly better than the baseline.

Figure 5 con-
firms the earlier im-
pression that both
neural network con-
trollers perform well
above the baseline.
In fact, they both
reduce the average
error by more than
half. Also, for the
single network con-
troller, the average
distance from the target trajectory is less than twice the upper performance limit
defined by the Aibo’s motor and sensor precision. Overall, our first experiment
showed that both neural network controllers perform significantly above the
baseline level, and the single network-controller is able to exploit the additional
information it receives to outperform the controller using separate networks.

4.2 Experiment II

 0

 0.2

 0.4

 0.6

 0.8

 1

optimal single NN 3 NNs baseline

Fig. 5. The aver-
age Euclidean dis-
tance from the tar-
get trajectory (in
cm) achieved by the
neural network con-
trollers are shown
in the middle two
bars.

The second experiment also had two objectives. The
first was to find out if the open-loop architecture chosen
for the present implementation is able to handle trajecto-
ries outside the physical limits of the robot. Such trajec-
tories are usually created to fool the built-in controllers
into moving the joints faster than they would ordinarily,
and would therefore be unnecessary given a working mo-
tion controller. However, it would still be useful to have
a motion controller that, given a trajectory outside the
physical constraints of the Aibo, creates the closest pos-
sible trajectory within the constraints.

The second objective was originally to make a quanti-
tative comparison between our model and the analytical
model used by Stronger and Stone for the same task [4].
Since the results reported there were obtained using an
earlier model of the Aibo, we attempted to implement the
model on the new Aibo in order to make a quantitative
comparison possible.

However, early experiments revealed that the joint dynamics of the Aibo
ERS-7 are sufficiently different from the earlier model as to make a direct imple-
mentation impossible. When the requested trajectory for a leg joint was set to
a step function, the different joints exhibited qualitatively different and surpris-
ingly erratic behaviors. The angle speeds changed unpredictably over time, and
the joints’ behavior did not appear to fall within the parameters of Stronger and

-25

 0

 25

 50

0 0.25 0.5

time/s

shoulder angle

target
baseline

NN

 10

 20

 30

 40

0 0.25 0.5

time/s

abductor angle

target
baseline

NN

 50

 75

 100

 125

0 0.25 0.5

time/s

knee angle

target
baseline

NN

Fig. 7. The resulting angle trajectories for the shoulder, abductor, and knee joint. The
shoulder and especially the abductor show improvement over the baseline trajectory.

Stone’s model. We believe that this in itself is a strong argument for an adaptive
and more flexible approach to joint modeling.

Figure 6 shows the target trajectory used in this experiment. It is a half-
ellipse with a period 65 timesteps, and could be realistically used for a fast walk
on the Aibo ERS-7.

-8

-7

-6

-5

-4

-3

 2 4 6 8 10 12

D
i
s
t
a
n
c
e

u
p

(
c
m
)

Distance forward (cm)

 20

 40

 60

 80

 100

 120

 140

-40 -20 0 20 40

k
n
e
e

a
n
g
l
e

shoulder angle

Fig. 6. The test trajectory used for the second ex-
periment, in Cartesian coordinates (left), and in the
Aibo’s joint angle coordinates (right.) The dotted
lines are angle requests created by a neural network
controller for this trajectory.

We used the single-
network controller trained
in the last experiment to
try and reproduce the tar-
get trajectory on the Aibo.
Figure 7 shows the re-
sulting angle trajectories
for the three joints in-
volved. Like in the last
experiment, the baseline
curve was obtained us-
ing a controller that only
compensates for the time
lag between an angle re-
quest and the resulting motion. The trajectories of the shoulder and especially
the abductor clearly show improvement over the baseline curve, while the tra-
jectory for the knee is more or less the same as the baseline.

It would be reasonable to expect a corresponding improvement of the tra-
jectory of the Aibo’s foot in Euclidean space. However, no such improvement
was observed. The average distance of the Aibo’s foot from the target trajectory
is about 8.5mm both for the baseline trajectory and for the one controlled by
the neural network. This discrepancy can be understood as follows. When the
neural network achieves an improvement over the baseline, the large knee angles
moved the Aibo’s foot close to the rotational axis of the abductor joint, which
made the improvement in the abductor angle irrelevant in Euclidean space.

Notably, the neural network-based controller degraded gracefully when pre-
sented with a physically impossible trajectory, since the controller used to create
the baseline curve still performs much better than using the raw target trajectory
as angle requests.

5 Conclusion

This paper introduced a neural network-based approach to robot motion control.
Using data recorded on a physical robot, we trained neural networks to predict
which angle commands are necessary to make a robot execute a given movement.
The built-in controllers for the robot’s joints were treated as part of the system
to be modeled and controlled.

We conducted two experiments, using a popular commercially available robot,
the Sony Aibo ERS-7, as our experimental platform. The first experiment showed
that the proposed approach is indeed able to bring a robot’s motions significantly
closer to the desired trajectory. In the second experiment, the neural network-
controller failed to produce equally good results, but was nevertheless shown to
degrade gracefully when presented with a target trajectory outside the robot’s
physical constraints.

Acknowledgements

This research is supported in part by NSF CAREER award IIS-0237699 and ONR YIP
award N00014-04-1-0545. The authors thank Peggy Fidelman and Nate Kohl for useful
discussions.

References

1. Bubnicki, Z.: Modern Control Theory. Springer (2005)
2. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-

Hill Companies, Inc. (1996)
3. Johnson, M., Moradi, M., eds.: PID Control: New Identification and Design Meth-

ods. Springer (2005)
4. Stronger, D., Stone, P.: A model-based approach to robot joint control. In Nardi,

D., Riedmiller, M., Sammut, C., eds.: RoboCup-2004: Robot Soccer World Cup
VIII. Springer Verlag, Berlin (2005) 297–309

5. Kim, M.S., Uther, W.: Automatic gait optimisation for quadruped robots. In:
Australasian Conference on Robotics and Automation, Brisbane (2003)

6. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal
locomotion. In: Proceedings of the IEEE International Conference on Robotics
and Automation. (2004)

7. Lewis, F., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Ma-
nipulators and Nonlinear Systems. Taylor & Francis (1999)

8. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control
in a quadruped robot. In: International Joint Conference on Neural Networks.
Volume 6. (2000)

9. Angulo, C., Tellez, R., Pardo, D.: Emergent walking behaviour in an aibo robot.
The European Research Consortium for Informatics and Mathematics (2006)

10. Zell, A., Mache, N., Hbner, R., Mamier, G., Vogt, M., Schmalzl, M., Herrmann,
K.U.: Snns (stuttgart neural network simulator). In Skrzypek, J., ed.: Neural
Network Simulation Environments. Kluwer Publishers (1993)

