
In Machine Learning,
59(1):5-30, 2005.

Evolving Soccer Keepaway Players

through Task Decomposition

Shimon Whiteson, Nate Kohl, Risto Miikkulainen and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
1 University Station C0500
Austin, Texas 78712-1188
{ shimon,nate,risto,pstone}@ cs. utexas. edu

http: // www. cs. utexas. edu/ ~{ shimon,nate,risto,pstone}

Abstract. Complex control tasks can often be solved by decomposing them into
hierarchies of manageable subtasks. Such decompositions require designers to decide
how much human knowledge should be used to help learn the resulting compo-
nents. On one hand, encoding human knowledge requires manual effort and may
incorrectly constrain the learner’s hypothesis space or guide it away from the best
solutions. On the other hand, it may make learning easier and enable the learner
to tackle more complex tasks. This article examines the impact of this trade-off
in tasks of varying difficulty. A space laid out by two dimensions is explored: 1)
how much human assistance is given and 2) how difficult the task is. In particular,
the neuroevolution learning algorithm is enhanced with three different methods for
learning the components that result from a task decomposition. The first method,
coevolution, is mostly unassisted by human knowledge. The second method, layered
learning, is highly assisted. The third method, concurrent layered learning, is a
novel combination of the first two that attempts to exploit human knowledge while
retaining some of coevolution’s flexibility. Detailed empirical results are presented
comparing and contrasting these three approaches on two versions of a complex
task, namely robot soccer keepaway, that differ in difficulty of learning. These re-
sults confirm that, given a suitable task decomposition, neuroevolution can master
difficult tasks. Furthermore, they demonstrate that the appropriate level of human
assistance depends critically on the difficulty of the problem.

Keywords: Coevolution, Neural Networks, Genetic Algorithms, Robot Soccer.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 1/02/2005; 15:27; p.1



2

1. Introduction

Hierarchical task decomposition is a powerful method for tackling com-
plex problems. As a case in point, mammalian morphology is a com-
position of hierarchically organized components, each able to perform
specialized subtasks. These components span many levels of behavior
ranging from individual cells to complex organs, and culminating in
the complete organism. Even at the purely behavioral level, organisms
have distinct subsystems, including reflexes, the visual system, and so
on. It is difficult to imagine a monolithic entity that would be capable
of the range and complexity of behaviors that mammals exhibit.

Similarly, hierarchical approaches have been proposed to help create
agents for complex control tasks (Brooks, 1986; Gat, 1998; Dietterich,
1998). Typically, these approaches require a task decomposition as in-
put, thus raising the question of how much human knowledge should
be used to help learn the resulting components. On one hand, encoding
human knowledge requires manual effort and may incorrectly constrain
the learner’s hypothesis space or guide it away from the best solutions.
On the other hand, it may reduce the learning complexity and enable
the learner to tackle significantly more difficult tasks than would be
otherwise possible. This article examines the impact of this tradeoff in
tasks of varying difficulty. A space laid out by two dimensions is ex-
plored: 1) how much human assistance is given to the learning method
and 2) how difficult the task faced by the learning method is.

All of our experiments rely on neuroevolution, a learning algorithm
which uses genetic algorithms to train neural networks. To explore the
first dimension, we enhance neuroevolution with three different meth-
ods for learning the components that result from a task decomposition.
At one extreme of this dimension lies the paradigm known as coevolu-

tion (Rosin and Belew, 1995; Potter and Jong, 2000; Ficici and Pollack,
1998; Stanley and Miikkulainen, 2004), in which no additional infor-
mation is given to the learner beyond the task decomposition itself. At
the other extreme lies layered learning (Stone and Veloso, 1998, 2000),
a bottom-up paradigm by which low-level behaviors (those closer to
the environmental inputs) are trained and fixed prior to training high-
level behaviors. In our analogy to mammalian morphology, coevolution
is akin to evolving cells, complex organs, and higher-level behaviors
all simultaneously, whereas layered learning is more akin to requiring
that cells completely evolve and remain fixed prior to evolving organs,
which in turn must remain unchanged as high-level behaviors develop.
In addition, this paper introduces a new approach, called concurrent

layered learning, that combines layered learning’s aggressive use of
human knowledge with the flexibility of coevolution.

paper.tex; 1/02/2005; 15:27; p.2



3

The human assistance provided to learning algorithms typically con-
sists of either constraints or guidance. Constraints, which are usually
more restrictive, prevent the learner from exploring certain parts of
the hypothesis space. In contrast, guidance leaves the entire space
open but encourages exploration in certain parts, by initializing the
learner with a specific hypothesis or supplying an intermediate fitness
function that favors part of the space. The task decomposition on
which all three of the above methods rely is a form of constraint, since
the learner is not allowed to explore solutions that do not consist of
the components provided by the decomposition. Layered learning adds
additional constraints by fixing the solutions to components that have
already been learned. It also adds guidance, by supplying intermediate
fitness functions for the components to maximize. Concurrent layered
learning, by sometimes allowing those previously learned components to
continue training, converts some of those constraints into less restrictive
guidance.

To examine the second dimension, the difficulty of the learning task,
we develop two versions of a complex task called robot soccer keepaway.
In the easier version, the learner is asked to train low-level components
that will be controlled by a hand-coded, high-level strategy. In the more
difficult version, the hand-coded component is removed and the learner
is asked to train a component that implements a high-level strategy in
addition to the low-level components it governs.

Detailed empirical tests were conducted that compare coevolution,
layered learning, and concurrent layered learning on both versions of the
keepaway task. The learning algorithm in all cases is neuroevolution,
which has been shown to be effective in learning control policies and
behavior strategies in similar domains (Schaffer et al., 1992; Gomez and
Miikkulainen, 2001; Yao, 1999). Our results demonstrate that:

− given a suitable task decomposition, neuroevolution can master a
complex, multi-agent control task at which it otherwise fails,

− when training the components that result from such a task decom-
position, the correct level of human assistance to supply to the
learning method depends critically on the difficulty of the task,
and

− on difficult tasks, our novel method, concurrent layered learn-
ing, offers a more effective balance between human assistance and
flexibility.

The remainder of this paper is organized as follows. Section 2 ex-
plains the substrate systems on which our experiments are built, namely

paper.tex; 1/02/2005; 15:27; p.3



4

the robot soccer keepaway testbed and neuroevolution. Section 3 speci-
fies the coevolution and layered learning approaches that we use, intro-
duces concurrent layered learning, and details our application of these
methods to the keepaway domain. Section 4 presents the results of our
detailed experiments while Sections 5 and 6 discuss the implications
of our experiments and related work respectively. Section 7 discusses
future work and Section 8 concludes.

2. Background

This section describes simulated robot soccer keepaway, the domain
used for all experiments reported in this paper. We also review the
fundamentals of neuroevolution, the machine learning algorithm used
throughout.

2.1. Keepaway

Keepaway is a subtask of robot soccer, where one team of agents, the
keepers, attempts to maintain possession of the ball while the other
team, the takers, tries to get it, all within a fixed region (Stone and
Sutton, 2002). Our implementation of the keepaway task is based on the
SoccerBots environment (Balch, 2000), which simulates the dynamics
and dimensions of a regulation game in the RoboCup small-size robot
league (Stone et al., 2001). In this league, two teams of robots maneuver
a golf ball on a small field. SoccerBots is smaller in scale and less
complex than the RoboCup simulator (Noda et al., 1998), but it runs
approximately an order of magnitude faster, making it a more practical
platform for machine learning research.

In SoccerBots, each robot receives noise-free sensory input describ-
ing the current state of the game. All these inputs (described in detail
in Section 3) are scaled to [−1, 1] and presented in relative coordinates.
The actuators for each robot consist of a throttle, a directional output
that specifies a turn direction relative to the player’s current orienta-
tion, and a small paddle that allows the players to “kick” the ball. A
simple physics engine models collisions between robots and the ball.

Keepaway in SoccerBots is played on a circular field (Figure 1).
Three keepers are placed just inside the circle at points equidistant
from each other, and a single taker is placed in the center of the field.
The ball is then placed in front of a randomly selected keeper and the
game begins.

During the game, the keepers try to complete as many passes to
each other as possible, while the taker does its best to steal the ball.

paper.tex; 1/02/2005; 15:27; p.4



5

Keepers

Taker

Ball

K

K

K
K

T T

Figure 1. A game of keepaway after initialization.

The keepers receive one point for every pass completed. The episode
ends when the taker touches the ball or the ball exits the bounding
circle. The keepers and the taker are permitted to go outside the
bounding circle. All keepers are controlled by the same evolved neural
network controller, while the taker is controlled by a fixed intercepting
algorithm.

A number of factors make this implementation of the keepaway task
challenging:

− The keepers are relatively large when compared to the playing
area, which makes moving and positioning difficult around the ball.

− The ball does not move much faster than the players, which pre-
vents the keepers from being able to quickly make passes around
the taker.

− The keepers do not possess any abilities for handling the ball. They
are modeled as simple cylinders, and lack any way to “grab” the
ball and move with it. If they run into the ball, the ball will bounce
away.

The keepaway task therefore requires complex behavior that integrates
sensory input about teammates, the opponent, and the ball. The agents
must make high-level decisions about the best course of action and
develop the precise control necessary to implement those decisions.
Hence, it forms a challenging testbed for machine learning research.

2.2. Neuroevolution

The team of keepaway players is trained using neuroevolution, a ma-
chine learning technique that uses genetic algorithms to train neural
networks (Schaffer et al., 1992). In its simplest form, neuroevolution
strings the weights of a neural network together to form an individual
genome. A population of such genomes is then evolved by evaluating

paper.tex; 1/02/2005; 15:27; p.5



6

each one in the task and selectively reproducing the fittest individuals
through crossover and mutation.

The Enforced Subpopulations Method (ESP; Gomez and Miikku-
lainen, 2001, 2003) is a more advanced neuroevolution technique. In-
stead of evolving complete networks, it evolves subpopulations of neu-
rons. ESP creates one subpopulation for each hidden node of the fully
connected two-layer feed-forward networks it evolves. Each neuron is
itself a genome which records the weights going into and coming out
of the given hidden node. As Figure 2 illustrates, ESP forms networks
by selecting one neuron from each subpopulation to form the hidden
layer of a neural network, which it evaluates in the task. The fitness
is then passed back equally to all the neurons that participated in the
network. Each subpopulation tends to converge to a role that maximizes
the fitness of the networks in which it appears. ESP is more efficient
than simple neuroevolution because it decomposes a difficult problem
(finding a highly fit network) into smaller subproblems (finding highly
fit neurons). Below we provide a step-by-step description of the ESP
algorithm.1

A Complete NetworkNeuronsSubpopulations

Figure 2. The Enforced Subpopulations Method (ESP). The population of neurons
is segregated into subpopulations, shown here as clusters of grey circles. One neuron,
shown in black, is selected from each subpopulation. Each neuron consists of all the
weights connecting a given hidden node to the input and output nodes, shown as
white circles. The selected neurons together form a complete network which is then
evaluated in the task.

1. Initialization. The number of hidden units u in the networks that
will be formed is specified and a subpopulation of neuron chro-
mosomes is created. Each chromosome encodes the input and out-
put connection weights of a neuron with a random string of real
numbers.

2. Evaluation. A set of u neurons is selected randomly, one neuron
from each subpopulation, to form the hidden layer of a feed-forward
network. The network is submitted to a trial in which it is evaluated

1 This description is adapted from (Gomez and Miikkulainen, 2001)

paper.tex; 1/02/2005; 15:27; p.6



7

on the task and awarded a fitness score. The score is added to the
cumulative fitness of each neuron that participated in the network.
This process is repeated until each neuron has participated in an
average of t trials.

3. Recombination. The average fitness of each neuron is calculated
by dividing its cumulative fitness by the number of trials in which
it participated. Neurons are then ranked by average fitness within
each subpopulation. Each neuron in the top quartile is recombined
with a higher-ranking neuron using 1-point crossover and mutation
at low levels. The resulting offspring replace the lowest-ranking half
of the subpopulation.

4. The Evaluation-Recombination cycle is repeated until an optimal
solution is found or until a threshold time limit is reached.

When performance begins to stagnate (i.e. the score of the best
network from each generation has not improved in 20 generations),
ESP applies a diversification technique called delta-coding (Whitley
et al., 1991) in order to prevent premature convergence. Delta-coding
selects the strongest individual from a population and uses it to seed a
new population. Each member of this new population is a perturbation
of the selected seed. Because the seed is highly fit, optimal networks
are likely to be similar to it but occasionally may be radically different.
Hence, the amount of perturbation is based on a Cauchy distribution,
such that most of the new individuals are very similar to the seed
but a few are significantly different. The diversification that delta-
coding provides can significantly improve the performance of genetic
algorithms (Whitley et al., 1991).

For particularly difficult problems, ESP can be coupled with a pro-
cess called incremental evolution. In incremental evolution, complex
behaviors are learned gradually by exposing the agents to a series of
increasingly difficult training environments. The agents initially learn
very easy tasks and advance to more difficult ones as their performance
improves. The target domain is the last training environment in this
sequence. Gomez and Miikkulainen showed that this method can learn
more effective and more general behavior than direct evolution in sev-
eral dynamic control tasks, including prey capture and non-Markovian
double pole-balancing (Gomez and Miikkulainen, 1997, 1999).

Neuroevolution has repeatedly been shown to be an effective rein-
forcement learning method for non-linear control tasks (Gruau et al.,
1996; Moriarty and Miikkulainen, 1996; Stanley and Miikkulainen, 2004;
Gomez, 2003). In particular, ESP is a promising choice for the keep-
away task because the basic skills required in keepaway are similar

paper.tex; 1/02/2005; 15:27; p.7



8

to those at which ESP has excelled before (i.e. learning multi-agent
behaviors in the predator-prey domain and being able to execute the
fine-grained control necessary for pole-balancing and robot control). In
these benchmark sequential decision tasks, ESP was shown to outper-
form other neuroevolution algorithms as well as several reinforcement
learning methods (Gomez and Miikkulainen, 1997, 1999, 2001, 2003).

3. Method

This section describes several methods for training agents in complex
control tasks using neuroevolution. These methods vary in the degree
to which human knowledge is used to focus the learning. First, we
describe the baseline tabula rasa approach. Second, we describe how
complex tasks can be decomposed into more manageable pieces. Finally,
we present three different methods for learning the components that
result from such a task decomposition: coevolution, layered learning,
and concurrent layered learning.

This section also describes in detail how we apply each of the above
methods to keepaway, the testbed we use in all of our experiments.
Though all these techniques for mastering keepaway are very different,
they share the same general approach: to develop one controller for use
by all three keeper agents. This approach is feasible because keepaway
is a symmetric task that can be played effectively with homogeneous
teams. Since the keepers share a controller, they have the same set of
behaviors and the same rules governing when to use them, though they
are often using different behaviors at a given time. Having identical
agents makes learning easier, since each agent learns from the experi-
ences of its teammates as well as its own. However, it does eliminate
the possibility of learning asymmetric policies in which the individual
agents learn specialized roles. We leave the exploration of heterogeneous
agents to future work.

The experiments reported in this section all involve the keepers
learning against a single, fixed taker. This taker single-mindedly at-
tempts to intercept the ball using the same interception behavior learned
by the keepers in the layered learning approach described in Section 3.2.4.

3.1. Tabula Rasa Learning

In the tabula rasa approach, the learning method is required to mas-
ter the task with minimal human guidance. With neuroevolution, this
means training a single “monolithic” network from scratch to perform
the entire task. Such a network attempts to learn a direct mapping from

paper.tex; 1/02/2005; 15:27; p.8



9

the agent’s sensors to its actuators. As designers, we need only specify
the network’s architecture (i.e. the number of inputs, hidden units,
outputs, and their connectivity) and neuroevolution does the rest. The
simplicity of such an approach is appealing though in difficult tasks
like keepaway learning a direct mapping may be beyond the power of
available training methods.

The tabula rasa approach can be implemented for keepaway by
training a single, monolithic network for controlling a given keeper.
ESP is used to train a fully connected two-layer feed-forward network
with nine inputs, four hidden nodes (u = 4), and two outputs, as
shown in Figure 3. This network structure was determined, through
experimentation, to be the most effective.2

Eight of the inputs specify the positions of four crucial objects on
the field: the agent’s two teammates, the taker, and the ball. The agent
always knows the location of these objects even if they are behind the
agent or far away. The ninth input represents the distance of the ball
from the field’s bounding circle. The inputs to this network and all those
considered in this paper are represented in polar coordinates relative
to the agent. The network’s two outputs control the agent’s movement
on the field: one alters its heading, the other its speed. All runs use
subpopulations of size 100. The number of trials t is 10.

rTaker

Ball

Taker

Teammate2

rTeammate2

Teammate1

rTeammate1

rBall

Speed

Heading

rBoundary

Figure 3. The monolithic network for controlling keepers. White circles indicate
inputs and outputs while black circles indicate hidden nodes.

Incremental evolution was used to alter the taker’s speed as follows.
When evolution begins, the taker can move only 10% as quickly as the
keepers. Each network is evaluated in 20 games of keepaway and its
scores (numbers of completed passes) are summed to obtain its fitness.
When the population’s average fitness exceeds 40 (two completed passes
per episode), the taker’s speed is incremented by 5% of the keepers’

2 In an attempt to improve performance, several different network architectures
with differing numbers of hidden nodes and inputs were examined. For example, we
were able to reduce the number of inputs by providing the difference between two
angles rather than the angles themselves.

paper.tex; 1/02/2005; 15:27; p.9



10

speed. This process continues until the taker is moving at the same
speed as the keepers or the population’s fitness has plateaued.

3.2. Task Decomposition

If learning a monolithic network proves infeasible, it may be possible
to make the problem tractable by decomposing it into some number of
components. In particular, if the task can be broken into independent
subtasks, each subtask can be learned separately, and combined into a
complete solution. Task decomposition is a powerful, general principle
in artificial intelligence that has been used successfully with machine
learning in tasks like the full robot soccer task (Stone, 2000).

3.2.1. Keepaway with a Decision Tree

The keepaway task can be decomposed by replacing the monolithic
network with several smaller networks: one to pass the ball, another
to receive passes, etc. A decision tree, shown in Figure 4, is used to
implement this decomposition and controls each keeper. If the agent is
within three player-lengths of the ball, it kicks to the teammate that
is more likely to successfully receive a pass. If it is not near the ball,
the agent tries to get open for a pass unless a teammate announces
its intention to pass to it, in which case it tries to receive the pass by
intercepting the ball.

Near Ball?

Teammate #1 Safer?

Pass To
Teammate #1

Pass To
Teammate #2

Passed To?

Intercept Get Open

Yes No Yes No

NoYes

Figure 4. A decision tree for controlling keepers in the keepaway task. The behavior
at each of the leaves is learned through neuroevolution. A network is also evolved
to decide to which teammate the agent should pass. The “Near Ball” and “Passed
To” nodes in this tree are hand-coded predicates, and are not evolved.

To implement this decision tree, four different networks must be
trained. As in the monolithic approach, several different network archi-
tectures were tested, varying the number of inputs and hidden nodes.
The networks shown in Figure 5 were determined, through experimen-
tation, to be the most effective. The networks perform the following
tasks:

paper.tex; 1/02/2005; 15:27; p.10



11

Target
Angle

rBall

Ball
Speed

Heading
rTaker

Ball

rBall

Taker
Taker

rTaker

Ball

rBall

Heading

Speed

r

Ball

Ball

rVelocity

Velocity

Ball

Ball
rTeammate

Teammate

Heading

Speed

Boundaryr

Confidence

Intercept Pass Get OpenPass Evaluate

Figure 5. The four networks used to implement the decision tree shown in Figure 4.
White circles indicate inputs and outputs while black circles indicate hidden nodes.

Intercept: The goal of this network is to get the agent to the ball as
quickly as possible. The obvious strategy, running directly towards
the ball, is optimal only if the ball is not moving. When the ball
has velocity, an ideal interceptor must anticipate where the ball
is going. The network has four inputs: two for the ball’s current
position and two for the ball’s current velocity. It has two hidden
nodes and two outputs, which control the agent’s heading and
speed.

Pass: The pass network is designed to kick the ball away from the agent
at a specified angle. Passing is difficult because an agent cannot
directly specify what direction it wants the ball to go. Instead, the
angle of the kick depends on the agent’s position relative to the
ball. Hence, kicking well requires a precise “wind-up” to approach
the ball at the correct speed from the correct angle. The pass
network has three inputs: two for the ball’s current position and
one for the target angle. It has two hidden nodes and two outputs,
which control the agent’s heading and speed.

Pass Evaluate: Unlike the other networks, which correspond to be-
haviors at the leaves of the decision tree, the pass evaluator imple-
ments a branch of the tree: the point where the agent must decide
to which teammate to pass. It analyzes the current state of the
game and assesses the likelihood that the agent could successfully
pass to a specific teammate. The pass evaluate network has six
inputs: two each for the position of the ball, the taker, and the
teammate whose potential as a receiver it is evaluating. It has two
hidden nodes and one output, which indicates, on scale of 0 to 1,
its confidence that a pass to the given teammate would succeed.

Get Open: The get open network is activated when a keeper does
not have a ball and is not receiving a pass. Clearly, such an agent
should get to a position where it can receive a pass. However,
an optimal get open behavior would not just position the agent
where a pass is most likely to succeed. Instead, it would position

paper.tex; 1/02/2005; 15:27; p.11



12

the agent where a pass would be most strategically advantageous
in terms of future pass opportunities. The get open network has
five inputs: two for the ball’s current position, two for the taker’s
current position, and one indicating how close the agent is to the
field’s bounding circle. It has two hidden nodes and two outputs,
which control the agent’s heading and speed.

Once these four networks are trained, they can be combined via a
decision tree into a single strategy.

3.2.2. Keepaway with a Switch Network

How would the challenges of learning keepaway change if, as system
designers, we lacked the time or expertise to create and fine-tune a
decision tree like the one described above? To answer this question, we
consider in our experiments a more difficult version of the keepaway
task in which the hand-coded decision tree is not available. Instead, we
add a fifth learned component which must determine when to employ
each of the other four components.

Figure 6 shows the structure of the switch network that is used to
control each keepaway player. Since this network must make high-level
decisions about the state of the game, it naturally requires more inputs
than the other components. At each time step, the switch network
receives input about the position of the ball, both of its teammates, and
the taker. It is also given its distance from the field’s bounding circle
and the output of two calls to the pass evaluate network, evaluating
how likely a pass to each teammate is to succeed. The switch network’s
four outputs correspond to each of the low-level behaviors it can em-
ploy: passing to the first teammate, passing to the second teammate,
intercepting, and getting open. Each agent’s behavior is determined by
the output with the highest activation.

Both of the task decompositions described above (one with a decision
tree and one with a switch network) leave us with several components
that need to be learned. The remainder of this section details three
methods for learning these components. They differ dramatically in
how much human knowledge they supply to the learning process.

3.2.3. Coevolution

To avoid injecting human knowledge into the learning process beyond
that provided by the task decomposition, we can train all the compo-
nents simultaneously in the target domain. This process is particularly
straightforward when neuroevolution is used as the learning method
because the various components can then be simply coevolved. Coevo-
lution consists of simultaneously evolving multiple components that

paper.tex; 1/02/2005; 15:27; p.12



13

Boundaryr

Taker

rTaker

Teammate2
rTeammate2

Teammate1

rTeammate1

Ball

rBall

PassEvaluation2

PassEvaluation1

Pass to t1

Pass to t2

Get Open

Intercept

Figure 6. The switch network for controlling keepers. White circles indicate inputs
and outputs while black circles indicate hidden nodes.

perform different roles but are evaluated in a common domain. Coevo-
lution can be competitive, in which case these roles are adversarial and
one component’s gain is another’s loss (Haynes and Sen, 1996; Rosin
and Belew, 1995). Coevolution can also be cooperative, as when the
various components share fitness scores (Potter and Jong, 2000). Multi-
Agent ESP (Yong and Miikkulainen, 2001) is an extension of ESP that
allows multiple components to coevolve cooperatively. In this system,
each component is evolved with a separate, concurrent run of ESP. For
each fitness evaluation, Multi-Agent ESP forms a network from each
ESP and then evaluates these networks together in the task, all of which
receive the same score when the evaluation completes. Multi-Agent
ESP has been successfully used to master multi-agent predator-prey
tasks (Yong and Miikkulainen, 2001), and is used as the coevolution
framework for the keepaway task in this paper as well.

Given our decision tree and the task decomposition described above,
applying coevolution to keepaway is straightforward. Evolution consists
of four simultaneous runs of ESP, one for each of the networks we
need to train. Each run uses subpopulations of 100 neurons. In each
fitness evaluation, one network is selected from each population (i.e. one
passing network, one intercepting network, etc.) and assembled to form
a keeper. As the keepaway game proceeds, the decision tree determines
how the networks are employed to control each keeper. The resulting
score is passed back to all four networks. Incremental evolution controls
the speed of the taker, just as in the tabula rasa approach. In the
absence of a decision tree, we can simply add a fifth concurrent run of
ESP which trains switch networks too.

Unlike layered learning (described below), the coevolutionary ap-
proach to learning keepaway makes no attempt to develop specific
training tasks for each component. Instead, components are evaluated
only in the target domain (actual games of keepaway) and only as
part of a complete system. Hence, this method gives evolution a lot

paper.tex; 1/02/2005; 15:27; p.13



14

of flexibility to discover the most useful behaviors. Furthermore, since
the components are always evaluated together, they can easily adapt
to each other and coordinate effectively.

3.2.4. Layered Learning

Coevolution provides a simple and flexible framework for learning sev-
eral subtasks. However, it offers the learning algorithm little assistance
beyond that of the decomposition itself. On more difficult tasks, it
may be useful or even necessary to learn components in a more struc-
tured, sequential fashion. Layered learning is a bottom-up, hierarchical
paradigm for doing just that.

The main principles of the layered learning paradigm (summarized
in Table I) are:3

Table I. The key principles of layered learning.

1. A mapping directly from inputs to outputs is not tractably learnable.

2. A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs separately
at each level.

4. The output of learning in one layer feeds into the next layer.

Tractability: Layered learning is designed for domains that are too
complex for learning a mapping directly from the input to the
output representation. Instead, the problem is broken down into
several task layers. At each layer, a concept needs to be acquired,
and any appropriate machine learning (ML) algorithm can be used
for this purpose.

Decomposition: Layered learning uses a bottom-up incremental ap-
proach to hierarchical task decomposition. Starting with low-level
subtasks, the process of creating new ML subtasks continues until
the high-level tasks, that deal with the full domain complexity, are
reached. The appropriate learning granularity and subtasks to be
learned are determined as a function of the specific domain. The
task decomposition in layered learning is not automated. Instead,
the layers are defined by the ML opportunities in the domain.

Learning: Machine learning is used as a central part of layered learn-
ing to exploit data in order to train and/or adapt the overall

3 This section is adapted from (Stone and Veloso, 2000).

paper.tex; 1/02/2005; 15:27; p.14



15

system. ML is useful for training functions that are difficult to fine-
tune manually. It is useful for adaptation when the task details are
not completely known in advance or when they may change dy-
namically. Like the task decomposition itself, the choice of machine
learning method depends on the subtask.

Interactions: The key defining characteristic of layered learning is
that each learned layer directly affects the learning at the next
layer. A learned subtask can affect the subsequent layer by:

− constructing the set of training examples;

− providing the features used for learning; and/or

− pruning the output set.

Layered learning can be formally defined as follows. Consider the
learning task of identifying a hypothesis h from among a class of hy-
potheses H which map a set of state feature variables S to a set of
outputs O such that, based on a set of training examples, h is most
likely (of the hypotheses in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning
task is decomposed into hierarchical subtask layers {L1, L2, . . . , Ln}
with each layer defined as

Li = (~Fi, Oi, Ti, Mi, hi)

where:

~Fi is the input vector of state features relevant for learning subtask Li.
~Fi = <F 1

i , F 2
i , . . .>. ∀j, F

j
1 ∈ S.

Oi is the set of outputs from among which to choose for subtask Li.
On = O.

Ti is the set of training examples used for learning subtask Li. Each
element of Ti consists of a correspondence between an input feature
vector ~f ∈ ~Fi and o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping
~Fi 7→ Oi based on Ti.

hi is the result of running Mi on Ti. hi is a function from ~Fi to Oi.

Note that a layer describes more than a task; it also describes an
approach to solving that task and the resulting solution.

As stated in the Decomposition principle of layered learning, the
definitions of the layers Li are given a priori. The Interaction principle
is addressed via the following stipulation. ∀i < n, hi directly affects
Li+1 in at least one of three ways:

paper.tex; 1/02/2005; 15:27; p.15



16

− hi is used to construct one or more features F k
i+1.

− hi is used to construct elements of Ti+1; and/or

− hi is used to prune the output set Oi+1.

It is noted above in the definition of ~Fi that ∀j, F
j
1 ∈ S. Since

~Fi+1 can consist of new features constructed using hi, the more general

version of the above special case is that ∀i, j, F
j
i ∈ S ∪i−1

k=1
Ok.

When training a particular component, layered learning freezes the
components trained in previous layers, thereby adding additional con-
straints to the learning process. It also adds guidance, by training each
layer in a special environment intended to prepare it well for the target
domain.

To apply layered learning to keepaway, we must decide in what
sequence to learn the components and develop special training environ-
ments for each one. Figure 7 shows one way of arranging the layers. An
arrow from one layer to another indicates that the latter layer depends
on the former. Since a layer cannot be learned until all the layers on
which it depends have been learned, the learning process starts at the
bottom, with intercept, and moves up the hierarchy step by step. Below
is a description of each layer using layered learning’s formal notation,
including a description of the special training environment of each layer.

Pass Evaluate

Get Open

Pass

Intercept

Figure 7. A layered learning hierarchy for the keepaway task. Each box represents
a layer and arrows indicate dependencies between layers. A layer cannot be learned
until all the layers it depends on have been learned.

L1 : Intercept :

~F1 = {Ballr,Ballθ,BallVelocityr,BallVelocityθ} ∈ ℜ4

O1 = {Heading,Speed} ∈ ℜ2

T1 : To train the interceptor, the ball is propelled towards the
agent at various angles and speeds. The agent is rewarded for
minimizing the time it takes to touch the ball.

paper.tex; 1/02/2005; 15:27; p.16



17

M1 = neuroevolution: ESP (with a subpopulation size of 100)
is used to train a network with 4 inputs, 2 hidden nodes, and
2 outputs (see Figure 5).

h1 = a trained interceptor.

L2 : Pass :

~F2 = {Ballr,Ballθ,TargetAngle} ∈ ℜ3

O2 = {Heading,Speed} ∈ ℜ2

T2 : To train the passer the ball is again propelled towards the
agent. The angle at which the agent should kick the ball is
randomly chosen. When the simulation begins, the agent em-
ploys the intercept behavior learned in L1 until it arrives near
the ball, at which point it switches to the evolving pass behav-
ior. The agent’s reward is inversely proportional to the differ-
ence between the target angle and the ball’s actual direction
of travel.

M2 = neuroevolution: ESP (with a subpopulation size of 100)
is used to train a network with 3 inputs, 2 hidden nodes, and
2 outputs (see Figure 5).

h2 = a trained passer.

L3 : Pass Evaluate :

~F3 = {Ballr,Ballθ,Takerr,Takerθ,Teammater,Teammateθ} ∈
ℜ6

O3 = {Confidence} ∈ ℜ

T3 : The ball is placed in the center of the field and the pass
evaluator is stationed just behind it at various angles. Two
teammates are placed near the edge of the bounding circle
on the other side of the ball at a randomly selected angle. A
single taker is placed similarly but nearer to the ball to simu-
late the pressure it exerts on the passer. The teammates and
the taker use the intercept behavior from L1. When training
the pass evaluator, the evolving network is run twice, once
for each teammate. The pass evaluator then passes, using
L2, to the teammate who received a higher evaluation. If
the pass succeeds, the evaluator is rewarded. Each network is
evaluated fifty times and rewarded with the sum of the scores.

M3 = neuroevolution: ESP (with a subpopulation size of 100)
is used to train a network with 6 inputs, 2 hidden nodes, and
1 output (see Figure 5).

paper.tex; 1/02/2005; 15:27; p.17



18

h3 = a trained pass evaluator.

L4 : Get Open :

~F4 = {Ballr,Ballθ,Takerr,Takerθ,Boundaryr} ∈ ℜ5

O4 = {Heading,Speed} ∈ ℜ2

T4 : The training environment for the get open behavior is an
actual game of keepaway, described above. The taker uses
the intercept behavior evolved in L1 and the keepers use the
decision tree described in Figure 4 along with the evolved
behaviors from L1, L2, and L3. Each network is evaluated
in 20 games of keepaway and rewarded with the sum of the
scores.

M4 = neuroevolution: ESP (with a subpopulation size of 100)
is used to train a network with five inputs, two hidden nodes,
and two outputs (see Figure 5).

h4 = a trained get open behavior.

Once these four layers have been learned, they can be combined with
the decision tree to form a complete keepaway player. Note that the L1

intercept behavior trained in this scenario is used by the taker for all
of our experiments.

If a decision tree is not available and a switch network must be
learned instead, we can add a fifth layer to the hierarchy, as shown in
figure Figure 8. Since it would be infeasible to train a switch network in
the absence of the low-level behaviors it controls, it appears at the top
of the hierarchy. This decision requires us to change T4, the training
environment for get open. The original T4 trained get open networks in
actual games of keepaway, with each agent controlled by the decision
tree. Since the decision tree is not available in this scenario and the
switch network is not learned until L5, we must construct a new training
environment T ′

4 which requires neither a hand-coded nor a learned high-
level strategy. Below are the details of the new get open layer including
a description of this new training environment.

L′

4
: Get Open :

~F4

′

= {Ballr,Ballθ,Takerr,Takerθ,Boundaryr} ∈ ℜ5

O′

4
= {Heading,Speed} ∈ ℜ2

T′

4
: To evolve a get open behavior, two keepers are placed on the
field along with a taker. One keeper begins near the ball and
uses the passing behavior learned in L2 to try to kick the ball
past the taker to the other keeper, which is controlled by the

paper.tex; 1/02/2005; 15:27; p.18



19

Pass Evaluate

Get Open

Pass

Intercept

Switch Network

Figure 8. A layered learning hierarchy for the more difficult version of keepaway in
which a hand-coded decision tree is not available. Each box represents a layer and
arrows indicate dependencies between layers. Note that there is no arrow from pass
evaluate to get open because T

′

4, the new training environment for get open, does
not use a pass evaluate network.

evolving get open behavior. This keeper’s reward is based on
how well it moves to positions that maximize the likelihood
of a successful pass.

M′

4
= neuroevolution: Using ESP, we train a fully connected
two-layer feed-forward neural network with 5 inputs, 2 hidden
nodes, and 2 outputs.

h′

4
= a trained get open behavior.

Once the four low-level components are completed, a switch network
can be trained in an actual game of keepaway. The details of L5 are
below.

L5 : Switch Network :
~F5 = {Ballr,Ballθ,Teammate1r,Teammate1θ,

Teammate2r,Teammate2θ,Takerr,Takerθ,Boundaryr,

PassEvaluation1,PassEvaluation2} ∈ ℜ11

O5 = {Pass1,Pass2, Intercept,GetOpen} ∈ ℜ4

T5 : The training environment for the switch network is an actual
game of keepaway, described above. Each keeper uses the
switch network to determine which of the previously evolved
behaviors h1, h2, and h4 it should use. The pass evaluator
h3 is run twice (once for each teammate) and the results are
presented as input to the switch network. Each network is
evaluated in 20 games of keepaway and rewarded with the
sum of the scores.

M5 = neuroevolution: Using ESP, we train a fully connected
two-layer feed-forward neural network with 11 inputs, two
hidden nodes, and four outputs (see Figure 6).

paper.tex; 1/02/2005; 15:27; p.19



20

h5 = a trained switch network.

3.2.5. Concurrent Layered Learning

Coevolution provides no human assistance beyond the task decomposi-
tion, thereby minimally restricting the search space. In contrast, layered
learning provides a good deal of assistance, constraining and guiding
the learners’ search space much more. Concurrent layered learning is
an approach which occupies an intermediate range on this spectrum. It
retains the guidance of special training environments for lower layers
but, by not always freezing lower layers, adds some of the flexibility of
coevolution.

One difficulty with traditional layered learning is that, no matter
how carefully the special training environments for the lower layers are
designed, there are bound to be imperfections. Discrepancies will in-
evitably exist between the behaviors that those environments encourage
and the behaviors that are optimal in the target domain. Concurrent
layered learning tries to correct for those discrepancies by allowing
certain lower layers to continue to adapt while higher layers are being
trained.

Layered learning was originally developed for the complex, multi-
agent learning task of simulated robot soccer (Noda et al., 1998; Stone,
2000). In the original implementation, the learning of each component
was completed before any subsequent layer was trained. Concurrent
layered learning relaxes this restriction. When learning a layer Li, we
select from all the previously learned hypotheses some subset P ⊆
{h1, h2, ..., hi−1} that we want to continue to train in the current en-
vironment Ti. The effect that such hypotheses have on Ti is no longer
fixed throughout the learning of Li, but instead changes constantly as
those hypotheses continue to learn.

For each hk ∈ P , the best network is taken from Lk and used to seed
a new population before training in Ti begins. These new populations
continue to learn along with a separate population learning Li. Hence,
the layers are evolved cooperatively using Multi-agent ESP. To perform
a fitness evaluation, a network is taken from each population that was
seeded with hk and evaluated in Ti, together with a network selected
from the population that is learning Li from scratch. The resulting
score is shared by all the networks that participate.

To seed a population from the results of Lk, delta-coding is used as
described in Section 2.2. Since delta-coding is particularly well suited
to helping populations adjust to sudden changes in their training en-
vironment (Gomez and Miikkulainen, 1997), it is an excellent way to
seed a new population from the results of an earlier layer.

paper.tex; 1/02/2005; 15:27; p.20



21

Concurrent layered learning supplements layered learning by ap-
plying coevolution in a restricted form. Hence, it represents a middle
ground between those two methods. It preserves layered learning’s hi-
erarchical structure but also offers some of coevolution’s flexibility, as
layers are continually allowed to adapt to each other.

Concurrent layered learning provides a general framework for com-
bining layered learning and coevolution but does not specify which lay-
ers should remain unfrozen. Hence, to apply concurrent layered learning
to keepaway, we must decide, at each layer, which lower layers to leave
frozen and which to allow to continue to adapt. In this paper, rather
than search this space of possible choices, we consider one simple way
that concurrent layered learning can be applied to keepaway.

In this implementation, each of the lower layers L1, L2, and L3

are trained exactly as in the traditional layered learning approach de-
scribed above. Any previously learned components are fixed in these
training environments. However, when beginning to train L4, all the
hypotheses h1, h2, and h3 that have already been learned are unfrozen.
Hence, each of the lower components learn initially in their own special
training environment but then are given the opportunity to fine-tune
their behavior in T4, which is our target domain of keepaway.

If a switch network must be learned instead of relying on a decision
tree, we maintain the simple approach of freezing all lower layers until
the top of the hierarchy is reached. Hence, layers L1, L2, L3, and L′

4 are
trained exactly as in the traditional layered learning approach. When
training of L5 begins, all four lower components are unfrozen and fine-
tuned concurrently with L5, which learns from scratch.

4. Empirical Results

In a series of experiments, the tabula rasa, coevolution, layered learn-
ing, and concurrent layered learning approaches were compared in the
keepaway task.4 Each method was evaluated in seven trials, consisting
of 250 generations each. Recall that each subpopulation contains 100
neurons, each of which is evaluated an average of 10 times per gen-
eration. Since each evaluation consists of 20 games of keepaway, each
generation requires simulating 20,000 games.

In layered and concurrent layered learning, additional generations
were used to train the lower layers. Specifically, the intercept, pass, and
pass evaluate layers trained for 40, 100, and 60 generations, respectively.
In the switch network version of the task, the get open layer was trained

4 Video of these results is available at:
http://nn.cs.utexas.edu/keyword?keepaway

paper.tex; 1/02/2005; 15:27; p.21



22

for 125 generations in its special training environment. The additional
computational cost of using layered or concurrent layered learning is
not as great as it may seem since the fitness evaluations for most of the
lower layers run in a fraction of the time required for the target domain.
Furthermore, the most important characteristics of the learning process
are the quality of the keepaway players that result from these methods
and the human effort required to implement them, rather than the
speed at which they are discovered.

Figure 9 shows what task difficulty (i.e. taker speed) each method
reached during the course of evolution, averaged over the seven runs.
Recall that the taker starts at 10% of the keepers’ speed and accelerates
by 5% of the keeper’s speed each time the keepers achieve a target
performance level. The tabula rasa method fails to make any task
transitions, whereas even the weakest task decomposition methods are
able to make several. With a hand-coded decision tree, the less assisted
methods (i.e. coevolution and concurrent layered learning) do remark-
ably better than the most assisted one, i.e. layered learning. When
required to learn a switch network, however, the relative performance
of these methods changes. Coevolution becomes one of the worst meth-
ods, and the more assisted methods based on layered learning do much
better. Concurrent layered learning, which retains some of coevolution’s
flexibility, performs the best. For the purposes of comparison, a hand-
coded player is also evaluated. 5 For the purpose of comparison, the
hand-coded player was evaluated in the same incremental manner as
the learned players, and was able to advance to a task difficulty of 50%.
Note that all of the methods were able to outperform the hand-coded
solution when given a decision tree, and concurrent layered learning
was able to outperform the hand-coded solution even when required to
learn a switch network.

How do the networks trained in these experiments fare in the tar-
get domain of the complete keepaway task? To determine this for the
methods that used a hand-coded decision tree, the evolving networks
from each method were tested against a taker moving at 100% speed.
At every fifth generation, the strongest network from the best run of
each method was subjected to 50 fitness evaluations, for a total of 1000
games of keepaway for each network (recall that one fitness evaluation
consists of 20 games of keepaway).

Figure 10, which shows the results of these tests, offers dramatic
confirmation of the effectiveness of the less assisted learning methods.

5 The hand-coded player was given a strategy of running directly to the ball and
passing to whichever teammate was less blocked by the taker. When not involved
in a pass, each hand-coded player would attempt to maximize the distance between
itself and all other players, without going out of bounds.

paper.tex; 1/02/2005; 15:27; p.22



23

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

A
ve

ra
g

e
 T

a
sk

 D
iff

ic
u

lty
 (

%
 F

u
ll 

S
p

e
e

d
)

Generations

Average Task Difficulty Over Time

Concurrent LL w/ Decision Tree
Coevolution w/ Decision Tree

Concurrent LL w/ Switch Network

Layered Learning w/ Decision Tree

Hand-coded strategy

Layered Learning w/ Switch Network

Coevolution w/ Switch Network

Tabula Rasa Learning

Figure 9. Task difficulty (i.e. taker speed) of each method over generations, aver-
aged over seven runs. Task decomposition proves essential for reaching the higher
difficulties. Only coevolution with a decision tree and concurrent layered learning
with a decision tree reach the hardest task.

When given a decision tree, coevolution and concurrent layered learning
perform much better than both the other learning methods as well as
the hand-coded strategy.

Next, we examined how the different learning methods performed in
the keepaway task when they were required to learn a switch network
instead of using a hand-coded decision tree. Since learning without
the aid of a decision tree is more difficult, all the methods tested in
this manner performed at a lower level. Therefore, we tested them
against a taker moving at 50% speed. While this introduces some minor
discrepancies between training and testing (e.g. T3 uses a taker moving
at full speed), it better eludicates the differences between the various
methods, since none of them performed well against a full speed taker
in the absence of a decision tree. All other parameters are the same as
those used to test the decision tree methods.

Figure 11 highlights how much more difficult it is to learn both high-
level and low-level behaviors at the same time. Without the aid of a
hand-coded decision tree, most of the learning methods were not able
to match the performance of the hand-coded strategy. One exception is
concurrent layered learning, which does substantially better than the
hand-coded approach. Methods receiving less human assistance, like

paper.tex; 1/02/2005; 15:27; p.23



24

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

A
ve

ra
ge

 S
co

re
 p

er
 F

itn
es

s 
E

va
lu

at
io

n

Generations

Average Score Over Time (with a decision tree)

Coevolution

Concurrent Layered Learning

Hand-coded strategy

Layered Learning

Tabula Rasa Learning

Figure 10. Average score per fitness evaluation for each method over generations
when a decision tree is supplied. These results demonstrate that task decomposition
is important in this domain and that less assisted methods of learning are more
effective at learning the resulting subtasks.

coevolution, which did well when given a decision tree, now perform
rather poorly. Hence, the value of human assistance increases as the
task becomes more difficult.

5. Discussion

The success of several of the methods described above, particularly
that of coevolution and concurrent layered learning with a decision
tree, indicates that neuroevolution can master a complex control task
like keepaway and offer a striking improvement over the hand-coded
approach. The extremely poor performance of the tabula rasa method
confirms that providing a suitable task decomposition is essential to
this success.

The results suggest that it is important to strike a balance between
the flexibility of methods like coevolution and the guidance and con-
straints of more structured methods like layered learning. Where that
balance lies depends on the difficulty of the problem.

Providing the learner with a hand-coded decision-tree enables the
learner to master the task without additional human assistance, as the
success of coevolution with a decision tree indicates. The additional
constraints and guidance offered by layered learning are superfluous

paper.tex; 1/02/2005; 15:27; p.24



25

10

15

20

25

30

35

40

45

50

55

60

0 50 100 150 200 250

A
ve

ra
ge

 S
co

re
 p

er
 F

itn
es

s 
E

va
lu

at
io

n

Generations

Average Score Over Time (with a switch network)

Concurrent LL w/ Switch Network

Hand-coded strategy

Layered Learning w/ Switch Network

Coevolution w/ Switch Network

Tabula Rasa Learning

Figure 11. Average score per fitness evaluation for each method over generations
when a switch network is also learned. These results show that in this harder version
of the keepaway task, the best solution is that which strikes a balance between human
assistance and flexibility.

and even detrimental in this scenario because they prevent certain high
performing solutions from being learned. For example, one component
where the flexibility of coevolution proves especially useful is the inter-
cept task. Instead of learning to move to the ball as quickly as possible,
the coevolved interceptor learns to approach the ball from an angle.
While this behavior does not minimize the amount of time required to
intercept the ball, it does put the keeper in a better position to com-
plete the next pass, thus improving overall score. Since the interceptor
trained by layered learning is rewarded only by how quickly it can get
to the ball, it is unable to learn this strategy.

Concurrent layered learning, which imposes layered learning’s struc-
ture but also preserves some of coevolution’s flexibility, does nearly as
well as coevolution when given a decision tree. However, coevolution
is much easier to implement since it does not require the designer to
develop special training environments for each component. Hence it is
the preferable method in this case.

If the task is made more challenging by removing the decision tree
and asking the methods to learn a high-level strategy also, the balance
between flexibility and human assistance shifts. As Figure 11 indicates,
an unassisted method like coevolution does very poorly when asked to
learn a switch network along with the other four components. Without

paper.tex; 1/02/2005; 15:27; p.25



26

the aid of the decision tree, this method has little to guide it through a
very large search space and does not fare much better than the tabula
rasa method. In this more difficult version of the task, the structure
offered by layered learning pays substantial dividends. However, even in
this scenario we can still gain some benefit from coevolution’s flexibility
if we apply it more sparingly. The superior performance of concurrent
layered learning to traditional layered learning when using a switch
network confirms this conclusion.

The failure of the tabula rasa method and of coevolution with a
switch network indicates that the learning methods are not yet sophis-
ticated enough to simultaneously learn both the high and low level parts
of the task without some human assistance. However, the assistance we
offer need not be large if we choose what form it takes wisely. In fact,
the best performing method overall, coevolution with a decision tree, is
also one of the easier approaches to implement. It requires us to hand-
code a high-level strategy but, once we do so, the lower components
learn with remarkably little human help.

If the time or expertise necessary to hand-code a decision tree is
not available, the task can still be mastered if we provide the learner
with the additional structure of layered learning. Even in this scenario,
constraints should be applied to the learner sparingly. The success
of concurrent layered learning with a switch network highlights the
importance of retaining some of coevolution’s flexibility even when the
task is made more difficult.

6. Related Work

In this section, the references made throughout the text are supple-
mented with more detailed comparisons to previous research along
three dimensions: layered learning, task decomposition, and keepaway.

6.1. Layered learning

The original implementation of the layered learning paradigm was on
the full robot soccer task in the RoboCup soccer simulator (Stone,
2000). First, a neural network was used to learn an interception behav-
ior. This behavior was used to train a decision tree for pass evaluation,
which was in turn used to generate the input representation for a re-
inforcement learning approach to pass selection. Lower-level behaviors
were always trained and then frozen before advancing to the next layer.
That is, once a subtask was learned, it was not allowed to change while
subsequent subtasks were learned.

paper.tex; 1/02/2005; 15:27; p.26



27

A subsequent application of layered learning uses two learned layers,
each learned via genetic programming, for a keepaway task in a sim-
plified abstraction of the TeamBots environment (Hsu and Gustafson,
2002a). This implementation uses the traditional layered learning ap-
proach of freezing the first layer (passing) before advancing to the next
layer (the whole task).

Concurrent layered learning, our enhancement of the traditional
approach, is consistent with the existing layered learning formalism.
In a preliminary version of this article (Whiteson and Stone, 2003),
we first demonstrated that concurrent layered learning can outperform
traditional layered learning by allowing just two of the higher layers to
be learned concurrently for SoccerBots keepaway agents. Here we add
subsequent evidence to that effect in a slightly modified scenario such
that four layers are learned concurrently.

Some other previous work, not explicitly following the layered learn-
ing paradigm, is nonetheless related in its methodology and motivation.
Bootstrap learning (Kuipers and Beeson, 2002) is used to enable a
mobile robot to recognize places. It uses clustering techniques to learn
“distinctive states” in the environment. This clustering then feeds into
a causal/topological map based on history that is used to disambiguate
distinctive states. Finally, the topological map feeds into a layer that
uses labeled images to learn a mapping from sensory images to distinc-
tive states. Like traditional layered learning, this method freezes the
lower layers before moving on to the higher layers of learning.

We found that an appropriate level of flexibility in layered learning is
essential for progress. Less constrained types of learning, like concurrent
layered learning, can offer significant benefits over standard layered
learning.

6.2. Task Decomposition

As illustrated by its initial implementation which made use of neu-
ral networks, decision trees, and a reinforcement learning algorithm,
layered learning makes no commitment to any particular learning al-
gorithm, and indeed can combine several different algorithms across
the different layers. There have also been some hierarchical approaches
proposed that are specific to individual learning algorithms, most no-
tably coevolution, as summarized in Section 3.2.3, and hierarchical
reinforcement learning.

Most hierarchical RL approaches use gated behaviors (Kaelbling
et al., 1996):

There is a collection of behaviors that map environment states
into low-level actions and a gating function that decides, based on

paper.tex; 1/02/2005; 15:27; p.27



28

the state of the environment, which behavior’s actions should be
switched through and actually executed. (Kaelbling et al., 1996)

In some cases the behaviors are learned (Mahadevan and Connell,
1991), in some cases the gating function is learned (Maes and Brooks,
1990), and in some cases both are learned (Lin, 1993). In this last
example, the behaviors are learned and fixed prior to learning the gating
function. On the other hand, feudal Q-learning (Dayan and Hinton,
1993) and the MAXQ algorithm (Dietterich, 1998) learn at all levels
of the hierarchy simultaneously. In all of these approaches, the behav-
iors and the gating function are all control tasks with similar inputs
and actions (sometimes abstracted). Layered learning, both traditional
and concurrent, allows for conceptually different tasks, such as pass
evaluation and get open, at the different layers.

In another algorithm-specific technique, Many-layered learning (Ut-
goff and Stracuzzi, 2002) learns from an input stream how to choose
the layers in a feed-forward neural network. Once a concept is learned,
it is used as input to things that are still unlearned.

There are, of course, many other examples of the successful use of
hierarchy in the literature, especially when one broadens one’s focus
beyond learning approaches. As just one example, the field of robotics
has seen many hierarchical approaches, including the subsumption ar-
chitecture (Brooks, 1986) and three-layered architectures (Gat, 1998).
Like the task decompositions for learning discussed in this article, these
approaches rely on a manual task decomposition. Some of the lessons
presented in this paper regarding the tradeoffs between imposing more
or less structure on the task may be applicable to that field as well.

6.3. Keepaway

Robot soccer keepaway has been used as a testbed domain for several
previous machine learning studies (including one described above (Hsu
and Gustafson, 2002b)). A variant based on the the RoboCup soccer
simulator was introduced for the purposes of studying multi-agent re-
inforcement learning (Stone and Sutton, 2001). In this research, the
low-level behaviors were hand-coded; only the high-level decision of
when and where to pass was learned. An evolutionary learning approach
has been successfully used for the same task, but again with only a
single learned layer (Pietro et al., 2002).

Previous work has also explored the use of keepaway techniques for
full soccer (Stone and McAllester, 2001). The ATT-CMUnited-2000
team successfully incorporated a solution to the 11 vs. 11 keepaway
problem on a full-sized field to control the behavior of the player in
possession of the ball. The motivation behind this work was to facilitate

paper.tex; 1/02/2005; 15:27; p.28



29

learning the policies in a principled way. However all of the reported
work used hand-coded policies.

The keepaway domain used for the research described in this paper
incorporates the aspects of multi-agent strategy described above with
learning on all levels of a task decomposition.

7. Future Work

In ongoing research, we are exploring different ways of implementing
concurrent layered learning. By doing so, we aim at discovering a sys-
tematic method for deciding, at each layer, which subset of previously
learned hypotheses should be allowed to continue training.

Applying the lessons learned from this research to other domains is
an interesting avenue for future research. One possibility would be to
test coevolution and concurrent layered learning in an extremely com-
plex domain, such as the full robot soccer task. It would be interesting
to observe how the ideal amount of human assistance changes when the
difficulty of the task increases drastically.

Other multiagent gaming domains, such as the Legion-I domain (Bryant
and Miikkulainen, 2003) have many similarities with robot soccer keep-
away and might provide a worthwhile testbed for the methods described
in this paper. Similarly, the domain of automated driving (Pyeatt and
Howe, 1998) could also be used to test the generality of the methods.
Both of these domains feature tasks that are easily decomposable:
an effective city-guarding strategy for a legion might involve finding
the nearest cities, trading places with other legions, and patrolling
for barbarians; a decomposition for automated driving might include
accelerating into traffic, following a lane, and avoiding obstacles. Given
these task decompositions, an analysis similar to that presented above
could be performed to determine the ideal level of human assistance.
Such a study would allow us to both examine the effects of injecting
human knowledge in different tasks and to test how well coevolution
and concurrent layered learning perform in different domains.

8. Conclusion

The main contributions of this paper are 1) verification that, given
a suitable task decomposition, neuroevolution can master a complex,
multi-agent control task at which it otherwise fails, 2) empirical evi-
dence that, when training the components that result from such a task
decomposition, the correct level of human assistance to apply to the

paper.tex; 1/02/2005; 15:27; p.29



30

learning method depends critically on the difficulty of the task, and 3)
introduction of a novel method, concurrent layered learning, which, on
difficult tasks, offers a more effective balance between constraint and
flexibility.

Methods for learning decomposed components hold enormous promise
for mastering challenging learning problems. By injecting human knowl-
edge into the process, these techniques can leverage current learning
algorithms to tackle more difficult classes of problems. The manual
effort involved need not be burdensome. In fact, this research demon-
strates that the best results are obtained when the constraints and
guidance supplied by human designers are applied sparingly.

Acknowledgments

We would like to thank the anonymous reviewers of this paper for their
valuable feedback. This work is supported in part by NSF grants IIS-
0083776 and EIA-0303609, THECB ARP-003658-476-2001, and NSF
CAREER award IIS-0237699.

References

Balch, T.: 2000, ‘TeamBots Domain: SoccerBots’. http://www-2.cs.cmu.edu/~trb/
TeamBots/Domains/SoccerBots.

Brooks, R. A.: 1986, ‘A Robust Layered Control System for a Mobile Robot’. IEEE
Journal of Robotics and Automation RA-2, 14–23.

Bryant, B. D. and R. Miikkulainen: 2003, ‘Neuroevolution for Adaptive Teams’.
In: Proceedings of the 2003 Congress on Evolutionary Computation, Vol. 3. pp.
2194–2201.

Dayan, P. and G. E. Hinton: 1993, ‘Feudal reinforcement learning’. In: S. J. Hanson,
J. D. Cowan, and C. L. Giles (eds.): Advances in Neural Information Processing
Systems 5. San Mateo, CA: Morgan Kaufmann, pp. 271–278.

Dietterich, T. G.: 1998, ‘The MAXQ method for hierarchical reinforcement learn-
ing’. In: International Conference on Machine Learning. pp. 118–126, Morgan
Kaufmann.

Ficici, S. G. and J. B. Pollack: 1998, ‘Challenges in Coevolutionary Learning: Arms-
Race Dynamics, Open-Endedness, and Mediocre Stable States’. In: Adami,
Belew, Kitano, and Talor (eds.): Proceedings of the Sixth International Con-
ference on Artificial Life. Cambridge, Massachusetts, USA, pp. 238–247, MIT
Press.

Gat, E.: 1998, ‘Three-Layer Architectures’. In: D. Kortenkamp, R. P. Bonasso, and
R. Murphy (eds.): Artificial Intelligence and Mobile Robots. Menlo Park, CA:
AAAI Press, pp. 195–210.

Gomez, F. and R. Miikkulainen: 1997, ‘Incremental Evolution of Complex General
Behavior’. Adaptive Behavior 5, 317–342.

paper.tex; 1/02/2005; 15:27; p.30



31

Gomez, F. and R. Miikkulainen: 1999, ‘Solving Non-Markovian Control Tasks
with Neuroevolution’. In: Proceedings of the International Joint Conference on
Artificial Intelligence. Denver, CO, pp. 1356–1361, Kaufmann.

Gomez, F. and R. Miikkulainen: 2001, ‘Learning Robust Nonlinear Control with
Neuroevolution’. Technical Report AI01-292, The University of Texas at Austin
Department of Computer Sciences.

Gomez, F. J.: 2003, ‘Robust Non-Linear Control through Neuroevolution’. Ph.D.
thesis, University of Texas at Austin. Technical Report AI-TR-03-303.

Gomez, F. J. and R. Miikkulainen: 2003, ‘Active Guidance for a Finless Rocket Using
Neuroevolution’. In: E. Cantu-Paz, J. A. Foster, K. Deb, L. D. Davis, R. Roy,
U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, K. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, and
N. J. J. Miller (eds.): Genetic and Evolutionary Computation - GECCO 2003.
Chicago, pp. 2084–2095, Springer Verlag.

Gruau, F., D. Whitley, and L. Pyeatt: 1996, ‘A Comparison Between Cellular
Encoding and Direct Encoding for Genetic Neural Networks’. In: J. R. Koza,
D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.): Genetic Programming 1996:
Proceedings of the First Annual Conference. pp. 81–89, MIT Press.

Haynes, T. and S. Sen: 1996, ‘Evolving Behavioral Strategies in Predators and Prey’.
In: G. Weiß and S. Sen (eds.): Adaptation and Learning in Multiagent Systems.
Berlin: Springer Verlag, pp. 113–126.

Hsu, W. H. and S. M. Gustafson: 2002a, ‘Genetic Programming and Multi-
Agent Layered Learning by Reinforcements’. In: Genetic and Evolutionary
Computation Conference. New York,NY.

Hsu, W. H. and S. M. Gustafson: 2002b, ‘Genetic Programming and Multi-
Agent Layered Learning by Reinforcements’. In: Genetic and Evolutionary
Computation Conference. New York,NY, pp. 764–771.

Kaelbling, L. P., M. L. Littman, and A. W. Moore: 1996, ‘Reinforcement Learning:
A Survey’. Journal of Artificial Intelligence Research 4, 237–285.

Kuipers, B. and P. Beeson: 2002, ‘Bootstrap Learning for Place Recognition’. In:
Proceedings of the Eighteenth National Conference on Artificial Intelligence.

Lin, L.-J.: 1993, ‘Reinforcement Learning for Robots Using Neural Networks’. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

Maes, P. and R. A. Brooks: 1990, ‘Learning to coordinate behaviors’. In: Proceedings
of the Eighth National Conference on Artificial Intelligence. pp. 796–802, Morgan
Kaufmann.

Mahadevan, S. and J. Connell: 1991, ‘Scaling reinforcement learning to robotics
by exploiting the subsumption architecture’. In: Proceedings of the Eighth
International Workshop on Machine Learning. pp. 328–332.

Moriarty, D. E. and R. Miikkulainen: 1996, ‘Efficient Reinforcement Learning
Through Symbiotic Evolution’. Machine Learning 22, 11–32.

Noda, I., H. Matsubara, K. Hiraki, and I. Frank: 1998, ‘Soccer Server: A Tool for
Research on Multiagent Systems’. Applied Artificial Intelligence 12, 233–250.

Pietro, A. D., L. While, and L. Barone: 2002, ‘Learning In RoboCup Keepaway Using
Evolutionary Algorithms’. In: W. B. Langdon, E. Cantú-Paz, K. Mathias, R.
Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska
(eds.): GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference. New York, pp. 1065–1072, Morgan Kaufmann Publishers.

Potter, M. A. and K. A. D. Jong: 2000, ‘Cooperative Coevolution: An Architecture
for Evolving Coadapted Subcomponents’. Evolutionary Computation 8, 1–29.

paper.tex; 1/02/2005; 15:27; p.31



32

Pyeatt, L. and A. Howe: 1998, ‘Learning to Race: Experiments with a Simulated
Race Car’. In: D. J. Cook (ed.): Proceedings of the 11th International Florida
Artificial Intelligence Research Society Conference. Florida, pp. 357–361.

Rosin, C. D. and R. K. Belew: 1995, ‘Methods for Competitive Co-evolution: Find-
ing Opponents Worth Beating’. In: S. Forrest (ed.): Proceedings of the Sixth
International Conference on Genetic Algorithms. San Mateo,CA, pp. 373–380,
Morgan Kaufman.

Schaffer, J. D., D. Whitley, and L. J. Eshelman: 1992, ‘Combinations of Genetic
Algorithms and Neural Networks: A Survey of the State of the Art’. In: D.
Whitley and J. Schaffer (eds.): International Workshop on Combinations of
Genetic Algorithms and Neural Networks. Los Alamitos, CA, pp. 1–37, IEEE
Computer Society Press.

Stanley, K. O. and R. Miikkulainen: 2004, ‘Competitive Coevolution through Evo-
lutionary Complexification’. Journal of Artificial Intelligence Research pp.
63–100.

Stone, P.: 2000, Layered Learning in Multiagent Systems: A Winning Approach to
Robotic Soccer. MIT Press.

Stone, P., (ed.), M. Asada, T. Balch, M. Fujita, G. Kraetzschmar, H. Lund, P. Scerri,
S. Tadokoro, and G. Wyeth: 2001, ‘Overview of RoboCup-2000’. In: P. Stone,
T. Balch, and G. Kraetszchmar (eds.): RoboCup-2000: Robot Soccer World Cup
IV. Berlin: Springer Verlag, pp. 1–28.

Stone, P. and D. McAllester: 2001, ‘An Architecture for Action Selection in Robotic
Soccer’. In: Proceedings of the Fifth International Conference on Autonomous
Agents. pp. 316–323.

Stone, P. and R. S. Sutton: 2001, ‘Scaling Reinforcement Learning toward RoboCup
Soccer’. In: Proceedings of the Eighteenth International Conference on Machine
Learning. pp. 537–544, Morgan Kaufmann, San Francisco, CA.

Stone, P. and R. S. Sutton: 2002, ‘Keepaway Soccer: a Machine Learning Testbed’.
In: A. Birk, S. Coradeschi, and S. Tadokoro (eds.): RoboCup-2001: Robot Soccer
World Cup V. Berlin: Springer Verlag, pp. 214–223.

Stone, P. and M. Veloso: 1998, ‘A Layered Approach to Learning Client Behaviors
in the RoboCup Soccer Server’. Applied Artificial Intelligence 12, 165–188.

Stone, P. and M. Veloso: 2000, ‘Layered Learning’. In: R. L. de Mántaras and E.
Plaza (eds.): Machine Learning: ECML 2000 (Proceedings of the Eleventh Eu-
ropean Conference on Machine Learning). Barcelona,Catalonia,Spain: Springer
Verlag, pp. 369–381.

Utgoff, P. E. and D. J. Stracuzzi: 2002, ‘Many-Layered Learning’. Neural
Computation 14, 2497–2529.

Whiteson, S. and P. Stone: 2003, ‘Concurrent Layered Learning’. In: AAMAS 2003:
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multi-Agent Systems. pp. 193–200.

Whitley, D., K. Mathias, and P. Fitzhorn: 1991, ‘Delta-Coding: An Iterative Search
Strategy for Genetic Algorithms’. In: R. K. Belew and L. B. Booker (eds.):
Proceedings of the Fourth International Conference on Genetic Algorithms. pp.
77–84.

Yao, X.: 1999, ‘Evolving Artificial Neural Networks’. Proceedings of the IEEE 87(9),
1423–1447.

Yong, C. H. and R. Miikkulainen: 2001, ‘Cooperative Coevolution of Multi-Agent
Systems’. Technical Report AI01-287, The University of Texas at Austin
Department of Computer Sciences.

paper.tex; 1/02/2005; 15:27; p.32


