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Motivation
Biological brains can grow new neurons (neurogenesis). Artificial neural networks 
are fixed in size.

The benefits of growing a dynamic architecture:

1. Learning capacity is enlarged on demand (adaptive, energy efficient).
2. Dynamic architecture has been shown effective to mitigate catastrophic 

forgetting in continual learning (Rusu et al., 2016, Yoon et al., 2017, Li et al., 2019).
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Motivation
Limitations of existing growing methods:

1. Previous growing methods are often based on heuristics.
2. An exception is splitting steepest descent (Liu et al., 2019) that progressively 

splits neurons greedily. But the method is limited to splitting (does not 
consider new neurons/layers) and has high time complexity (requires solving 
an eigen-problem per growth).
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A neural network consists of both its parameters and its architecture. In this work, 
we propose to jointly optimize both.

Joint Parametric & Architecture Descent

4

Parametric Descent

Architecture Descent

(SGD refers to Stochastic Gradient Descent; Image from Wang et al., 2019)

When a network grows, the previous local minima 
can become a saddle point in the larger space.
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Assume the current neural network is     . Then we looks for 

●       denotes the loss function;
●             represents a ball of radius    centered at    .
●       measures the complexity of the network, i.e. the FLOPs.

A General Framework for Network Optimization
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We introduce firefly neural architecture descent to solve

Specifically, we propose parametric descent + 2-step growing:

Firefly Neural Architecture Descent
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Experiments (neural architecture search)
We compare against some previous growing methods.
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Experiments (continual learning)
We apply Firefly to continual image classification task on the CIFAR dataset. Firefly 
outperforms state-of-the-art dynamic architecture approaches.
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