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This article proposes D-tolling, a simple adaptive pricing scheme which only requires travel
time observations and two tuning parameters. These tolls are applied throughout a road
network, and can be updated as frequently as travel time observations are made.
Notably, D-tolling does not require any details of the traffic flow or travel demand models
other than travel time observations, rendering it easy to apply in real-time. The flexibility
of this tolling scheme is demonstrated in three specific traffic modeling contexts with vary-
ing traffic flow and user behavior assumptions: a day-to-day pricing model using static
network equilibrium with link delay functions; a within-day adaptive pricing model using
the cell transmission model and dynamic routing of vehicles; and a microsimulation of
reservation-based intersection control for connected and autonomous vehicles with myo-
pic routing. In all cases, D-tolling produces significant benefits over the no-toll case, mea-
sured in terms of average travel time and social welfare, while only requiring two
parameters to be tuned. Some optimality results are also given for the special case of the
static network equilibrium model with BPR-style delay functions.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Road pricing as a tool for congestion management has a long history in the transportation world, being first suggested
nearly a century ago (Pigou, 1920) as a method for internalizing congestion costs. Recent advances in connected and auto-
mated vehicle (CAV) technology offer unprecedented flexibility and scope for implementing these tolls. In principle, tolls can
be charged on many or all network links, and changed frequently in response to real-time observations of traffic conditions.
Toll values and traffic conditions can then be communicated to vehicles which instantly change routes in response, with
minimal to no intervention needed on behalf of drivers, who might only indicate some measure of the trip urgency or other
proxy for value of time before departing. Even before CAV technology reaches full penetration, communication capabilities
and automated route selection software (as can be found on modern cell phones) may be sufficient to implement such a
scheme.
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Developing an optimal strategy for calculating tolls in such an environment appears difficult. There is a plethora of traffic
flowmodels in the literature, and each of them suggests a different optimization problem. A similar issue exists for modeling
route choice behavior. For these reasons, this article investigates a model-free adaptive1 tolling procedure, which only
requires travel time observations on links and which calculates tolls extremely quickly. We term this strategy D-tolling. In par-
ticular, D-tolling does not require knowing travel demand or the traffic flow model which maps route choices to congestion. In
this procedure, we sacrifice provable optimality for generality, tractability, and decentralizability.

The past literature on adaptive tolling generally takes one of the following forms: optimization-based approaches which
generally assume demand and the traffic flowmodel are known; or corridor pricing approaches which only toll a small set of
links and are only interested in flow on a small set of links (as with managed lanes). This paper suggests a different approach
that allows computing network-wide tolls in real-time, with the intent of reducing average travel time, and without requir-
ing perfect knowledge of travel demand or how congestion forms.

The D-tolling scheme is exceptionally simple, and involves charging a toll on each link proportional to its delay (the dif-
ference between observed and free-flow travel times), updating this toll periodically. There are only two parameters to tune:
the proportionality constant, and a smoothing parameter used to damp transient spikes in toll values. Furthermore, being
model-free, it is readily adaptable to application and testing in multiple environments.

Despite the simplicity of the D-tolling scheme itself, practical implementation requires answering many interesting and
non-trivial questions regarding its effectiveness in various settings, and how the tuning parameters should be chosen. In this
article, we describe numerical tests of D-tolling with three widely different traffic models: Model A uses link performance
functions which are commonly used in static traffic assignment, is deterministic, and travelers are fully rational; Model B
uses the cell transmission model, commonly used in regional dynamic traffic assignment, and travelers update their routes
by recalculating shortest paths at each node; and Model C uses microsimulation, commonly used for detailed corridor stud-
ies, with the same behavioral assumption. These models focus on how travelers’ route choice is affected by D-tolling. Imple-
menting D-tolling within these models achieved significant reductions in travel times. Furthermore, for the case of link
performance functions (Model A), we are able to show that the D-tolling scheme is in fact optimal if the model parameters
are correctly chosen. The effectiveness ofD-tolling across three distinct traffic models is encouraging, given the complexity of
traffic flow which renders all such models approximate.

The remainder of the article is organized as follows. Section 2 provides a partial literature review on previous tolling
approaches. Section 3 then specifies the D-tolling framework. Next, Sections 4,5,6 demonstrate D-tolling on the three differ-
ent traffic models, describing the demand and traffic flow assumptions in each scenario, and providing numerical results
testing its effectiveness. Finally, Section 7 concludes the article and discuss future research directions.
2. Related work

Road pricing has received considerable attention due to its potential to reduce congestion, and the economic fairness of
charging users for the delays they cause to other travelers. It has long been established that in a static equilibrium setting,
marginal tolls can eliminate the inefficiency associated with selfish routing (Pigou, 1920; Beckmann et al., 1956). A detailed
history along with practical aspects of congestion pricing can be found in (de Palma and Lindsey, 2011). However, such
steady state conditions rarely exist in practice. Changes in supply, demand and other driver characteristics such as bounded
rationality and value of time result in traffic that is dynamic both day-to-day and within-day. To control congestion in the
presence of these factors, researchers have proposed a wide range of tolling models, based on different representations of
traffic flow and different assumptions on the source of variability. In this section, we review these studies and highlight some
of the gaps that will be addressed in this article.
2.1. Pricing models using link delay functions

The simplest way to model congestion is by using link delay functions that predict the travel time on links as a function of
its traffic volume. In this subsection, we review adaptive pricing articles built on this assumption. These studies can be
broadly grouped into the following three categories: (1) pricing models with route switching behavior, (2) congestion pricing
under supply and demand side uncertainty, and (3) trial-and-error methods for congestion pricing.

Friesz et al. (2004) proposed an optimal control formulation for finding tolls that maximize social welfare, while also
achieving a minimum revenue target. Traveler choices were represented by an ordinary differential equation that corre-
sponds to a tâtonnement route switching process. In a similar vein, Yang et al. (2007) suggested an adaptive tolling frame-
work that reaches the system optimum state, assuming that travelers follow the proportional switch adjustment process
(Smith, 1984). Tan et al. (2015) incorporated user heterogeneity in such day-to-day pricing models by proposing a multi-
class flow evolution dynamic in which users with different values of time respond differently to current congestion levels.
Adaptive tolls that minimize a weighted sum of system cost and time were sought. Guo et al. (2016) and Rambha and Boyles
(2016) studied similar problems with slightly different objectives in discrete time settings where travelers’ choices depended
1 In this article, we use adaptive to mean both time-varying and reactive to observed conditions. By this definition, time-of-day pricing according to a
predetermined schedule is not adaptive.
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on the previous day’s flow. While the former focused on the asymptotic behavior of the system under the rational behavior
adjustment process (Guo et al., 2015), the latter supposed that users select routes according to the logit choice model and the
tolls were used to minimize the average system travel time over an infinite horizon.

Marginal tolls are usually computed assuming fixed trip tables and fixed network parameters such as capacity and free
flow travel time. However, when these supply and demand inputs are uncertain, the marginal prices can be non-optimal and
in some cases may worsen the network performance (Gardner et al., 2008, 2010; Boyles et al., 2010). To address this issue,
(Gardner et al., 2011) defined six scenarios that take into account the information states of the systemmanager and travelers
and suggested different optimization models in which responsive tolls are designed based on the realizations of the supply
and demand. Recently, Rambha et al. (2017) extended the problem of finding the optimal tolls under supply side uncertainty
to cases in which travelers respond to online information by changing their decisions en route.

A third class of adaptive pricing models are what are called trial-and-error methods. Tolls in these models vary across
different days but are not set to address the variability in network congestion. Instead, the tolls are adaptive because the
system manager, may in reality, not know the demand and delay functions. By levying certain ‘‘trial-and-error tolls” and
updating them over different days using observed link volumes, provable convergence to system optimal tolls can be guar-
anteed (Yang et al., 2004, 2010; Han and Yang, 2009). While travelers in these models are assumed to be aware of current
day’s tolls and react rationally, extensions in which travelers respond using day-to-day route dynamics also have been pro-
posed (Ye et al., 2015). The D-tolling framework with link delay functions that will be described in Section 4 can be seen as a
variant of the trial-and-error method.
2.2. Pricing models using macroscopic traffic simulators

The earliest work studying dynamic congestion used Vickrey’s (1969) bottleneck model. Road pricing also affects the
number of trips and their departure times, this elasticity was added by Arnott et al. (1993). Demand elasticity could be
affected by alternative modes, so Danielis and Marcucci (2002) combined the bottleneck model with a railroad mode. Sim-
ilarly, Huang (2002) studied a bottleneck model with a parallel mass transit alternative mode, and compared the effects of
several pricing schemes on congestion and overall system efficiency. Verhoef (2003) proposed a heuristic for adaptive tolling
for dynamic traffic congestion in continuous time. van den Berg and Verhoef (2011) extended the results to continuous dis-
tributions of values of time, and found that congestion pricing could improve the social welfare of the majority of travelers
even without returning toll revenues.

Adaptive tolling has also been widely studied in the context of managed lanes. Yin and Lou (2009) suggested a feedback
control approach in which tolls are raised or lowered proportionally to the difference between the current and desired occu-
pancy. They also proposed a self-learning approach in which the willingness to pay is estimated in an online manner and the
lane choice is captured using a logit choice model, which was later extended to a multi-lane hybrid traffic flow model (Lou
et al., 2011). Gardner et al. (2013) analyzed managed lane pricing using an additive logit model and an all-or-nothing assign-
ment. Extensions that incorporate demand uncertainty (Gardner et al., 2015) and departure time choices (Boyles et al., 2015)
were also studied.

For pricing at a network level, Carey and Srinivasan (1993) define dynamic externalities and tolls using exit flow functions
as defined by Merchant and Nemhauser (1978). Wie and Tobin (1998) formulated optimal control programs assuming point-
queue models. Wie (2007) suggested a bi-level model in which the lower level involves a simplified dynamic traffic loading
mechanism. It was assumed that a subset of arcs can be tolled and the objective was to maximize net consumer surplus.
However, the traffic flowmodels in these approaches do not capture queue spill-backs. Tsekeris and Voß (2009) reviews sev-
eral studies that used bottleneck or point queue models, and therefore did not capture the effects of queue spillback. Waller
et al. (2006) and Lo and Szeto (2005) showed that these traffic flow dynamics were important to the effectiveness of con-
gestion pricing, and that ignoring them could result in tolls that increased congestion. Therefore, it is important to study tol-
ling schemes such asD-tolling on mesoscopic or microscopic models that properly capture spatial propagation of congestion.

For more realistic flowmodels applied to large networks, such as the hydrodynamic model (Lighthill andWhitham, 1955;
Richards, 1956), marginal costs are much more difficult to compute because of discontinuities in the flow model and con-
gestion effects that transcend link boundaries. For such models it is not known how to reduce the problem beyond its fun-
damental bi-level form. The upper-level problem chooses the optimal tolls subject to route choice constraints, which form
the lower-level problem. These route choice constraints are often in the form of dynamic traffic assignment (Chiu et al.,
2011), which itself is a difficult optimization problem. Such bi-level problems have been studied extensively for both static
and dynamic flow models as network design problems (Farahani et al., 2013), and are known to be NP-hard even when both
the upper-level and lower-level problems are convex. Consequently, they are typically solved using heuristics or meta-
heuristics. Lin et al. (2011) formulated such a bi-level program in which route and departure time choices for a single des-
tination network were captured with the cell transmission model. A dual variable based heuristic was used to solve the pro-
posed MPEC (mathematical program with equilibrium constraints). (Joksimovic et al., 2005 and Joksimovic et al., 2005)
included both departure time and route choice in the lower level through a discrete choice model (stochastic user equilib-
rium). Although results used a small test network, tolls were observed to encourage travel on less congested routes or depar-
ture times. Ekstrm et al. (2016) devise a surrogate-based optimization method in which a small number of dynamic cordon
tolling schemes are tested on the Stockholm network using VisumDUE, a dynamic traffic assignment tool.
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When applied to real-world traffic networks, D-tolling can be classifed as a within-day pricing scheme, as described in
Sections 5 and 6. Within-day pricing varies the tolls at different times of day in response to (expected) congestion.
Within-day strategies can affect both route choice and departure times because travelers may respond to congestion pricing
by delaying their trip until a less congested time. While many within-day strategies set a predictable schedule of tolls that
human drivers can react to, D-tolling assumes the use of route guidance software that can more quickly react to rapidly
changing tolls. Furthermore, D-tolling is responsive to fluctuations that may be caused due to uncertain demand.

2.3. Pricing models using microscopic traffic simulators

Very few researchers have used microscopic traffic simulators to study congestion pricing. The outputs of microscopic
simulators cannot be analytically expressed, a challenge in optimizing control strategies. Thus, existing studies have used
feedback mechanisms for computational tractability. The D-tolling approach proposed in this article can also be seen as a
feedback mechanism much like ramp metering strategies such as ALINEA (Papageorgiou et al., 1991). Zhang et al. (2008)
developed a feedback control theory-based tolling for high-occupancy/toll lanes in VISSIM to avoid the potential hysteresis
problem, and was later extended by Cheng et al. (2014) to include the effects of travel time reliability and income levels of
users. However, their pricing model is fairly complicated and may be difficult to apply to other traffic flow models, and test-
ing was limited to several connected freeway segments. Zheng et al. (2012) and Simoni et al. (2015) used a hybrid approach
involving a microscopic simulator MATSim and a macroscopic fundamental diagram flowmodel to set cordon tolls in the city
of Zurich. This model was used to calculate the aggregate density, from which the cordon tolls were inflated or deflated
based on a linear feedback control strategy. Grether et al. (2008) also used MATSim along with an activity based model that
simulated users plans, modes of travel, and values of time, but only evaluated fixed time-of-day dynamic tolls.
3. Framework

The D-tolling framework is designed to be widely applicable across a broad range of traffic and user behavior assump-
tions. The modeling framework has three major components:

� The traffic model.
� The travel time calculation model.
� The tolling model.

These three models make use of four variables:

� s - the vector of tolls applied to each link.
� d - the travel demand, expressed in amount of vehicles departing each origin towards each destination.
� X - the system state, a tuple of sets or vectors reflecting current traffic conditions corresponding to a particular traffic
model.

� T - the vector of measured link travel times.

If the underlying network is represented by G ¼ ðN;A; ZÞwhere N and A are the sets of nodes and links, and Z#N is the set
of origins and destinations where trips start and end, then we have s 2 RjAj; d 2 RjZj�jZj, and T 2 RjAj. We use Ta2A to represent
the travel time on link a, same goes for Xa and sa (a link (a) might also be expressed as a pair i; j representing the link con-
necting node i with j). Similarly, dr;s2Z is the demand originating at node r towards node s.

Each of these variables evolves over time according to the traffic flow, travel time, and tolling models, which are described
next. The reader may find it useful to refer to Fig. 1 during this discussion. Arrows in this figure reflect direct dependencies
between the variables, as described below.

The traffic flowmodelM encompasses the routing decisions made by drivers, as well as the congestion effects caused by
interactions amongst drivers. We express this relationship as
2 The
sections
Xt ¼ MðXt�1; Tt�1; dt
; stÞ: ð1Þ
This equation represents the following potential dependencies: the system state at time tmay depend on the system state at
the previous time interval (Xt�1); the measured link travel times at the previous time interval (Tt�1); the vehicles departing
during time t (dt), and the current tolls (st).2 Particular traffic flow models may not make use of all of these dependencies (for
instance, the traffic state for Model A in Section 4 does not explicitly depend on previous time intervals) but they are included
for generality. All of the models in this article assume that the last measured travel times Tt�1 and current tolls st are commu-
nicated to all vehicles (based on the assumption of CAV technology), but in principle the framework could allow for route choice
time interval between time steps (t; t þ 1) may differ between models and between instances of the same model. Examples are given in the following
.



Fig. 1. Schematic for D-tolling framework. Dashed lines reflect the traffic model, dotted lines the travel time calculation model, and solid lines the tolling
model. Note that the toll calculation only requires travel times, and no other details of the demand or traffic model.
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decisions made without perfect knowledge of these. Specific examples of traffic modelsM and the corresponding system states
X are given in Sections 4,5,6.

The travel time calculation model T maps the system state to link travel times used for tolling:
3 Fre
Tt ¼ T ðXtÞ: ð2Þ
Although the travel times Tt�1 may be part of the system state Xt�1, we include a separate dependence on Tt�1 to allow for
measurement errors, as might occur in practice if travel times are measured from sensors or probe vehicles in the field, or to
allow for approximate travel time calculations, as are often obtained from simulation-based traffic models (such as Models B
and C below). This separation also emphasizes that the toll calculation only relies on travel times, and does not require addi-
tional information about the system state or demand. Examples of travel time models are also found in the sections that
follow.

The toll calculation model for D-tolling is the equation
st ¼ ð1� RÞst�1 þ RbðTt�1 � T0Þ ð3Þ
where T0 is the vector of link free-flow times,3 and R and b are tuning parameters. Parameter b is the proportionality constant
relating link delay and the toll value, while R is a weighting parameter that results in an exponential decay effect for tolls
assigned in previous time steps. For further explanation regarding the motivation behind the R parameter please refer to Appen-
dix A. Both the R and b parameters must be tuned for a given network.

To summarize, the dependencies between the variables are intended to fit the following story: at time step t all users are
informed with the tolls (st) imposed during time interval t to t þ 1, as well as the travel times (Tt�1) measured at the end of
the previous time interval. Given this data, users choose and follow a route leading from their current location to their des-
tination that optimizes their utility. Based on the routes they choose, the system evolves to state Xt , and at the end of this
time interval, the updated travel times (Tt) are measured. These updated travel times, along with the updated tolls, are fed-
back to all users which, once again, re-optimize their route. Fig. 1 presents a schematic illustrating these dependencies.

Note that allowing users to predict and react to future congestion and tolls can have a positive effect on the system as the
convergence towards a user equilibrium would be faster or even instant. On the one hand, assuming such capabilities is rea-
sonable from a practical standpoint (recurring congestion can be predicted). On the other hand, considering such capabilities
significantly complicates our theoretical and empirical models. As a result they are not assumed in this study. Nonetheless,
due to its relevance to the application of D� tolling, we intend to explore this topic in future work.

The following three sections show specific instantiations of this framework for varied traffic models: one inspired by day-
to-day pricing in static traffic assignment, and two meant to represent within-day pricing in dynamic models (the cell trans-
mission model and a microsimulator). The intent of these demonstrations is to study the performance of D-tolling across dif-
ferent modeling contexts, in contrast to many prior studies which demonstrate effectiveness only in a single traffic model
(often the same model used to derive the tolling scheme). The focus of the presented experiments is on robustness of per-
formance across widely-varying models, rather than claiming that any of the specific models is the ‘‘right” one for any par-
ticular application.

4. Model A: Link performance functions

In the first model, the traffic model is based on link performance functions which map the flow on each link to its travel
time. The presumption is that the intervals between successive time steps (and toll updates) are large enough that most trips
can be completed during a single time interval, and that delays and flows can be well-approximated by deterministic,
steady-state conditions. In this model, we assume that drivers choose routes to minimize their travel cost (time + tolls).
Because delays are deterministic and the interval between time steps is assumed long, we further assume that CAV technol-
ogy can choose routes rationally, leading to a Nash equilibrium in which each vehicle chooses a route with minimum cost (cf.
Wardrop, 1952).
e flow travel time T0 may change over time e.g., due to weather conditions, and should be appropriately updated.
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4.1. Model specification

For an origin-destination (OD) pair ðr; sÞ 2 Z2, letPrs denote the set of simple paths in G connecting origin r to destination
s;Ps ¼ [r2ZPrs the set of paths ending at s, and P ¼ [s2ZPs the set of all network paths. Let dt be the demand during time
period t. The vector of path flows ht 2 RjPj is feasible if each element is nonnegative, and if

P
p2Prs

ht
p ¼ dt

rs (each vehicle is

assigned a path for its OD pair). Each vector of path flows generates a vector of link flows xt 2 RjAj given by
xtij ¼

P
p2P:ði;jÞ2ph

t
p. Furthermore, we assume that each link ði; jÞ 2 A is equipped with an increasing and differentiable link per-

formance functionWijðxijÞ, giving the travel time on link ði; jÞ as a function of its flow xij alone. That is, Ti;j ¼ Wi;jðxi;jÞ. Let XðdtÞ
denote the set of feasible link flows when the demand is dt , that is, the set of link flow vectors corresponding to a feasible
path flow vector.

For this model, the state vector is simply the vector of link flows:
Xt ¼ xt ð4Þ
and the traffic model M in Eq. (1) is specified with the following formula:
xt ¼ arg min
x2XðdtÞ

X
ði;jÞ2A

Z xij

0
ðWijðxÞ þ stijÞdx: ð5Þ
In this formula we assume that the value of time is homogeneous among all travelers, allowing us to choose units so that the
tolls s and travel time t can be directly added. The minimizer of the function on the right-hand side is known to satisfy the
Nash equilibrium principle, and to be unique under the assumption that the Wij are increasing. Note that there is no explicit

dependence on Xt�1 in Model A.
One special case of Model A occurs when the demand is stationary with time, dt � d. In this case, Model A can be thought

of as a day-to-day tolling model, where the tolls are updated on sequential days as drivers make the same trips.

4.2. Scenario specification

Every scenario simulated through Model A follows the following principles:

� Demand model - demand is modeled as a fixed amount of flow that needs to be routed between any two given nodes in
the network at any time step.

� Vehicle model - in model A there is no notion of atomic vehicles, traffic is viewed as a set of infinitely divisible flows.
� Path assignment model - instead of assigning paths to vehicles, Model A assigns flows to paths. The vehicles comprising
each flow are assumed to be self interested and are assigned the minimal generalized cost path (travel time + tolls). Such
a policy leads to the Nash equilibrium that is defined by Eq. (5).

4.3. Theoretical results

One advantage of Model A is that the analytical form of the traffic model (5) is amenable to mathematical analysis. In
particular, we are able to show several optimality results if demand is stationary with time and the link performance func-
tions are of the form specified by the Bureau of Public Roads (BPR),
WijðxijÞ ¼ T0
ij 1þ A

xij
uij

� �B
 !

ð6Þ
where T0
ij is the free-flow travel time, uij the practical capacity, and A and B are shape parameters assumed uniform through-

out the network. In this section, we mean ‘‘optimality” in the sense of minimizing the average travel time, which is propor-
tional to

P
ði;jÞ2AxijWijðxijÞ. This is a convex function of the link flows, so optimal link flows x�ij exist and are unique.

The next results make use of the following well-known facts. (Both can easily be shown by writing the optimality con-
ditions of the associated convex minimization programs.)

Fact 1. Let xt 2 XðdtÞ and let ht be any feasible path flow vector generating xt. The flows xt satisfy (5) if and only if every positive
component of ht corresponds to a path whose generalized cost (the sum of Tt

ij þ stij along its links) is minimal for its OD pair.

Fact 2. Let xt 2 XðdtÞ and let ht be any feasible path flow vector generating xt. The flows xt are optimal if and only if every positive

component of ht corresponds to a path whose marginal cost (the sum of Tt
ij þ xtijW0ijðxtijÞ along its links) is minimal for its OD pair.

The first result shows that the D-tolling rule is equivalent to marginal cost pricing if the parameter b is chosen correctly:

Proposition 1. If the link performance functions are of the BPR form and b ¼ B, then bðTij � T0
ijÞ ¼ xijW0ijðxijÞ ¼ BAT0ðxtij=uijÞ

B.
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Proof. Routine.
Next, we show that if the tolls do not change from one time step to the next, then the resulting link flowsmust be optimal.

Furthermore, the system has reached a stable state, and the optimal state will persist for future time iterations. In other
words, if the tolls are stable, the flows are optimal and stable.

Proposition 2. Let the link performance functions have the BPR form, and let demand be stationary with time. If b ¼ B and
st ¼ stþ1 for any time interval t, then xt is optimal, and furthermore xT is optimal for any T > t.
Proof. Stationary demand implies that the set of feasible x and h are stationary. By the D-toll update rule (3), if st ¼ stþ1 then

we must have st ¼ stþ1 ¼ bðTt � T0Þ ¼ BAT0ðxt=uÞB, where this vector equation holds componentwise. Let ht be a feasible
path flow vector generating xt . By Fact 1, every positive component of ht corresponds to a path whose sum of

Tt
ij þ BAT0

ijðxtij=uijÞB along its links is minimal. But by Proposition 1, this implies that every component of ht corresponds to

a path whose sum of Tt
ij þ xtijT0ijðxtijÞ is minimal, and thus xt is optimal by Fact 2. Furthermore, since the minimizer of (5) is

unique, st ¼ stþ1 implies xt ¼ xtþ1, and thus sT ¼ st and xT ¼ xt whenever T > t.
The converse of Proposition 2 is not true, because the vector of tolls which produce a particular flow x under the mapping

(5) is not unique, and only the marginal-cost tolls corresponding to Proposition 1 are fixed points of the toll update rule (3). If
xt is optimal but generated by a different toll vector, we will not have st ¼ stþ1. Nevertheless, we can show that if xt is opti-
mal, the flows are stable in subsequent iterations, even if the tolls still change.

Proposition 3. Let the link performance functions have the BPR form, and let demand be stationary with time. If b ¼ B and xt is
optimal at any time interval t, then xT is optimal whenever T > t.
Proof. Let ht be any feasible path flow vector generating xt . By Fact 1, every positive component of ht corresponds to a short-
est path with link weights Tt

ij þ stij. Since these flows are optimal, Fact 2 and Proposition 1 imply that these are also shortest

paths with link weights Tt
ij þ bðTt

ij � T0
ijÞ. That is, for each node i and origin r, there exist node potentials pr

i and qr
i such that
4 The
pr
i þ Tt

ij þ stij P pr
j ð7Þ

qr
i þ Tt

ij þ bðTt
ij � T0

ijÞ P qr
j ð8Þ
for each link ði; jÞ 2 A and origin r 2 Z, with equality holding along all of the paths with positive flow at ht . Multiplying
inequality (7) by 1� R, inequality (8) by R, and adding, we have
ð1� RÞpr
i þ Rqr

i þ Tt
ij þ stþ1 P ð1� RÞpr

j þ Rqr
j ; ð9Þ
implying that ð1� RÞpþ Rq form valid node potentials for the new toll vector stþ1, with equality holding for exactly the
same links and origins as before. Thus, the shortest paths with respect to Tt þ stþ1 are the same as those with respect to
Tt þ st , and xt remains optimal for xtþ1. The argument can be repeated for any T > t. h
4.4. Experiments and results

Model A was implemented in C using Algorithm B (Dial, 2006) to solve the equilibrium subproblem. It was tested on two
city networks, representing the cities of Sioux Falls, SD and Austin, TX. The Sioux Falls network is a standard test instance in
the transportation network literature (Bar-Gera, 2014), with 76 links, 24 nodes, and 360,600 trips spanning 24 h. The Austin
network represents the central business district of the city, and contains 1247 links, 546 nodes, and 62,836 trips over a two-
hour morning peak period. Additional details on the Austin network can be found in Levin et al. (2015). Fig. 2 shows
schematics of both networks.

In both networks, the link performance functions are BPR functions, using the standard values of the shape parameters:
A ¼ 0:15 and B ¼ 4. For the experiments in this article, the time intervals t were interpreted as subsequent days, so demand
was assumed stationary and the experiment represents a day-to-day pricing scenario.

Because Model A assumes fixed demand and homogeneous travelers, we can use the average travel time
ATTt ¼ ðxt � TtÞ=ðd � 1Þ as a performance metric. In this demonstration, the weights Rt ¼ 1=ðt þ 1Þwere chosen, effectively set-
ting the toll during time step t to the average of the daily ‘‘target” tolls bðTt � T0Þ. This choice of Rt value was inspired by the
method of successive averages (Liu et al., 2009).

Table 1 shows the steady-state average travel time for both networks as the sensitivity parameter b varies. For both net-
works, with the above choice of Rt , fairly rapid convergence was obtained to a steady state.4 For b values of 1, 2, 4, 8, conver-
system is said to converge to a steady state if the change in average travel time between successive time steps was less than a tenth of a millisecond.



Fig. 2. Sioux Falls (left) and Austin (right) networks.

Table 1
Average travel time (minutes) at UE for different b values using Models A (Rt ¼ 1=ðt þ 1Þ) and B (R ¼ 10�4). Note that for Model A with b ¼ 4 the UE and SO
allign (this is the provable SO for model A). The SO for Model B is not applicable.

Scenario No tolls SO b ¼ 1 b ¼ 2 b ¼ 4 b ¼ 8

Sioux Falls
Model A 20.74 19.95 20.09 19.98 19.95 19.96
Model B 24.74 NA 20.28 20.08 19.92 20.26

Downtown Austin
Model A 21.92 21.78 21.81 21.79 21.78 21.79
Model B 20.67 NA 16.06 15.64 15.82 17.39

The lowest travel time in each scenario is given in bold.
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gence on Sioux Falls required 95, 27, 11, and 94 iterations, respectively. For Austin, these values required 24, 16, 27, and 42
iterations to converge, respectively.

Over the range of b values tested, the D-tolling strategy always reduced average travel time from the no-toll value. When
b was set equal to the B exponent in the link performance functions, the travel times were the lowest observed, and in fact
correspond to the system-optimal solution, as suggested by Proposition 1. Note that the performance ofD-tolling seems to be
insensitive to the chosen b value as beta values twice as big (8) or small (2) from the optimal (4) result in a system perfor-
mance which is almost identical to the optimal one.
5. Model B: Cell transmission model

Model B implements the D-tolling framework in the cell transmission model (CTM) developed by Daganzo (1994) and
Daganzo (1995a) as an explicit solution method for the hydrodynamic theory of traffic flow proposed by Lighthill and
Whitham (1955) and Richards (1956). CTM is frequently used in dynamic traffic assignment. The time step used in this
model is typically short, on the order of a few seconds. When used with D-tolling, this allows for a truly adaptive toll which
can be updated based on traffic conditions. Because the tolls are updated frequently, we believe that the equilibrium behav-
ior assumed in Model A is not appropriate. Rather, we assume that CAVs dynamically receive updates of travel times and
tolls, and may alter their route to the destination in response to receiving such information. This update is based on the
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currently reported travel times and tolls when they reach the diverge point.5 Modeling the behavior of specific vehicles (each
individual vehicle has a value-of-time, and chooses routes according to its own generalized cost function) requires that model B
follows a variant of CTM that models discretized flow (Ziliaskopoulos and Waller, 2000; Chiu et al., 2011).

5.1. Model specification

The CTM divides each link into a set of cells, each of length equal to the distance a vehicle would travel in one time step at
free-flow conditions. Cells result from a fixed division of a link into discrete segments. The length of each segment corre-
sponds to the distance a vehicle would travel on that link at free-flow speed in one time step. This choice of cell length
ensures stability of the cell transmission model (it satisfies the Cournout-Friedrich-Lewy conditions for the underlying sys-
tem of partial differential equations). Let C be the set of cells in the entire network, and for a given cell c 2 C, let CþðcÞ denote
the set of cells immediately downstream of c, and C�ðcÞ the set of sells immediately upstream of c. For cells in the interior of a
link jCþðcÞj ¼ jC�ðcÞj ¼ 1, whereas if c is at the upstream end of a link we may have jC�ðcÞj > 1 (if there are multiple links
incident from upstream) and if c is at the downstream end we may have jCþðcÞj > 1 (if there are multiple links adjacent
downstream). Let xtc;p 2 N denote the number of vehicles in cell c at the start of time interval t which are currently following
path p 2 P, and xtc ¼

P
p2Px

t
c;p the total number of vehicles in the cell. Based on these values, the CTM respectively defines

the sending flow Stc and receiving flow Rt
c as the maximum number of vehicles which could possibly exit cell c during time step

t, and the maximum number of vehicles which could possibly enter cell c during time t. If we denote Qc as the capacity of cell
c;Nc the maximum number of vehicles which can physically occupy cell c, and d the ratio between the maximum backward
shockwave speed and free-flow speed, common expressions for the sending and receiving flow are
5 Par
(2002)
study.

6 Val
Stc ¼ minfxtc;Qcg ð10Þ
and
Rt
c ¼ minfdðNc � xtcÞ;Qcg: ð11Þ
See Daganzo (1995a) and Daganzo (1995b) for additional details.
The update rules for the cell transmission model (the traffic modelM) involve the auxiliary variables ytcd representing the

number of vehicles moving from cell c to cell d 2 CþðcÞ during time step t. If c and d belong to the same link, we have
ytcd ¼ minfStc;R
t
dg: ð12Þ
If c and d belong to different links, ytcd is calculated using various intersection models representing traffic behavior at diverges,
merges, traffic signals, roundabouts, or other intersection types; see Tampère et al. (2011) for discussion of intersection
model desiderata and some examples. The simulations reported in this section use intersection models reflecting traffic
signals.

Once the yt values are calculated, cell occupancies update in the natural way:
xtþ1
c ¼ xtc þ

X
b2C�ðcÞ

ytbc �
X

d2CþðcÞ

ytcd ð13Þ
with the path-disaggregated xtc;p values updated according to the first-in, first-out principle.

The travel time model for Tt
ij calculates the average time spent on link ði; jÞ by the vehicles which most recently exited the

link, based on the difference between their entry and exit times. This results in a slight lag in the travel times used for D-
tolling and for the adaptive routing procedure, since link travel times for vehicles are not computed until they leave the link,
even though the routing and tolls are based on decisions made as vehicles enter a link.

5.2. Scenario specification

Every scenario simulated through Model B follows the following principles:

� Demand model - demand is given as the amount of vehicles originating at node n1 at time step t and are assigned a des-
tination n2 for any n1;n2 2 N and t > 0 combination.

� Vehicle model - each vehicle is affiliated with a value of time6 (VOT). Vehicles seek to minimize their generalized cost that is
defined as travel time þ tolls � value of time.

� Path assignment model - let Tt�1
p be the sum of travel times along path p during time step t � 1 and let stp be the sum of

tolls along p during time step t. When reaching a diverge node n at time step t all paths (Pns) leading from n to destination
ticularly, vehicles do not anticipate future changes in travel conditions, nor the impact of receiving future information, cf. Waller and Ziliaskopoulos
and Boyles (2009). While such computations are more involved, they may be feasible with CAV technology, and would be an interesting topic for future

ue of time represents the monetary value of a single unit of time. It is used to map time into monetary cost.
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s are considered. The vehicle in question is assigned the path arg minp2Pns
costðpÞ ¼ fstp þ Tt�1

p � VOTg. An additional rule
was added to prevent gridlock problems which can arise in dynamic traffic models when a cycle of links are at jam den-
sity: if a vehicle is unable to enter a link because its receiving flow is zero for more than 96 s,7 the vehicle is assigned the
least cost path to its destination that avoids that link, if such a path exists.

5.3. Experiments and results

For running Model B we used the DTA simulator (Chiu et al., 2011) implemented in Java. Model B was tested on the Sioux
Falls and Austin networks also used for the Model A results. A few changes were needed to accommodate the differences in
time scale and modeling assumptions between Models A and B. Because the original Sioux Falls demand was specified over
24 h, the demand was modified to fit a 3-h experiment more suitable for dynamic traffic assignment, including 28,835 trips
over this time period. Both networks also required traffic signal timings. The Austin network data was originally used for
dynamic traffic assignment and contained real-world signal data. The Sioux Falls network does not include this data, so
we generated an artificial timing based on Webster’s (1958) formula for signal timing. The variations in departure rates over
time for these scenarios can be seen as the solid black line in Fig. 4. Whenever a vehicle is loaded onto the network, it is

assigned a value of time randomly drawn from a Dagum distribution with parameters â ¼ 22020:6; b̂ ¼ 2:7926, and
ĉ ¼ 0:2977, reflecting the distribution of personal income in the United States (Łukasiewicza et al., 2012).

The average travel times for Model B for particular values of R and b are shown in Table 1. Since Model B allows hetero-
geneity in travelers’ values of time, in addition to evaluating average travel times, we also evaluate the social welfare, defined
as the weighted sum of each traveler’s travel time according to his or her value of time.8 If V is the set of vehicles, and vehicle v
experiences a travel time of Tv and has a value of time of av , social welfare is defined as �

P
vTvav . The tolls are not included in

the calculation of social welfare, because we assume that toll revenues are transfer payments which remain internal to society.
This assumption was made implicitly in the use of average travel time as the metric for Model A.

Fig. 3 shows the effects ofD-tolling on social welfare as the responsiveness parameter R varies. The red series indicates the
no-toll scenario used as a benchmark, while the blue series shows social welfare under the D-tolling regime. Each data point
represents the average of ten scenario runs, and the bands represent 95% confidence intervals around each point. Scenario
runs differ from each other in the value of time that is (randomly) assigned to each vehicle. For the experiments in this plot, a
fixed value of b ¼ 4 was used. This value was optimal in Model A for its assumption of BPR-type delay functions, but this
choice is not necessarily optimal for Model B which uses a dynamic network loading procedure. (As shown in Table 1, in
Austin, a slightly better performance was obtained with b ¼ 2 compared to b ¼ 4.) In this plot, note that extreme R values
are less effective, whether high or low: when R is near 1 tolls oscillate rapidly (worsening performance over the no-toll base-
line), and when R is near zero the tolls have little impact. The best performance occurred in a narrow band around R � 10�4,
yielding increases of 26% and 33% in social welfare for the Sioux Falls and Austin scenarios, respectively. Indeed, for any given
b value, near-optimal tolls cluster around a single order of magnitude of R values.

Fig. 4 shows the impacts on social welfare for travelers departing at different times during the simulation for R values in
the range 10�5–10�3. All series in this plot correspond to b ¼ 4. This plot shows the superior performance of R ¼ 10�4 in a
different way, and indicates that the benefits from tolling increase throughout the peak period, and that the onset of con-
gestion is delayed. In the Sioux Falls scenario, which includes the end of the peak period, we see that the recovery from con-
gestion occurs earlier as well.

Fig. 5 shows performance of the tolling scheme as both R and b vary, depicting the difference in social welfare (in per-
centage) compared to a scenario where no tolls are applied (a value of 126, for instance, correspond to a 26% increase in
social welfare). For any fixed value of one parameter, there is a near-optimal value for the other parameter. This observation
leads us to suspect that there are dependencies between the two parameters. We leave exploring such dependencies for
future work. Nonetheless, this observation justifies the use of a single b value in the results described earlier.

6. Model C: Microsimulation

AIM (Autonomous Intersection Manager) is a traffic microsimulator developed by Dresner and Stone (2004) to model the
flows of CAVs at intersections where priority is granted by reservation, rather than with signals. AIM provides a multiagent
framework for simulating autonomous vehicles on a road network grid, and it presents a much more detailed traffic flow
model than Models A or B. The AIM simulator uses two types of agents: intersection managers and driver agents. Intersection
managers are responsible for directing the vehicles through the intersections, while the driver agents are responsible for con-
trolling the vehicles to which they are assigned. To improve the throughput and efficiency of the system, the driver agents
‘‘call ahead” to the intersection manager and request a path reservation (space-time sequence) within the intersection. The
intersection manager then determines whether or not this request can be met. If the intersection manager approves a driver
agent’s request, the driver agent must follow the assigned path through the intersection. On the other hand, if the
intersection manager rejects a driver agent’s request, the driver agent may not pass through the intersection but may
7 This value was chosen by trial-and-error and resulted in the best performance.
8 For Model A, where value of time is homogeneous, social welfare is directly proportional to the average travel time.



Fig. 5. Heat maps showing the difference (in precentage) in social welfare compared to the no tolls scenario for different R and b values in Sioux Falls (left)
and Austin (right). (Model B).

Fig. 4. Social welfare over time in Sioux Falls (left) and Austin (right), R varies using Model B. The legend is identical in both plots.

Fig. 3. Social welfare in Sioux Falls (left) and Austin (right) as responsiveness parameter R varies using Model B. The legend is identical in both plots.
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attempt to request a new reservation. AIM has been used in various studies on reservation-based intersection control:
Dresner and Stone (2006) and Dresner and Stone (2007) studied variants of the reservation protocol that provided
intersection access to human drivers through an occasionally activated traffic signal, and (Fajardo et al., 2011) found that
reservations had lower delays than optimized traffic signals for a symmetric intersection. Fig. 6 shows a typical snapshot
of simultaneous vehicle flow at a congested intersection.

Link travel times Tt�1 are estimated as an average of the time spent on each link by the vehicles most recently exiting. The
scenario specifications for this model are identical to those specified for model B. As with Model B, due to the frequency of
updates there is no presumption that an equilibrium is reached when vehicles choose routes.



Fig. 6. The AIM simulator depicting a reservation-based intersection in operation.
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Unlike Models A and B, the microsimulation environment is not well-suited to explicit mathematical description. The
state vector can be defined as Xt ¼ ðVt ; ItÞ, where Vt is the set of vehicles on the network at the start of time step t, including
associated information such as their value of time and position, velocity, and acceleration in the network, and It is the set of
intersections and associated information at time t, such as the trajectories of scheduled reservations. This information is
updated according to the rules described above.

6.1. Experiments and results

For running Model C we used the AIM4 microsimulator (http://www.cs.utexas.edu/aim/aim4sim/aim4-release-1.0.3/
aim4-root/docs/install.html). AIM4 is unable to model large networks of the type used for Models A and B, because of the
level of detail in its representation of agent behavior (both vehicles and intersection reservations). Hence, the Sioux Falls
and Austin scenarios are intractable within AIM. Fig. 7 shows the 3� 3 grid network used for these experiments. Vehicle
agents are generated randomly according to a Poisson process, at a mean rate of 500 vehicles per hour per incoming lane.
Each vehicle is assigned either to destination D1 or D2. The network also includes alternative destinations for vehicles
headed to either of these destinations. Alternative destinations are used to simulate route choice effects on a network much
smaller than the city networks used in Models A and B. These alternative destinations, marked as A1 and A2 in Fig. 7, are
associated with a time penalty if vehicles leave the network through them instead of their original destination. Vehicles
may opt for a path ending at an alternative destination when performing the A� search when arriving at each intersection.

Fig. 8 present results that are similar in format to those presented for Model B (Figs. 3 and 5). That is, in the left figure,
social welfare as responsiveness parameter R varies and b is set (b equals 16). In the right figure, heat map showing social
welfare with different R and b values.9 Each data point in the right figure, and each bracket shade in the left figure, represents
the average social welfare over 30 simulation runs, where social welfare for a single simulation is the average utility over all
agents (vehicles). Each run simulates one hour of traffic. Error bars reflecting 95% confidence intervals are shown in the right
figure (social welfare vs R).

The general trends that are observed in these results are very similar to those observed in the CTM model: that is, reduc-
ing R to approximately 10�4 improves system performance (due to mitigation of oscillation and spike effects), and that near-
optimal performance can be achieved with most b values by properly tuning the R values. Nonetheless, there are two notable
differences between these results and those presented for the CTM:

� Low b values (< 8) do not have a suitable R that yield optimized performance. We believe this discrepancy stems from
differences in the congestion accumulation model. Recall that AIM manages intersection in a way that is conceptually
different than traffic signals. When traffic signals are considered, the marginal impact of a single vehicle is negligible
at low traffic levels (low demand) since vehicles must wait for a green signal regardless of the number of vehicles arriving
from other directions. With AIM however, the marginal impact of a vehicle is noticeable even at low traffic levels.
9 Results in a format similar to that in Fig. 4 are not presented for this model since, unlike the Model B results, traffic demand is not time varying in this
experiment.

http://www.cs.utexas.edu/aim/aim4sim/aim4-release-1.0.3/aim4-root/docs/install.html
http://www.cs.utexas.edu/aim/aim4sim/aim4-release-1.0.3/aim4-root/docs/install.html


Fig. 7. Grid network used for Model C results, with destinations and alternatives marked.

Fig. 8. Results from running AIM in the 3� 3 grid network. Heat map showing the difference (in precentage) in social welfare compared to the no tolls
scenario for different R and b values (left). Social welfare as responsiveness parameter R varies (right). (Model C).
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� R ¼ 1 (right-most data point in the right figure), presents performance that is better than applying no tolls. We believe
this discrepancy also stems from the fact that AIM does not use traffic signals which contribute to spikes and oscillation
(see Apendix A).

Though these results are not identical to those obtained by the CTM, their similarity still provides additional evidence of
the robustness of D-tolling across different models and network topologies. On the other hand, the listed discrepancies



G. Sharon et al. / Transportation Research Part C 84 (2017) 142–157 155
suggest that the parameters used by D-tolling need to be re-tuned following changes in traffic flow modeling (such as
changes to the intersection management policy).
7. Conclusions

This article presented D-tolling, a simple road pricing scheme which makes minimal assumptions on the traffic flow
model or driver behavior. This scheme involves only two parameters, and only requires link travel time and free flow travel
times measurements to set tolls. The flexibility of D-tollingwas demonstrated by applying it in three very different contexts:
a day-to-day pricing framework where delay is determined by link performance functions and a static equilibrium model; a
within-day adaptive tolling framework using the cell transmission model for dynamic network loading, with adaptive route
choice but no equilibrium; and an adaptive tolling application using a new reservation-based intersection scheme for
automated vehicles, evaluated in microsimulation. In all of these cases, the D-tolling scheme was able to achieve significant
benefits (measured in average travel time or social welfare) over the no-toll case, even without knowledge of the different
traffic models being used, or the different assumptions on driver behavior. Benefits were seen both in small, artificial grid
networks with randomized parameters as well as in larger networks representing real-world cities. We also note that
D-tolling does not necessarily require a computer-controlled vehicle; it only requires computer-controlled route choice.
Current smart-phone software already provides navigation to human drivers, and such software could be modified to inter-
act with tolling systems.

TheD-tolling scheme represents an advance over previously-suggested toll schemes, by not requiring any of the following
assumptions: that demand is known or fixed, that roadway capacity is known or fixed, that the value of time is homoge-
neous; that the traffic model is known. Furthermore,D-tolling is applicable across large networks and aims to optimize social
welfare. As discussed in Section 2, all previous work we are aware of makes one or more of these assumptions, all of which
have significant practical implications. As a few examples, drivers are unlikely to voluntarily report all of their trips to the
tolling agency (so that demand is not fully known), all traffic models are approximations to real traffic flow, and what is opti-
mal for a single corridor may not be optimal over a larger network. Our aim in presentingD-tolling is to show that substantial
benefits can be obtained even without knowing all of this information.D-tolling is simple to implement since it requires mea-
suring only two variables: current travel time and free flow travel time, both measurements are feasible with now days tech-
nology. It is robust to the underlying traffic model, and does admit optimality results under certain assumptions (Model A).
Even when optimality is not provable, D-tolling results in significant average travel time reduction in Models B and C. The
fact that D-tolling gains significant improvements over three different traffic models suggests it may be beneficial in other
models as well, including real-life traffic. Our study further found that the optimized b and R values are similar across two,
non static, traffic networks. Future work will examine if these values are effective across other models and scenarios. If they
are not, techniques for optimizing b and R values should be developed and investigated.

There still remain many assumptions in D-tolling which future research should address. It is unrealistic to assume 100%
responsiveness to tolls. Future work will investigate what ratio of responsive traffic is needed to ensure optimal system per-
formance, and the effect of different responsiveness ratios on the system’s performance. Future research will also test the D-
tolling scheme for other combinations of traffic models, network topologies, and driver behavior assumptions such as mode
choice, destination choice, and departure time choice.

We also plan to further investigate properties of D-tolling within Model A, whose analytical framework may determine
conditions for provable convergence of D-tolling to system optimality. Other important topics for future study include devel-
oping tolling schemes which may be more politically acceptable than universally tolling network links, including opt-in sys-
tems, credit-based systems, or the use of incentives in addition to (or in lieu of) punitive tolls.
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Appendix A. The need for a weighting parameter R

In a road network, agents often plan a full origin to destination route prior to embarking. The route chosen by an agent is
optimized according to current traffic conditions and tolls. The lag between decision making and the impact of these deci-
sions might produce oscillation effects, as demonstrated in the following example.



Table 2
Example demonstrating the need for a weighting parameter to prevent oscillation.

Time Shortcut Highway

step x T s x T s

0 0 0 0 0 1 0
1 1 1 1 0 1 0
2 0 0 0 1 1 0
3 1 1 1 0 1 0
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Assume that time is discretized into time steps and that an agent planing its route at time step t will traverse the system
at time step t þ 1. Consider a road network with a single origin and destination and two parallel links (highway and short-
cut), each leading from origin to destination. The travel time on the highway equals WhwðxhwÞ ¼ 1, while the travel time on
the shortcut is WscðxscÞ ¼ xsc . Assume that D-tolling is used and that at t ¼ 0 the network is empty and tolls are zero on both
links. Table 2 specifies the flow volume (x), travel time (T) and toll value (s) for both the highway and shortcut at each time
step.

At t ¼ 0 the travel time is 0 on the shortcut and 1 on the highway. As a result, all agents planning at t ¼ 0 will choose the
shortcut. The resulting congestion would cause the shortcut’s travel time to increase to 1, along with its toll. All agents plan-
ning at t ¼ 1 would thus choose to travel via the highway. As a result, the shortcut will remain empty at t ¼ 2 and its travel
time and toll will reduce to 0. This phenomenon, where all agents choose to go via the shortcut in one time step and the
highway in the next, will repeat itself, resulting in sub optimal system performance.

Moreover, if the a link performance function isn’t assumed, tolls may unpredictably spike due to traffic irregularities. For
instance, whenever a traffic light turns red, traffic stops and the toll set byD-tolling spikes. On the other hand, when the light
turns green traffic flow resumes and the toll drops. Both of these effects can be mitigated by introducing a weighting param-
eter (specified as R in the model presented in this paper). Effectively, this weighting parameter accounts for the delay
between route choice and realized congestion due to such route choices, by introducing a compensatory delay in the tolling
system.
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