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Abstract

While deep reinforcement learning (DRL) has led to numer-
ous successes in recent years, reproducing these successes
can be extremely challenging. One reproducibility challenge
particularly relevant to DRL is nondeterminism in the training
process, which can substantially affect the results. Motivated
by this challenge, we study the positive impacts of determin-
istic implementations in eliminating nondeterminism in train-
ing. To do so, we consider the particular case of the deep
Q-learning algorithm, for which we produce a deterministic
implementation by identifying and controlling all sources of
nondeterminism in the training process. One by one, we then
allow individual sources of nondeterminism to affect our oth-
erwise deterministic implementation, and measure the impact
of each source on the variance in performance. We find that
individual sources of nondeterminism can substantially im-
pact the performance of agent, illustrating the benefits of de-
terministic implementations. In addition, we also discuss the
important role of deterministic implementations in achieving
exact replicability of results.

Introduction
The reproducibility of algorithms and results in deep rein-
forcement learning (DRL) is paramount. For one, the re-
producibility and verifiability of results ensure that DRL is
on stable footing. Furthermore, reproducibility increases the
rate at which DRL research progresses, since people can
more easily build off of prior work. DRL in particular has
witnessed several remarkable results that have elevated the
field of artificial intelligence. These results include one of
the first systems to play video games while learning di-
rectly from pixels (Mnih et al. 2015), algorithms enabling
agents to perform complex locomotion behaviors (Heess et
al. 2017), and a system that plays the game of Go at a super-
human level (Silver et al. 2016). Along with these impres-
sive successes, however, has come both an increased diffi-
culty and increased need to reproduce successful DRL algo-
rithms (Henderson et al. 2018). In this paper, we argue that
deterministic implementations are crucial in tackling repro-
ducibility challenges faced by DRL.

∗This work took place primarily while this author was a student
at the University of Texas at Austin.

Perhaps the most obvious reproducibility goal that deter-
ministic implementations help achieve is replicability. There
is a distinction between the general goal of reproducibility
and the stricter notion of replicability. We define them here
as follows:

Reproducibility: the ability of an experiment to be re-
peated with minor differences from the
original experiment, while achieving the
same qualitative results.

Replicability: the ability of an experiment to be repeated
exactly, producing the same quantitative
results.

In DRL, it is possible that an empirical result may be a false
positive. In such a scenario, an independent party may not
be able to reproduce the result in question. Rather than mis-
attributing the inability to reproduce an experiment to ghost
factors, replicability enables experiments to be repeated ex-
actly and investigated further. This can be done regardless of
the truth of the result, and therein lies its benefit. In the con-
text of DRL, achieving replicability requires a deterministic
implementation to be run under identical experimental con-
ditions. Experimental conditions refer to the software and
hardware conditions under which a computational experi-
ment is executed. A deterministic implementation is defined
as:

Deterministic
implementation:

a computer program that, when run un-
der some fixed experimental conditions,
will always produce identical outputs for
a given input.

Note that deterministic implementations alone are not repli-
cable experiments. A replicable experiment consists of a de-
terministic implementation and fixed experimental condi-
tions. If a deterministic implementation is executed on dif-
ferent hardware or is compiled differently from the original
experiment, the experimental results may not be replicated.

Another related way in which deterministic implementa-
tions can contribute to reproducibility goals is through their
ability to eliminate nuisance noise from results, which can
benefit statistical testing. Even with access to the original
implementation, nondeterminism in the training process can
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cause large variation in results, making them difficult to re-
produce. DRL is uniquely susceptible to nondeterminism in
that the agent learns from a nonstationary distribution of ex-
periences, which in turn is influenced by nondeterministic
environments and nondeterministic policies. Imagine how a
small difference between two agents’ early experiences can
proliferate throughout the training process as their nonsta-
tionary experience distributions drift apart. One small dif-
ference can result in drastically different outcomes for the
two agents. It is this cascading effect that makes DRL par-
ticularly susceptible to nondeterminism. This susceptibility
is the motivation for our sensitivity analysis, in which we
measure the effect of individual sources of nondeterminism
on the variance in performance throughout training.

In this paper, our primary contributions are to:

1. identify the sources of nondeterminism in DRL and de-
scribe a deterministic implementation of deep Q-learning
(which we make publicly available), and

2. measure the sensitivity of an agent’s performance to indi-
vidual sources of nondeterminism.

Given that deterministic implementations are a prerequisite
to the goal of replicability, we also identify some experi-
mental conditions that form the gap between deterministic
implementations and replicability.

Background
We now provide a brief background of the Markov decision
process formulation of reinforcement learning problems and
of the deep Q-learning algorithm, which is our algorithm of
interest in this paper.

Markov Decision Processes
Reinforcement learning (RL) problems are formulated as
Markov decision processes (MDPs). An MDP is a tuple
(S,A, P, γ,R), where S denotes the set of states within the
environment and A denotes the set of actions available to
the agent within the environment. The agent acts at discrete
timesteps where, at each timestep, it observes a state, per-
forms an action, and transitions to another state. This is for-
malized by the transition model P , where P (s′|s, a) is the
probability that the agent transitions to state s′ when per-
forming action a in state s. The discount rate γ ∈ [0, 1]
specifies the agent’s preference for immediate rewards ver-
sus future rewards. The reward functionR : S×A×S → R
provides the agent with rewardR(s, a, s′) as it transitions to
state s′ after performing action a in state s.

Given an MDP, an RL agent’s objective is to learn a pol-
icy π : S × A → [0, 1] mapping a state-action pair (s, a)
to the probability that the agent performs action a in state
s. Specifically, the agent tries to learn an optimal policy
π∗, a policy that maximizes the agent’s expected cumulative
discounted reward E[

∑∞
t=0 γ

tR(st, at, st+1)]. Often, rather
than directly learning an optimal policy π∗, the agent learns
the optimal state-action value function Q∗ : S × A → R,
which maps a state-action pair (s, a) to the expected cumula-
tive discounted reward the agent receives if action a is taken
in state s and optimal actions are performed thereafter. If the

agent learns Q∗, then an optimal policy can be to perform
action argmax

a
Q∗(s, a) in state s.

Deep Q-learning
Deep Q-learning (Mnih et al. 2013; Mnih et al. 2015) is
an algorithm that trains a deep neural network through Q-
learning (Watkins and Dayan 1992) to approximate the opti-
mal state-action value function Q∗ in high dimensional state
spaces. The algorithm is applied to the Arcade Learning En-
vironment (ALE) (Bellemare et al. 2013), an evaluation plat-
form that provides RL agents with an interface to play Atari
games. Deep Q-learning is able to achieve human-level per-
formance in many of these games while learning directly
from pixel representations of the state (i.e. game frames).
As the agent interacts with its environment, it maintains a
replay buffer D of its last N transitions (typically N = 1
million). Each entry in this replay buffer contains a tuple
(st, at, rt, st+1), representing the state, action, reward, and
subsequent state, respectively. The network representing the
state-action value function being learned is termed a deep Q-
network (DQN), where Q(s, a;θ) represents the predicted
state-action value under the DQN parameters θ. The algo-
rithm also maintains a separate target network Q(s, a;θ−),
where θ− represents the parameters of a network from a
prior training iteration. Periodically, the target network pa-
rameters are reset to equal the DQN parameters: θ− ← θ.
To train the DQN at iteration i, the agent minimizes the loss
(Mnih et al. 2015):

E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′;θ−i )−Q(s, a;θi)

)2]
.

Following techniques from stochastic optimization, the
agent randomly samples minibatches of transitions uni-
formly from the replay buffer, uses the DQN and the target
network to compute the loss, and then updates the DQN’s
weights.

Deterministic Implementations
In order to produce a deterministic implementation of deep
Q-learning, we must first identify all the sources of nondeter-
minism that are present in its implementation. Once identi-
fied, controlling or eliminating these sources from the learn-
ing process is sufficient for obtaining a deterministic imple-
mentation.

Sources of Nondeterminism While the exact sources of
nondeterminism depend on the algorithm, problem domain,
libraries, etc., we identify those sources common to most
DRL algorithm implementations.

• GPU Neural networks are typically trained on graphics
processing units (GPUs). Many numerical operations per-
formed on the GPU are nondeterministic by default.

• Environment The environment in reinforcement learning
can be stochastic. That is, the transitions can be random.

• Policy During training, reinforcement learning agents
typically employ a stochastic policy. That is, the agent’s



action is drawn from a non-degenerate distribution over
the available actions.

• Network initialization Prior to training, the weights of
the neural network are randomly initialized.

• Minibatch sampling When training neural networks,
several algorithms sample random minibatches of train-
ing data from some dataset.

All of these sources of nondeterminism are present in
deep Q-learning. For example, the deep Q-network is ran-
domly initialized and trained on a GPU. The agent employs
an ε-greedy stochastic policy during training, whereby at
each timestep, it performs a random action with probability
ε. Deep Q-learning uses random minibatch sampling from
the replay buffer when training the neural network. The al-
gorithm was originally developed for the first version of the
ALE (Bellemare et al. 2013), where the environment is com-
pletely deterministic. However, in the most recent version
of the ALE (Machado et al. 2018), a new form of stochas-
ticity is added to the environment, in the form of “sticky
actions”. In an environment with sticky actions, an agent’s
previous action is performed in the environment with prob-
ability p = 0.25, and the agent’s chosen action is performed
with probability 1 − p. The last form of nondeterminism in
deep Q-learning, not listed above, is the use of “no-op” or
do-nothing actions. In the deterministic ALE (p = 0.0) for
which deep Q-learning was originally designed, the agent
performs a random number of no-op actions at the begin-
ning of each episode in order to randomize the initial state
within the deterministic environment.

Implementation: Eliminating Nondeterminism Our im-
plementation of deep Q-learning is written in Python using
the PyTorch library (Paszke et al. 2017). PyTorch1 exposes
a modifiable boolean variable that allows us to enable or
disable deterministic numerical computations on the GPU.
Furthermore, PyTorch permits us to set the seed used to ini-
tialize the weights of the deep Q-network, allowing us to
obtain identical initial networks on separate runs. To con-
trol for no-ops, exploration, and minibatch sampling, we
assign each of these sources of nondeterminism its own
seeded random number generator. Any random operations
required for no-ops, exploration, or minibatch sampling are
then implemented using the assigned random number gen-
erator. Thus, across training runs, the same “random” num-
ber of no-ops are performed at the beginning of episodes.
Exploratory actions are identical and occur at consistent
timesteps across runs. Similarly, the same minibatch indices
are sampled across runs. In controlling environment non-
determinism, there are two possibilities. The first is when
we use a deterministic environment, where we simply set
p = 0.0. The second scenario is when we wish to use the

1We selected PyTorch for its ease of controlling GPU nonde-
terminism. However, the sources of nondeterminism can depend
on the deep learning library used. For example, some versions
of Tensorflow have certain nondeterministic functions that require
workarounds and enabling GPU determinism is not straightfor-
ward. In fact, we were not able to do so.

stochastic ALE. In this scenario, we set p = 0.25, and in-
troduce a “sticky action” seed, which we use to create a ran-
dom number generator to implement sticky actions. That is,
we use this random number generator to decide whether to
repeat the previous action or perform the new one.

If all experimental conditions are held fixed (as is the case
in our experiments), and all sources of nondeterminism are
controlled in this fashion, we then achieve identical results
on separate training runs, as desired. To validate the equiv-
alence of separate runs, we verify that the learned weights
of the neural network are identical at intervals throughout
training.

We use the standard DQN architecture (Mnih et al. 2015)
for all agents. Each agent’s policy during training is an ε-
greedy policy, where at each timestep, the agent either per-
forms a random action with probability ε, or the greedy ac-
tion argmax

a
Q∗(s, a;θ) with probability 1− ε. The value ε

is initially set to 1.0 and is linearly annealed to 0.1 over the
first million frames, remaining at 0.1 thereafter. For agents
trained in a stochastic environment, we anneal ε to 0.01 over
the first million frames, after which it remains at 0.01. We
make our deterministic implementation2 publicly available.

Experimental Conditions and Replicability Recall that
deterministic implementations are necessary but not suffi-
cient for achieving replicability. Varying the experimental
conditions can cause a deterministic implementation to pro-
duce different results3. While we do not aim to identify all
hardware or software conditions that can influence replica-
bility, it is useful to be aware of some experimental condi-
tions that can impede replicability.

On the software side, the deep learning library version
can influence replicability. For example, some versions of
TensorFlow (Abadi et al. 2016) have library functions that
are nondeterministic. Furthermore, in some scenarios, the
library functions must be run as single-threaded in order
to achieve determinism. Regarding GPU-related software,
according to the cuDNN documentation (cuDNN underlies
many deep learning libraries), bit-wise reproducibility can-
not be ensured, since implementations for some routines
vary across versions (NVIDIA Corporation 2018b). From
the hardware side, running the same deterministic imple-
mentation on a CPU can yield different results from running
deterministically on a GPU. This can be due to several rea-
sons (Whitehead and Fit-Florea 2011), including differences
in available operations and in the precision between the CPU
and GPU. Further, when a deterministic implementation is
run on two different GPU architectures, it may produce dif-
ferent results, since code generated by the compiler is then
compiled at run-time for a specific target GPU (NVIDIA
Corporation 2018a; NVIDIA Corporation 2018b).

2https://github.com/prabhatnagarajan/
repro_dqn

3In the Supplemental Material, we plot the learning curves of a
deterministic implementation executed on two separate machines,
producing different curves.

https://github.com/prabhatnagarajan/repro_dqn
https://github.com/prabhatnagarajan/repro_dqn


Experiments
In order to quantify the benefit of controlling nondetermin-
ism, we use our deterministic implementation to systemat-
ically allow individual sources of nondeterminism to influ-
ence the training process. We measure the sensitivity of the
agent’s performance to each individual source of nondeter-
minism. Specifically, our measure of sensitivity is the stan-
dard deviation in the agent’s achieved performance (reward).
Our sensitivity analysis highlights the benefit of determin-
istic implementations. By permitting just a single source
of nondeterminism to influence the training process, we
demonstrate how impactful even a single source of nonde-
terminism is on the variability of performance.

Sensitivity Analysis
Training In our experiments, we train six groups of net-
works using our deterministic implementation. Since we are
interested in the reproducibility of published results, we em-
ulate practical experimental scenarios by training five net-
works for each experimental group, since a sample size of
five is commonly used in DRL papers (Machado et al. 2018;
Nair et al. 2015).

The first group, which we call the “deterministic” group,
consists of five networks trained with the same random seeds
and with deterministic GPU operations enabled across all
runs. The “GPU” group has all settings identical to the de-
terministic group except with nondeterministic GPU oper-
ations enabled. The “environment” group is trained in a
stochastic environment, with p = 0.25, whereas all other
groups are trained in a deterministic environment (p = 0.0).
Each agent in the environment group has a different sticky
action seed to inject environment nondeterminism, ensuring
each run is different. Except for setting p = 0.25 and using a
different sticky action seed for every run, all other settings of
environment group are identical to the deterministic group’s
settings. The “exploration” group consists of five networks
trained with different random exploration seeds and all other
settings identical to the deterministic group. The “initializa-
tion” group consists of five networks each trained with a dif-
ferent set of randomly initialized weights, with all other set-
tings identical to the deterministic group. The “minibatch”
group is also trained with identical settings to the determin-
istic group, except each of the five agents has a different
minibatch seed.

All of our agents are trained on the Atari game BREAK-
OUT, a domain where the agent uses a paddle to hit a moving
ball while trying to eliminate rows of bricks from the game
screen. We choose this domain due to its widespread pop-
ularity in the DRL research community. All of our agents
were trained for 20 million time steps in the ALE and are
evaluated after every 250K timesteps of training. At each of
these evaluation intervals, we measure the mean and stan-
dard deviation of the performances of the agents within a
group. The hardware and software conditions are held con-
stant for all experiments (see Supplemental Material for ex-
perimental conditions).

Evaluation Protocol When we measure the performance
of our agents, we want to ensure that any differences in

performance are a result of differences between their Q-
networks. In doing so, we ensure that we are measuring per-
formance differences due to an individual source of nonde-
terminism, since the differences between agents’ trained Q-
networks are solely due to a source of nondeterminism influ-
encing the learning process. As such, we evaluate the agents
over 100 episodes (each episode is capped at five minutes
of play) using a greedy policy, so that any deviations be-
tween agents’ policies are a consequence of their different
Q-networks. However, in the deterministic ALE (p = 0),
repeating a greedy policy 100 times results in 100 identical
trajectories. Therefore, to ensure that our evaluation protocol
is comprehensive and measures an agent’s performance in a
diverse set of conditions, we have each of our 100 episodes
begin with a unique start state, from which an agent per-
forms a greedy policy. This protocol contrasts from the typi-
cal ways of introducing diversity in the evaluation, which in-
volve injecting some stochasticity into the policy. However
such evaluation protocols can confound our results, as we
discuss in the Supplemental Material. To produce a unique
start state for each episode, we begin each episode with a
predetermined action sequence consisting of dozens of ac-
tions, with each sequence ending in a unique state. Though
the start states are generated randomly for diversity, we still
ensure that the start states are not poor states that impede an
agent’s ability to perform well in an evaluation episode. The
full details of the start state generation are in the Supplemen-
tal Material.

Since the environment group is trained with p = 0.25,
this group uses a slightly different evaluation protocol. We
still have each agent performing a greedy policy for 100
episodes, where each episode is capped at five minutes.
However, rather than beginning episodes at unique start
states, each episode uses a unique sticky action seed to im-
plement stochasticity for that episode. The 100 sticky ac-
tion seeds used for the evaluation episodes are held con-
stant across all evaluations of the environment group. This
protocol again ensures that we have 100 different episodes
in which deviations between two agents’ trajectories are
caused solely by disparities in their decisions made within
that episode.

Results The results for our sensitivity analysis are de-
picted in Figure 1 and in Table 1. We show six graphs, one
per experimental group, plotting the mean performance of
the agents within the group (where performance is the mean
score on 100 episodes), with the shaded areas depicting val-
ues within one standard deviation of the mean performance.
In Table 1, we show the mean and standard deviation in
performance for the agents within each group at the end of
training, i.e., after 20 million timesteps. We also depict the
mean and standard deviation of the best-scoring networks
within a group. The best scoring network of a single training
run refers to the network parameters that achieve the highest
performance across all evaluation intervals during a single
training run. It is common practice in DRL (Machado et al.
2018) to report the mean score of the best-scoring networks
of several training runs and thus we do so here, to better re-
flect the impact of nondeterminism on reported performance



(a) Deterministic (b) GPU (c) Environment

(d) Exploration (e) Initialization (f) Minibatch

Figure 1: The game scores for our six experimental groups. Solid curves depict the mean score. Shaded areas represent values
within one standard deviation of the mean score. The absence of a shaded area indicates identical results across all five runs.

Metric Deterministic GPU Environment Exploration Initialization Minibatch

Average Score (Best) 146.7 141.9 33.6 148.6 131.2 153.38
Standard Deviation (Best) 0.0 8.8 8.7 17.0 31.0 32.96
Relative Standard Deviation (Best) 0.0% 6.22 % 25.96% 11.42% 23.61% 21.49%

Average Score (Final) 146.7 126.5 29.0 126.9 108.6 132.84
Standard Deviation (Final) 0.0 15.7 10.9 21.4 47.4 8.89
Relative Standard Deviation (Final) 0.0% 12.41% 37.65% 16.85% 43.61% 6.69%

Table 1: The mean, standard deviation, and relative standard deviation of scores in BREAKOUT for six experimental groups.

in practice. We also report the relative standard deviation in
performance, in order to provide a domain-agnostic measure
of variance, since the numerical score is specific to BREAK-
OUT.

Discussion
Consider Figure 1(a), which depicts the learning curve of
the deterministic group. The key takeaway from this figure
is that there is no shaded area. All five curves within the
deterministic group overlap exactly, with zero variance at
every point of the learning curve, a direct consequence of
deterministic training.

Notice, however, how the deterministic learning curve is
less stable than the other curves, despite representing an av-
erage of 100 episodes. This instability can be observed more
dramatically when we consider the performance of the agent
on an individual start state, as in Figure 2. We observe sharp
fluctuations in performance even between consecutive eval-
uation intervals, demonstrating that DQNs are very sensitive

Figure 2: The score of the deterministic agent on an individ-
ual start state.

to minor changes in weights, a known phenomenon (Mnih et
al. 2013). Note that we observe results similar to Figure 2 for
all 100 start states (see Supplemental Material). We know
that deterministic implementations are needed to replicate



curves exactly, but Figure 2 shows that without determinis-
tic implementations, it is unlikely that we can even closely
reproduce performance for individual start states.

The remainder of the curves in Figure 1 all exhibit a
key feature: growing variance as learning progresses. For
all of these curves, we observe low variance early in train-
ing, likely due to the controlled sources of nondeterminism
which keep the performances similar. However, as the agents
learn and their experiences and network weights diverge, we
observe the variance in performance growing larger. This
growing variance is a characteristic of the cascading effect,
where small differences influence the policy, thereby pro-
ducing more differences and larger variance in performance.
The GPU curve, Figure 1(b), particularly underscores the
cascading effect. The GPU is the only source of nondeter-
minism that exists outside of the algorithm itself. In theory,
if we had infinite precision, the GPU curve would have no
variance. However, small differences in computation com-
pound upon one another as training progresses, resulting in
the 12.41% relative standard deviation at the end of train-
ing, as shown in the GPU column of Table 1. We often
ignore GPU nondeterminism as negligible when reproduc-
ing research. However, GPU nondeterminism epitomizes the
benefit of deterministic implementations, as it shows that
even if all implementations details and all other sources of
nondeterminism are held fixed, small errors can compound
throughout training and cause noise in the produced results.

When considering the results for each individual source
of nondeterminism, it is important to reflect on the scenar-
ios in which eliminating nondeterminism reduces variance.
We know that for any of our nondeterministic experimental
groups, differences between networks will inevitably arise,
after which the cascading effect can inflate these differences.
However, we can still benefit from controlling some sources
of nondeterminism, since controlling nondeterminism can
ameliorate the amount by which initial differences arise.
This is reflected in Table 1. For example, the GPU results
have the lowest relative standard deviation of the best net-
works. The members of the GPU group start with identi-
cal initial networks and share identical random exploration
seeds in a deterministic environment. Consequently, the net-
works of the GPU group have identical experiences for tens
of thousands of time steps, and populate their replay buffers
with similar experiences. Further, it takes tens of thousands
of steps before the nondeterministic GPU operations create
substantial enough differences to manifest as different action
selections by the agents. For all of these reasons, the differ-
ences caused by GPU nondeterminism are minimal early in
training, relative to other sources of nondeterminism, before
the cascading effect plays a significant role.

In contrast, consider the environment group, where elim-
inating nondeterminism is the least beneficial in terms of
reducing the relative standard deviation in the best net-
works’ performance. The networks in this group operate
in a stochastic environment, so that virtually instantly the
shared exploration and minibatch seeds lose their benefit.
The stochastic environments immediately cause agents to
have different experiences, and consequently their replay
buffers are different. Further, the exploration seed causes

identical exploratory actions to be chosen at the same time
steps, but this is ineffective for the environment group, since
the agents quickly go to different states due to the stochas-
ticity. The only source of nondeterminism that may have an
enduring benefit on reducing variance is the network initial-
ization, which alone proves insufficient for majorly reducing
variance.

Unsurprisingly, the initialization group has the highest
relative variance in performance amongst both its final net-
works and its best networks of any experimental group
trained in the deterministic version of BREAKOUT. This is
expected, since varying the network initialization induces
a permanent difference between the agents that is reflected
throughout training. Having ε set to 1.0 at the beginning of
training causes the initialization agents to share many early
experiences. However, it appears that these experiences are
insufficient to overcome the permanently ingrained differ-
ences of the network initializations themselves.

The exploration group has less variance than the initial-
ization group, though more than the GPU group. The ex-
ploration group’s networks share random initializations but
their experiences and replay buffers desynchronize imme-
diately due to the high exploration early in training. Though
this group exhibits less variance than the initialization group,
we did not find a statistically significant difference between
their variances. Therefore we are unable to conclude that
the effect of random initializations on the variance in per-
formance is greater than that of having different early expe-
riences.

Contrary to what we might expect, minibatch sampling
has the highest variance in best performance (though not
relative variance). This is counterintuitive, since the large
replay buffer size (1 million) makes the experience distribu-
tion, from which we sample minibatches, more stationary.
A closer look at the data indicates the cause of this large
variance is an outlier. Notice how the average performance
is comparatively higher for the minibatch group’s best net-
works than the other groups. This is due to one network scor-
ing over 200 at its best. Unfortunately, as we see in Figure 2,
the agent’s performance on individual start states is volatile
and reporting the performance of the best network can be
quite noisy and susceptible to spikes in the learning curve.
This is an inherent drawback to this form of reporting perfor-
mance, and in fact it has been recommended (Machado et al.
2018) that future ALE research avoid this form of reporting.

Our sensitivity analysis demonstrates several key points
that highlight the benefit of deterministic implementations.
Perhaps the most important observation is that allowing
some sources of nondeterminism to remain uncontrolled can
result in large variance, as shown by the initialization group.
It is scenarios like these that we aim to avoid with determin-
istic implementations. Another obvious, yet important ob-
servation is that deterministic runs produce no variance in
the learning curve or reported performance, as intended. In
all nondeterministic groups, we observe a growing variance
in performance, with the cascading effect likely playing a
major role. We also observe that some sources of nondeter-
minism produce much less variance than others. We even
find that for the final networks, at a significance level of



α = 0.1, the initialization group has statistically different
variance from the GPU group. This is noteworthy because
it shows that controlling even some sources of nondetermin-
ism can reduce variance. This is particularly promising for
real-world domains such as robotics, where it may be im-
possible to have deterministic implementations. Lastly, it is
very important to take note that we have demonstrated the
impact of nondeterminism using a deterministic evaluation
protocol, where performance differences are all attributable
to the policies of the agents. We may find that stochastic
evaluation protocols increase the variance we observe for in-
dividual sources of nondeterminism.

Related Work
In this section, we discuss prior work on replicability, repro-
ducibility in DRL, as well as related research on the ALE.

Replicability and Experimental Conditions
There have been studies to identify and examine the exper-
imental conditions that can affect the outcome of computa-
tional experiments. For example, Gronenschild et al. (Gro-
nenschild et al. 2012) analyze the results produced by a
software package called FreeSurfer (Fischl 2012), which is
used to make measurements in studies of neuroanatomical
structures. They test measurements produced while using
FreeSurfer under different experimental conditions. They
vary the FreeSurfer version, the operating system, and the
workstation (hardware), and find that results can vary sig-
nificantly when experimental conditions are changed.

Reproducibility Efforts
There have been several recent efforts to address repro-
ducibility through the public release of environments and
implementations (Hesse et al. 2017; Brockman et al. 2016;
Bellemare et al. 2013; Bellemare et al. 2018; Beattie et al.
2016; Tassa et al. 2018), enabling better benchmarking, ex-
perimentation, and comparison of DRL algorithms. We also
see a rise in the development of reproducibility-friendly
software. For example, AWS Docker containers (Ali, El-
Kalioby, and Abouelhoda 2016) and CodaLab Worksheets
(CodaLab ) can be used to achieve replicability by pack-
aging the experimental conditions with the code. Sumatra
(Davison et al. 2014) is a tool that can be used to control
dependencies and assist with version control in reproducible
research. CDE (Code, Data, Environment) (Guo 2012) pack-
ages software dependencies that are needed to rerun Linux-
based experiments on other machines. Lastly, Jupyter note-
books (Kluyver et al. 2016) enable researchers to readily
have code with explanations packaged together. Further,
these notebooks can run inside containers (e.g. Docker), per-
mitting replicability.

Reproducibility in Deep Reinforcement Learning
While reproducibility has been explored across artificial in-
telligence and machine learning (Drummond 2009; Gunder-
sen and Kjensmo 2017), reproducibility in DRL remains
relatively uncharted. In the context of DRL, the effects
of hyperparameters, codebases, evaluation metrics, random

seeds, and aspects of the environment have been studied
to a degree (Henderson et al. 2018; Islam et al. 2017;
Machado et al. 2018). Henderson et al. (Henderson et al.
2018) show that the choice of hyperparameters, network ar-
chitecture, reward scale, and random seeds can have a dra-
matic effect on the performance of an agent. They show that
some algorithms perform better than others in environments
with stable dynamics, while performing worse in environ-
ments with unstable dynamics. They also find that differ-
ences in implementation details between codebases imple-
menting the same DRL algorithm can result in drastically
different performances. Perhaps their most shocking result
is that two groups of networks trained from the same al-
gorithm implementation can yield statistically significantly
different performances solely due to differences in global
random seeds.

Our paper differs from prior research in that we investi-
gated individual sources of nondeterminism in isolation, as
opposed to the aggregate effect of random seeds. Further-
more, our study of environment stochasticity studied the ef-
fect of injecting stochasticity into a deterministic environ-
ment, as opposed to comparing stochastic tasks to determin-
istic tasks when the underlying task semantics are inherently
different. Finally, prior work focuses on different DRL algo-
rithms and are concerned more broadly with reproducibility,
as opposed to our focus on deterministic implementations,
which addresses both replicability and reproducibility.

Reproducibility in DRL has also been examined from the
perspective of statistical hypothesis testing by Colas et. al
(Colas, Sigaud, and Oudeyer 2018). They describe good sta-
tistical practices for algorithm comparison as well the selec-
tion of an appropriate sample size in DRL.

The Arcade Learning Environment
While not necessarily in the domain of reproducibility, there
have been studies on the impact of deterministic environ-
ments in the ALE (Hausknecht and Stone 2015; Machado
et al. 2018). These studies find that the deterministic envi-
ronments in the ALE can be exploited by naive agents that
can perform well simply by memorizing action sequences.
To combat this naive way of achieving success, these studies
examine several methods of injecting stochastity into the en-
vironment, such as no-ops, exploration, and sticky actions.
It should be noted that these studies are performed in the
presence of other forms of nondeterminism (e.g. GPU non-
determinism), unlike our experiments.

Conclusion
In this paper, we explored the important role of determin-
istic implementations for achieving reproducibility in DRL.
We identified the various sources of nondeterminism at play,
and described how to produce a deterministic implementa-
tion of deep Q-learning. We have discussed the relationship
and distinction between replicability and deterministic im-
plementations, and noted some of the factors that inhibit
replicability. Our sensitivity analysis on sources of nonde-
terminism demonstrates the large variance in results that can
occur due to individual sources of nondeterminism alone,



further supporting the need for deterministic implementa-
tions.

Given the many benefits of deterministic implementa-
tions, we encourage the research community to embrace
them in all aspects of research. We hope to see wider use and
dissemination of deterministic implementations and replica-
ble experiments in the future.
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Supplemental Material
Replicability vs. Determinism

Figure 3: Determinism vs. replicability. A deterministic implementation executed on two separate machines produces different
learning curves.

Figure 3 demonstrates the distinction between deterministic implementations and replicability. It shows two learning curves
of the same deterministic implementation executed on two different machines. Since the experimental conditions under which
the deterministic implementation was executed is varied, we observe a discrepancy between the learning curves. The two ma-
chines had different GPU architectures as well as different operating systems and library versions, any or all of which may have
elicited differences in the learning curves. Notice how the curves overlap in the very beginning as their network initializations
are identical. When we execute the deterministic implementation on either machine repeatedly, it produces identical results.
The results only vary when we compare across machines, or experimental conditions.

Note that the volatility in the learning curve is due to our use of a smaller DQN architecture (Mnih et al. 2013). Our curves
are consistent with the results we observe in that scenario (Mnih et al. 2013).

Comparison of Evaluation Protocols
Our evaluation protocol in which the agent performs a greedy policy from 100 different start states ensures that any differences
between the episode trajectories of two agents can be attributed to decisions made as consequences of their Q-networks being
different. This is a key feature we want in our evaluation protocol, because the differences in Q-networks can be attributed
entirely to allowing an individual source of nondeterminism to influence the training process. In this way, we can safely claim
that the variance in performance is solely caused by a source of nondeterminism. However, as we know, in the deterministic
ALE (p = 0), repeating a greedy policy 100 times results in 100 identical trajectories. Our evaluation protocol circumvents this
issue and evaluates the agent in a diverse set of scenarios, through the use of 100 different start states.

Our evaluation protocol contrasts from the typical way of evaluating agents in diverse scenarios. Typically, diversity is
produced by having agents perform ε-greedy policies is during evaluations (Mnih et al. 2013; Mnih et al. 2015). However, in
these evaluations, we are unable to attribute performance differences between the agents solely to differences between their
Q-networks, since exploration can confound results. Even if exploration is seeded in the evaluation stage, a single deviation
between policies will desynchronize the exploration seeds. If this occurs, then the differences in trajectories between two agents
are influenced by the Q-networks and exploratory actions. Our evaluation protocol allows us to correctly measure our variable
of interest, i.e. sensitivity due to nondeterminism, while retaining the benefits of stochastic evaluation protocols.

Generating Start Sequences
We have two primary goals when generating start sequences. One goal is to ensure that our start states are diverse and are in
different areas of the state space. In doing so, we can be confident that we are evaluating an agent’s ability to generalize to
different states. Another goal is to ensure that, in seeking diversity, we do not create poor start states that place an agent at a
disadvantage. As stated in the main body of the paper, we generate predetermined action sequences for the agent to perform
at the start of an episode, taking the agent to a unique state from which it performs a greedy policy for the remainder of the
evaluation episode. The use of a predetermined action sequence is similar to using human starts at the beginning of episodes,



where the agent completes an episode beginning with a trajectory of human expert play (Nair et al. 2015). However, rather
than generating our start sequences from human trajectories, we generate them computationally. To do so, we first produce
1000 random action sequences, varying in length from 55 to 95 actions (chosen uniformly within this range). We find that for
BREAKOUT, choosing beyond 95 actions often results in very poor states, or the loss of a life. We wanted to maximize the
lower bound on the number of random actions and informally found 55 to be a good number. The reason we vary the number of
random actions is to improve the diversity of our start states. By varying the stage at which the agent performs greedy actions,
it can help create more diverse states. However, by using between 55 and 95 random actions, we may find several states to be
poor, as we might expect from a long sequence of random actions. To remedy this, we used a trained DQN to rank our 1000
generated start states by their maximum Q-value (i.e. maxaQ(s, a)). We then select 100 start sequences randomly from the top
250 start sequences. While this method of generating start sequences is biased towards generating sequences that a DQN may
perform well on, it enables us to generate longer sequences of random actions, which improves the diversity of our start states.
We use the same 100 start sequences at every evaluation interval for all agents (except for the environment group). We should
note that, while no-op actions are often used at the beginning of an episode, we did not explicitly use them in our start state
generation procedure since no-op actions have no effect at the beginning of BREAKOUT episodes. This is a known drawback
to no-ops, and BREAKOUT is not the only domain for which no-ops have no effect at the beginning of the episode (Machado et
al. 2018). We include our start sequences along with the provided code linked in the main body of the paper.

Experimental Conditions
We list here the experimental conditions used for our experiments. The hardware conditions were:

• GPU: Nvidia GeForce GTX 1080

• CPUs (12)

– Model: Intel(R) Xeon(R) CPU E5-2603 v4 1.70GHz
– Architecture: Intel x86 64
– CPU op-mode(s): 32-bit, 64-bit

Our software versions were:

• Python 2.7

• ALE (0.5.1)

• numpy (1.13.3)

• torch (0.3.0.post4) (PyTorch)

• torchvision (0.2.0)

• Operating system: Ubuntu 16.04 (xenial)

• Cuda (8.0.61)

• cuDNN (7003)

• Nvidia GPU Driver Version: 384.111

It is difficult to determine with absolute certainty the list of all experimental conditions that must necessarily be fixed to
achieve replicability. One reason for this difficulty is that the experimental conditions that must be fixed are dependent on the
implementation. Furthermore, to determine whether a specific experimental condition is necessary for replicability, we must be
able to modify that experimental condition while fixing all others to see if it produces different results. This is an intractable
approach, unfortunately. For example, suppose the specific version of the ALE used is irrelevant for achieving replicability. In
order to conclude with certainty that the ALE version is not an experimental condition that must be fixed, we have to verify that
for all ALE versions the results are not changed. We must do this for all software that we use and we may encounter dependency
issues or incompatibility. It is even more difficult to test which hardware conditions are necessary for replicability, because one
cannot easily hold all hardware conditions fixed and switch the GPU that is used by a machine, for example. Furthermore, there
are many hardware conditions that would need to be tested, most of which are irrelevant.

Despite the difficulty in determining the necessary conditions for replicability, we are reasonably confident that if the exper-
imental conditions listed above are fixed, then our results will be replicated. In this paper, we sought to investigate the benefits
of deterministic implementations, one of which is replicability. However, replicability was not our primary goal. If one wishes
to develop a replicable experiment, we recommend that one develop a deterministic implementation (as we do in this paper)
and combine it with the tools listed in the related work section.



Start State Evaluations
In Figure 4 we include the learning curves of a deterministic implementation of deep Q-learning. Each graph represents the
agent’s score after performing a specific action sequence to start the episode. The key feature consistently observable across all
of these curves is the volatility of the agent’s performance. We see that as the agent learns, its performance on individual start
states fluctuates heavily. The general trend of increasing performance we see for a DQN is based off of an average of these 100
curves. However, even if we observe a general improvement in average score, the agent becomes drastically worse on specific
start sequences. Standard DRL evaluations are stochastic, causing different evaluations at each evaluation interval. Given the
volatility observed in Figure 4, perhaps it is best to use deterministic evaluations. Allowing evaluations to vary across evaluation
intervals might not accurately measure the agent’s change in performance, a problem that can be mitigated with deterministic
evaluations.
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