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Takeaways

» @Given training problems drawn from an unknown distribution, a probabilistic connectivity roadmap is learned.

* The proposed algorithm performs iterative path and cut searches in the roadmap to determine (in)feasibility efficiently.

* The algorithm is provably complete and its efficiency has been verified through extensive experiments.
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Problem Statement

~ Considered learning framework

M vl a,\ ¥l

- Probabilistic connectivity roadmap

Space of problems Training problems Unseen query problem - We often encounter motion planning problems that are infeasible.

1. Learning a probabilistic connectivity roadmap from training -  Existing approaches that leverage pathfinding only can be

problems. inefficient for solving infeasible problems.

2. Finding either a path or a cut in the roadmap. - Evaluating edge collision checking is expensive.

3. Improving a path quality to optimal, or finding an infeasibility Objective: Given a probabilistic connectivity roadmap, find either a
|\ Pproofinthe confinuous &-space. path or a cut in the roadmp while minimizing edge evaluations.

Algorithmic Insights

- Search over both path and cut spaces.
- Leveraging state-of-the-art off-the-shelf cut finding and pathfinding

algorithms.
- One search guides another, effectively reducing the search spaces.
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Pathfinding Cut finding

- Cut finding is generally more expensive than pathfinding; we
leverage the fact that cut finding separates the roadmap into two

separate subgraphs at each iteration.
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Vg Edgese, ..., e, form a candidate cut found by cut
finding. e, and e, are confirmed to be collision-free
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The Proposed Algorithm (IDPC)

- Divide-and-conquer paradigm.
- While a path is globally searched, a cut is locally searched within

the decomposed subgraphs. This induces several procedures,
such as clustering, partitioning, and abstract graph construction.

- An abstract graph is necessary to determine a global cut from the
local cuts collect from subgraphs.
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Provable compelte: the algorithm ensures correct identification of

while e,, ..., e; are confirmed to be in collision.
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Toy Example Visualization
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either a path or a cut in the roadmap. .

Experiments -

- Comparison with baselines (pathfinding only, cut finding only, BFS)

- Performance metrics: (1) the number of edge evaluations, (2) wall
clock running time
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- About 40 seconds runtime difference compared to the best-
performing baseline in the largest roadmap setting.

- More evaluations:
(1) Effect of calibration levels: performs well even with uninformative
priors.
(2) Effect of roadmap topologies gl R
(3) Effect of higher-dimensional ‘ '
./

\ problems.
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