

Motion Planning (In)feasibility Detection using a Prior Roadmap via Path and Cut Search

Yoonchang Sung¹ and Peter Stone^{1,2}

¹The University of Texas at Austin ²Sony Al

Learning for motion planning

Probabilistic roadmap

Collision-checking procedures

Probabilistic roadmap

Training problem 1

Probabilistic roadmap

Training problem 2

Probabilistic roadmap + edge existence probabilities

Objective: find a path while minimizing edge collision checks

Query problem

Existing work [1,2,3]: objective is to find the shortest path in the roadmap

Query problem

Research question: what if no path exists?

Research question: what if no path exists?

Our proposed approach

Main insight: leverage minimum cut from graph theory as searching solely for either path or cut can be inefficient → iterative search over path space and cut space

Iterative decomposition

Graph decomposition by cut finding

Subgraph partition 1

Involved procedures

Subgraphs

Subgraph partition 2

Clustering

Abstract graph

Feasible problem

Infeasible problem

Feasible problem

Infeasible problem

Feasible problem

Iteration 1

Infeasible problem

Iteration 1

Feasible problem

Infeasible problem

Simulation results

Performance metrics:

1. #edge collision checks

2. wall clock running time

More experimental results

Effect of graph topologies

More experimental results

Effect of higher-dimensional problems

Sony Al

Takeaway messages:

- Motion planning learning framework that utilizes probabilistic connectivity roadmap as prior knowledge
- 2. Efficient and complete algorithm that iteratively finds either feasibility or infeasibility in the roadmap

