
To appear in The Seventh Symposium on Abstraction, Reformulation, and Approximation (SARA 07),
Whistler, Canada, July 2007.

Model-Based Exploration in Continuous State

Spaces

Nicholas K. Jong and Peter Stone

The University of Texas at Austin, Austin TX 78712, USA,
{nkj,pstone}@cs.utexas.edu,

WWW home page: http://www.cs.utexas.edu/users/{nkj,pstone}

Abstract. Modern reinforcement learning algorithms effectively exploit
experience data sampled from an unknown controlled dynamical sys-
tem to compute a good control policy, but to obtain the necessary data
they typically rely on naive exploration mechansisms or human domain
knowledge. Approaches that first learn a model offer improved explo-
ration in finite problems, but discrete model representations do not ex-
tend directly to continuous problems. This paper develops a method
for approximating continuous models by fitting data to a finite sam-
ple of states, leading to finite representations compatible with existing
model-based exploration mechanisms. Experiments with the resulting
family of fitted-model reinforcement learning algorithms reveals the crit-
ical importance of how the continuous model is generalized from finite
data. This paper demonstrates instantiations of fitted-model algorithms
that lead to faster learning on benchmark problems than contemporary
model-free RL algorithms that only apply generalization in estimating
action values. Finally, the paper concludes that in continuous problems,
the exploration-exploitation tradeoff is better construed as a balance be-
tween exploration and generalization.

1 Introduction

Reinforcement learning (RL) algorithms must balance two motives in select-
ing actions in controlled systems: exploration and exploitation [1]. Exploratory
actions attempt to gather useful data about the system; exploitative actions
attempt to maximize expected rewards given the data. Effective exploration re-
mains a challenging research problem, with many RL implementations relying on
relatively naive approaches. For example, the seminal Q-learning algorithm [2],
which underlies a large fraction of ongoing RL research and most current RL ap-
plications, promises asymptotic convergence to an optimal control policy, given
an exploration policy that attempts every action in every state infinitely often.
In practice, most implementations explore by relying on random deviations from
the learned policy. Any sequence of actions is possible in such a scheme, but a
sequence becomes exponentially unlikely the longer it deviates from the learned
policy. Such inefficient exploration methods help to explain the limitations of
applying RL methods to real-world problems, which demand fast convergence
to reasonable policies in large or infinite state spaces.

Model-based approaches to RL facilitate more informed exploration by ex-
plicitly estimating the dynamics of the system before attempting to estimate the
optimal policy. Uncertainty in the learned model can direct the learning algo-
rithm to seek the data most likely to improve exploitation. Such approaches led
to the first probabilistic convergence guarantees to near-optimal policies with fi-
nite amounts of data [3]. However, this body of research usually relies on tabular
representations of models that presuppose discrete problems; model learning for
continuous problems has been restricted to the case of deterministic dynamics [4].
Partly for this reason, state-of-the-art algorithms for continuous problems, such
as LSPI [5], rely on model-free techniques, which approximate the long-term
value of each action in every state directly from data. However, these algorithms
still rely on random exploration to acquire this data. To make matters worse,
many modern algorithms employ computationally expensive supervised learning
mechanisms, which permit them to update their exploration policies very in-
termittently. In contrast, model-based algorithms typically support incremental
updates that permit immediate changes to the exploration policy in response to
each new piece of data.

This paper develops model-based algorithms suitable for continuous prob-
lems. It addresses the question of how to represent the transition model for an
action, which must specify for infinitely many states a successor state distribu-
tion over an infinite set. The successor state distribution may be approximated
with a finite sample generalized from the data, but this distribution must still be
parameterized by the infinite state set. However, if this transition model is used
with fitted value iteration [6], an algorithm for computing policies in infinite
problems using a finite state sample, then it suffices to represent the transition
model explicitly at only a finite number of points. The resulting fitted model
permits the application of the simple but effective exploration mechanism from
R-max [7], a model-based algorithm designed for finite problems.

2 Background

Most RL algorithms assume that the controlled system constitutes a Markov
decision process (MDP) [8]. An MDP 〈S, A,P ,R〉 comprises a set of states S,
a finite set of actions A, a transition function P : S × A → ∆S, and a reward
function R : S × A → IR. For all s ∈ S and a ∈ A, P(s, a) = Psa gives
the probability density function over successor states s′ given that action a is
executed in state s, so Pr(s′|s, a) = Psa(s′). The reward function gives the
expected reward E[r|s, a] = R(s, a) = Rsa for executing action a in state s.
Finally, MDPs satisfy the Markov assumption, which states that the successor
state s′ and the reward r depend only on s and a. In other words, s′ and r are
conditionally independent of all other variables given s and a.

In this paper, it will be necessary to reason about the composition of Marko-
vian transition functions, similar to the composition of MDPs in [6]. To this end,
suppose f : Y → ∆X and g : Z → ∆Y are transition functions from Y to X and
from Z to Y , respectively. Then the composition of f and g, f ◦ g : Z → ∆X is

obtained by marginalizing over the values of Y :

(f ◦ g)z(x) = Pr(x|z) =

∫

y

Pr(x ∧ y|z) dy =

∫

y

Pr(x|y, z) Pr(y|z) dy (1)

=

∫

y

Pr(x|y) Pr(y|z) dy (2)

=

∫

y

fy(x)gz(y) dy, (3)

where (2) follows from the conditional independence of x from z given y.1 Note
that for the finite case, the composition of transition functions corresponds di-
rectly to the multiplication of the appropriate transition matrices.

The optimal value function V : S → IR for an MDP specifies the maximum
possible expected cumulative reward V (s) given optimal behavior and starting
from state s ∈ S. This value function satisfies the Bellman optimality equations:
for all s ∈ S,

V (s) = max
a∈A

[

Rsa +

∫

s′∈S

Psa(s′)V (s′) ds′
]

. (4)

(A discount factor γ ∈ [0, 1] may be used to ensure that this system has a
solution.) Given V , an optimal policy π : S → A may be defined by π(s) =
argmaxa∈AQ(s, a), where Q(s, a) = Rsa +

∫

s′∈S
Psa(s′)V (s′) ds′.

3 Model Approximation

Model-based RL algorithms estimate the transition and reward functions P and
R from experience data. They can then use these estimates relatively directly
with (4) to compute the optimal value function and policy. For concreteness,
let s0, a0, r1, s1, . . . , rt, st be the data, with t being the current time step. In
episodic tasks, a special state sterminal /∈ S designates the end of an episode.
If si = sterminal, then ai and ri+1 are undefined, and si+1 is the initial state
in the next episode. Additionally, define the set of transition instances D =
{

i | 0 ≤ i < t ∧ si 6= sterminal
}

. For convenience, we also define subsets of D that
condition the data on specific actions and states. Let Da = {i ∈ D | ai = a} be
the set of instances that match action a, let Da

s = {i ∈ Da | si = s} be the set of
instances that also matches state s, and let Da

ss′ = {i ∈ Da
s | si+1 = s′} be the

set of instances that also matches successor state s′.

For finite MDPs, straightforward maximum likelihood estimation of P and R
is both simple and effective. The model may be computed from D as P̂sa(s′) =

|Da

ss′
|

|Da
s
| and R̂sa =

∑

i∈Da
s

ri+1

|Da
s
| . Initially, Da

s will be quite small everywhere, but by

1 f ◦ g is not strictly a Markovian transition function, since x is not conditionally
independent of y given z, but this subtlety is not relevant to the results of this
paper.

the pigeonhole principle the estimate will become quite reliable at some state-
action sa. Reliable regions of the model enable a model-based exploration mech-
anism to direct the agent to regions of the state space where more data is needed,
until adequate data exists to estimate the model at every reachable state. This
approach to exploration in finite problems is precisely the one taken explicitly
in E3 [3] and implicitly in prioritized sweeping [9] and R-max [7].

In very large finite MDPs, the updating the model for only one state-action at
a time may require too much data in practice. In infinite MDPs, the algorithm
may never visit the same state twice, precluding accurate estimation of the
model parameters entirely. One of the primary contributions of this paper is a
robust method for approximating the maximum likelihood model from data. The
method decomposes the estimated transition function into the composition of
components that can be computed easily from the data. A key feature of the final
method will be that one of these components generalizes the model across nearby
states, but for the sake of clarity the initial description of the decomposition will
address the case without generalization.

3.1 Decomposition of the Transition Function

Consider the task of estimating the effect of executing action a in state s, given
data D. Instead of directly estimating the transitions as a probability distribution
over S as a function of S × A, define a two-stage transition function that first
transitions from state-action sa to a state-instance si ∈ S ×D, then from state-
instance si to a successor state s′ ∈ S. A dynamic Bayesian network of this
formulation appears in Fig. 1.

t+1s

s sisa t

E

Mπ

Fig. 1. Dynamic Bayesian network showing the decomposition of the transition func-
tion for an approximated MDP. The policy π determines the conditional distribution of
sa given s. The model instance transition function M determines the conditional distri-
bution of si given sa. The action effect transition function E determines the conditional
distribution of s at time t + 1 given si from time t.

A model instance transition function M : S × A → ∆(S × D) maps each
state-action sa to a state-instance si with probability Msa(s, i). Intuitively, M
replaces the action component of sa with a specific instance i from the agent’s
experience that represents the predicted effect of a. The state-instance si implies
that the same thing that happened at time step i will happen again, this time
at state s. This transition function thus accounts for the stochasticity in the

domain, by replacing the potentially stochastic action a with a specific outcome
i. Note that M preserves the value of the state s when it transitions a state-
action sa to a state-instance si.

In the absence of generalization, the agent has no reason to believe that the
action effect at instance i will recur at state s unless si = s and ai = a. Hence,
the exact model instance transition function is

Mexact
sa (s, i) ∝ δssi

δaai
, (5)

where δxy = 1 if x = y and 0 otherwise. In the same vein, given state-instance si
and s = si, it must be the case that s′ = si+1, since the transition to si accounted
for any nondeterminism. The absolute effect transition function Eabs

si : S ×D →
∆S reflects this expectation:

Eabs
si (s′) = δs′si+1

. (6)

It can be verified that the composition of Eabs
si and Mexact

sa yields the maximum
likelihood estimator for P given above:

(

Eabs ◦Mexact
)

sa
(s′) =

∑

i∈D

δs′si+1

δssi
δaai

∑

i∈D δssi
δaai

=
∑

i∈D

δs′si+1
δssi

δaai

|Da
s |

=
|Da

ss′ |
|Da

s |
= P̂a

s (s′).

3.2 Model Generalization

The preceding section presented a novel computation of the exact maximum
likelihood estimator for P , but as discussed at the beginning of Sect. 3, in very
large or infinite MDPs this estimator is impractical. This section describes alter-
native definitions of the model instance transition function M and action effect
transition function E that are more useful in continuous problems. To predict
the effects of actions at infinitely many states given only finite data, the learned
model must use some form of generalization and hence inductive bias. This sec-
tion of the paper places additional assumptions on the state space of the MDP
to be learned. In particular, it assumes the state space is a bounded subset of
some Euclidean space, and it assumes that nearby states tend to induce similar
dynamics and reward for each action.

The approximate model lifts the restriction that the exact model imposes,
allowing a state-action sa to transition to a state-instance si such that si 6= s.
However, the model weights each transition according to a decreasing function
of the euclidean distance |si − s| between si and s. This paper uses Gaussian
weighting:

Mapprox
sa (s, i) ∝ δaai

e
−
(

|s−si|

b

)2

, (7)

where b is a parameter that controls the breadth of generalization across the state
space. This parameter critically affects learning performance. A large degree of
generalization permits very rapid learning, but in some cases overgeneralization
can prevent the algorithm from ever finding a good policy.

Even moderate amounts of generalization suggest a modification to the ab-
solute action effect transition function Eabs defined in Sect. 3.1, as shown in
Fig. 2. For a given state-instance si, predicted the successor state to be si+1,
the actual successor state for the instance i, makes less sense the farther si is
from s. Early experiments demonstrated that the breadth of generalization can
be quite large relative to the distance traveled in one time step. Otherwise, the
amount of data required may be prohibitive, despite potential regularities in the
system’s dynamics. For example, a mobile robot whose state includes its pose
should be able to generalize its action model over large regions of free space.
The relative action effect transition function thus attempts to isolate for a given
instance i the contribution of the action ai from the contribution of the state si

on the successor si+1:

Erel
si (s′) =







1, if si+1 = sterminal ∧ s′ = sterminal

1, if s′ = s + (si+1 − si)
0, otherwise.

(8)

si

s

si+1 si+1

s s s + si+1 − si

(a) (b) (c)

Fig. 2. The action effect transition function E can determine the fidelity of the ap-
proximated model to the true dynamics. (a) Approximating the effect of some action
a at a given state s using three nearby instances. (b) Absolute action effects predict
transitions to the exact successor states previously visited. (c) Relative action effects
better capture the dynamics of the system by applying the appropriate vectors to the
present state s.

Finally, the approximation of the reward function Rapprox is similar to the
approximation of the model approximation transition function. For a given state-
action sa, the approximated expected reward is a weighted average of the rewards
for the instances used to approximate a near s:

Rapprox
sa =

∑

i∈D

ri+1Mapprox
sa (s, i). (9)

4 Fitted-Model Learning Algorithms

Section 3 gave an approximation of the transition and reward functions for an
unknown continuous-state MDP, but a complete model-based algorithm also
requires a practical method for computing the value function from the model and
an exploration mechanism. This section integrates the contributions of Sect. 3
with existing algorithms that play each of these roles.

4.1 Fitted Models

The approximate model instance transition function Mapprox induces a contin-
uous MDP 〈S, A,Papprox,Rapprox〉, with Papprox = Erel ◦ Mapprox and Rapprox

given by (9). Computing the optimal value function for even this approximate
model is impossible in general, since the transition and reward functions still
vary continuously over the infinite state-action space S × A.

Fitted value iteration [6] provides an algorithm for approximating the opti-
mal value function of continuous-state MDPs. The algorithm uses a finite sam-
ple X ⊂ S of states to represent the value function, for an arbitrary value
function approximation scheme that represents the value of any state s ∈ S as
some weighted average of the values of X . That is, the function approximator
must compute the value of a state s ∈ S as V (s) =

∑

x∈X Fs(x)V (x), where
∑

x∈X Fs(x) = 1 and Fs(x) ≥ 0. In other words, F : S → ∆X must be a
transition function that transitions every state in S to one of the states in the
finite sample X . Then interleaving steps of value iteration with fitting the value
function to the function approximation scheme is equivalent to applying stan-
dard value iteration [10] to the derived MDP 〈X, A,F ◦ P ,R〉, as diagrammed
in Fig. 3 and 4. This equivalence ensures that function approximation does not
cause the value function computation to diverge.

state
sample

model

function
approximation

x4x2 x3 x5

x3a1

x2x1 x3

x3a2

x4 x5

a1 a2

{s′}

x1

Fig. 3. This diagram shows a continuous MDP with two actions being fitted to a state
sample of size 5. For clarity, only the transitions for state s3 are shown.

To compute a value function for the approximate model defined in (7) and (9),
it suffices to substitute Papprox for P and Rapprox for R in fitted value iteration.

derived
model

a1

x1 x2 x3 x4 x5

a2

Fig. 4. This diagram shows the finite MDP derived from fitting the continuous MDP
in Fig. 3.

Approximating the value function for the learned model is thus equivalent to
computing the exact value function for the finite MDP 〈X, A,F ◦ E ◦M,R〉.
Fig. 5 illustrates this decomposition.

Many function approximation schemes are possible for choosing X and defin-
ing F . In all the experiments described in this paper, X is a uniform grid span-
ning the state space, and Fs′(x) gives the coefficients for multilinear interpolation
of s′ from the 2d corners of the hypercube containing s′, where d is the dimen-
sionality of the state space. Preliminary experiments showed that this simple
function approximation scheme performed better than a number of alternatives,
including instance-based approaches that added either visited states st to X or
predicted successors s′ to X as necessary.

x

x xixa t

t+1

EMπ

s
′

F

Fig. 5. Dynamic Bayesian network showing the decomposition of transitions in the
derived MDP, solved using standard value iteration, into components of the model
approximation.

4.2 Fitted R-max

Section 4.1 showed how to estimate the optimal value function from data by first
approximating a model, but one of the primary motivations behind extending
model-based methods to continuous problems is to take advantage of intelligent
exploration methods. This section describes one simple but effective model-based
algorithm for finite problems and shows how to incorporate its exploration mech-
anism into fitted value iteration.

R-max is a relatively simple model-based algorithm that implements a stan-
dard principle of exploration: optimism in the face of uncertainty [7]. It maintains
maximum-likelihood estimates of the model parameters P̂sa(·) and R̂sa for every

state s and action a, but it only employs these estimates given sufficient data to
have confidence in their accuracy. Let n(s, a) denote the number of times action
a has been executed in state s. Then R-max estimates the value function using

Q̂(s, a) =

{

V max if n(s, a) < m

R̂sa +
∑

s′∈S P̂sa(s′)V̂ (s′) if n(s, a) ≥ m
(10)

where V̂ = maxa∈A Q̂(s, a), V max is an upper bound on the value function,2

and m is a constant. The modified Bellman equations can still be solved using
a standard MDP planning algorithm, such as value iteration.

The optimistic value function explicitly rewards the algorithm for executing
actions in uncertain states. The parameter m determines the amount of explo-
ration required before the algorithm is certain about the effects of a state-action
pair. Furthermore, augmenting the value function in this manner causes the
agent to seek out states that are either actually high in value or where “explo-
ration bonuses” are available for executing unfamiliar state-actions. [11] showed
how the exploration threshold m relates to the likely error in the estimates P̂ ,
leading to bounds on the amount of exploration required before converging to a
probably approximately optimal policy.

Although the use of generalization in approximating a fitted model eliminates
such guarantees of convergence to optimal behavior, the exploration mechanism
of R-max can still be applied to fitted value iteration simply by substituting in
the parameters of the derived finite MDP into (10) and appropriately defining
an approximation of n(s, a). This latter quantity denotes the number of times
a was executed in state s, so the logical analog is the sum of the unnormalized
kernel values used to weight the transitions from a state s to each i ∈ D:

ñ(s, a) =
∑

i∈D

δaai
e
−
(

|s−si|

b

)

2

. (11)

Thus n(s, a) now counts both the actual data for a at s as well as “partial”
data generalized from executions of a near s. The fitted R-max algorithm thus
computes the following value function:

Q(s, a) =

{

V max if n(s, a) < m
Rapprox

sa +
∑

x′∈X

(

F ◦ Erelative ◦Mapprox
)

sa
(x′)V (x′) if n(x, a) ≥ m

(12)
At each time step, fitted R-max adds the just observed transition to D,

updates Mapprox and F , and then applies value iteration to solve (10). The
algorithm then behaves greedily with respect to Q(st, ·). In practice, the com-
position P̃ = F ◦ Erelative ◦ Mapprox need not be recomputed after each time
step. By caching the appropriate intermediary values, the finite transition func-
tion P̃ : X × A → ∆X can be repaired to reflect each new instance i. In the
same spirit, prioritized sweeping [9] can be used to update the value function
efficiently to reflect changes in the approximate model.

2 [7] reasons with Rmax, an upper bound on the one-step reward, since its version of
the algorithm computes finite-horizon value functions.

5 Experimental Results

Fitted R-max learns with good data efficiency by using a combination of model-
based exploration and stable function approximation. This section describes ex-
periments demonstrating that fitted R-max converges more rapidly to near-
optimal policies than several other recent RL algorithms evaluated on some
benchmark problems with continuous state spaces. It then examines the im-
portance of the relative action effect transition function Erel compared to the
absolute version Eabs. Finally, it investigates the importance of the generaliza-
tion breadth parameter, b.

5.1 Implementation Details

A primary practical concern for any instance-based algorithm is computational
complexity. The computationally intensive step of fitted R-max is the incremen-
tal update to the derived finite model. In general, these steps require running
time linear in the size of D, which is equal to the number of times the agent has
acted.

The experimental implementation achieves a substantial reduction in the
constant factor of this O(|D|) running time by observing that the each newly
sampled transition only changes the model appreciably in a local region of the
state space. It sets the minimum nonzero value of the (unnormalized) Gaussian
weighting to 0.01 in (7). Thus the addition of a new transition from s only
affects those sample states x ∈ X within distance b

√− log 0.01 = 2.146b from
s. The implementation also prunes each averager φ so that the smallest nonzero
value of Mapprox

sa (s, i) is 0.01 (and renormalizes the remaining values), bounding
to 100 the number of instances used to approximate s. Note that this pruning
does not bias the approximation, which essentially becomes k-nearest neighbors
with k = 100 and Gaussian weighting whenever sufficient data exists to override
optimism. The precise thresholds used to prune did not significantly affect the
performance of the algorithm.

5.2 Benchmark Performance

This section compares the performance of fitted R-max to algorithms submitted
to the RL benchmarking workshop held at NIPS 2005 [12]. This event invited
researchers to implement algorithms in a common interface for online RL. Partic-
ipants computed their results locally, but direct comparisons are possible due to
the standardized environment code, which presents the same sequence of initial
states to each algorithm. This sections examines two of the benchmark domains
and gives the fitted R-max parameters used to solve them. It then evaluates the
performance of fitted R-max against selected algorithms.

Mountain Car In the Mountain Car simulation [1], an underpowered car must
escape a valley (Fig. 6a) by backing up the left slope to build sufficient energy

to reach the top of the right slope. The agent has two state variables, horizontal
position x and horizontal velocity v. The three available actions are reverse,
neutral, and forward, which add −0.001, 0, and 0.001 to v, respectively. In
addition, gravity adds −0.0025 cos(3x) to v at each time step. The agent receives
a reward of −1 for each time step before reaching the goal state. Episodes begin
in a uniformly random initial position x and with v = 0, and they last for at
most 300 time steps. The only domain knowledge available is the upper bound
V max = 0 on the value function and the minimum and maximum values of each
state variable: −1.2 and 0.5 for x and −0.07 and 0.07 for v.

Fitted R-max scaled both state variables to [0, 1]. The generalization breadth
b was 0.08. X consisted of uniform 64 × 64 grid overlaying the state space.
Since Mountain Car is deterministic, the exploration thresholds was m = 1. To
compute the value function, fitted R-max applied at most 1000 updates with
minimum priority 0.01 after each transition.

(a) (b)

Fig. 6. Two of the domains from the NIPS benchmarking workshop: (a) Mountain Car
and (b) Puddle World.

Puddle World The Puddle World [13] is a continuous grid world with the goal
in the upper-right corner and two oval puddles (Fig. 6b). The two state variables
are the x and y coordinates, and the four actions correspond to the four cardinal
directions. Each action moves the agent 0.05 in the indicated direction, with
Gaussian noise added to each dimension with σ = 0.01. The agent receives a −1
reward for each action outside of the two puddles, with have radius 0.1 from two
line segments, one from (0.1, 0.75) to (0.45, 0.75) and the other from (0.45, 0.4)
to (0.45, 0.8). Being in a puddle incurs a negative reward equal to 400 times the
distance inside the puddle. The goal region satisfies x + y ≥ 0.95 + 0.95.

For this domain, fitted R-max used generalization breadth b = 0.08. A 64×64
grid was again used for X . Although Puddle World is stochastic, thresholds
m = 1 continued to suffice. Fitted R-max used at most 1000 updates after each
transition, with minimum priority 0.01.

Benchmark Results Figure 7 compares the performance of fitted R-max to
three selected algorithms. (Each point is the average of fifty sequential episodes,
as reported to the NIPS workshop.) These three algorithms, implemented and
parameterized by other researchers, were among the most competitive submit-
ted. One is a model-based approach applied to a fixed discretization of the state
space. This algorithm employed the same exploration mechanism as Prioritized
Sweeping, but it lacked the instance-based representation and averager-based
generalization of fitted R-max. Least Squares Policy Iteration [5] is similar to
fitted R-max in that it uses a given sample of transitions to compute the param-
eters of a function approximator that best approximates the true value function.
However, LSPI relies on random exploration and a fixed set of kernels to rep-
resent the state space. XAI (eXplore and Allocate, Incrementally) is a method
that represents the value function with a network of radial basis functions, al-
located online as the agent reaches unexplored regions of the state space [12].
It thus resembles fitted R-max in its instance-based use of Gaussian weighting
for approximation, but XAI is a model-free method that uses gradient descent
and Sarsa(λ) to update the value function. None of these algorithms achieves the
same level of performance as fitted R-max, which combines instance-based model
approximation, stable function approximation, and model-based exploration.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

Least Squares Policy Iteration
discretized models

-500

-400

-300

-200

-100

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

discretized models
Least Squares Policy Iteration

(a) (b)

Fig. 7. Learning curves for (a) Mountain Car and (b) Puddle World

5.3 Ablation Study

This section illustrates the benefit of fitted R-max’s approach to model-based
RL in infinite systems. It compares three algorithms. The first is fitted R-max,
employing the relative action effect transition function Erel given in (8). The
second is a version of fitted R-max that uses the absolute action effect transition
function Eabs given in (6), to measure the importance of action effect component
of the transition function. The third algorithm is the original discrete R-max

algorithm [7], to measure the importance of the novel decomposition of the
transition function.

Figure 8 shows the performance of each algorithm, averaged over 50 inde-
pendent trials in the Mountain Car domain. This implementation of Prioritized
Sweeping uses the same parameters as the finite model-based algorithm submit-
ted to the NIPS workshop: it discretizes each state dimension into 100 intervals
and uses m = 1. Fitted R-max used the same parameters described in Sect. 5.2.

-300

-250

-200

-150

-100

-50

 0

 0 100 200 300 400 500

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max, relative effects
Fitted R-max, absolute effects

Discrete R-max

Fig. 8. Learning curves for Mountain Car. Each curve is the average of 50 independent
trials.

Absolute-transition fitted R-maxconverges much more quickly than discrete
Prioritized Sweeping, but at the expense of converging to suboptimal policies.
Further experimentation has shown that decreasing b improves the average qual-
ity of the final policy but quickly decreases the learning speed of the algorithm.
The standard version of fitted R-max uses the more accurate relative transition
generalization to preserve fast convergence while achieving near-optimal poli-
cies in this domain. For comparison, Figure 9 illustrates typical learned policies
for both versions of fitted R-max. An optimal policy would execute forward

roughly when the velocity is positive, in the upper half of the state-space dia-
gram, and it would execute reverse roughly when the velocity is negative, in
the lower half of the state-space diagram. This run of absolute-transition fitted
R-max incorrectly selects reverse in a large region with positive velocity. In-
spection of the relevant states revealed that the local neighborhood of the sample
Sreverse happened to contain more high-value states. The absolute transition
model incorrectly concluded that the reverse action would transition to this
higher-value region; the relative transition model correctly concluded that this
action decreases the value of any state in the neighborhood.

6 Discussion and Related Work

The primary contribution of this paper is its integration of model-based ex-
ploration with stable function approximation. Fitted R-max extends the data

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward
-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward

(a) (b)

Fig. 9. Mountain-Car policies learned using (a) absolute-transition fitted R-maxand
(b) standard fitted R-max. The solid region of the state space indicates where the
policy selects the forward action; the hatched region indicates where it selects the
reverse action.

efficiency of model-based methods to continuous systems, which previously pre-
sented the difficulty of representing continuous models. [4] addressed this prob-
lem in the deterministic case, also using locally weighted learning from instances.
Their application of locally weighted regression estimated the average successor
state for each state-action pair; fitted R-max approximates the distribution over
successor states and thus copes with forms of stochasticity beyond simple noise.
They also did not address the issue of exploration in continuous systems. Fit-
ted R-max permits the application of intelligent exploration mechanisms origi-
nally designed for finite systems. It employs the same mechanism as Prioritized
Sweeping [9] and R-max [7], perhaps opening the door for generalizing the latter
algorithm’s polynomial-time PAC convergence guarantees to certain continuous
systems.

Introducing model-based reasoning to function approximation also provides
novel insight into the problem of generalizing from finite data to knowledge of
an infinite system. Most approaches to function approximation rely on a static
scheme for generalizing the value function directly, despite the difficulty in intu-
iting the structure of value functions. Fitted R-max explicitly generalizes first in
a model of the system, where intuitions may be easier to represent. For example,
a high degree of generalization is possible in the model for Mountain Car, since
the effect of an action changes smoothly with the current state. In contrast,
the optimal value function for this system includes large discontinuities in lo-
cations that are impossible to predict without first knowing the optimal policy:
the discontinuity separates those regions of the state space where the agent has
sufficient energy to escape the valley and from those regions where it must first
build energy. Approaches that only generalize the value function must use little
enough generalization to represent this discontinuity accurately; fitted R-max

uses a learned model to generalize both broadly and accurately.

7 Conclusion

Reinforcement learning in infinite systems requires accurate generalization from
finite data, but standard approaches only apply generalization directly to the
value function. Many systems of interest exhibit more intuitive structure in their
one-step dynamics than in the optimal value function. This observation suggests
a model-based solution that generalizes first from data to a model. Fitted-model
algorithms such as fitted R-max apply generalization both to the model and to
the value function. They derive a finite representation of the system that both
allows efficient planning and intelligent exploration. These attributes allow fitted
R-max to learn some standard benchmark systems more efficiently than many
contemporary RL algorithms.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

2. Watkins, C.: Learning From Delayed Rewards. PhD thesis, University of Cam-
bridge (1989)

3. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time.
In: Proceedings of the Fifteenth International Conference on Machine Learning.
(1998) 260–268

4. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control.
Artificial Intelligence Review 11 (1997) 75–113

5. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine
Learning Research 4 (2003) 1107–1149

6. Gordon, G.J.: Stable function approximation in dynamic programming. In: Pro-
ceedings of the Twelfth International Conference on Machine Learning. (1995)

7. Brafman, R.I., Tennenholtz, M.: R-max – a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3

(2002) 213–231
8. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc. (1994)
9. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with

less data and less real time. Machine Learning 13 (1993) 103–130
10. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov

decision problems. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence. (1995)

11. Kekade, S.M.: On the Sample Complexity of Reinforcement Learning. PhD thesis,
University College London (2003)

12. Dutech, A., Edmunds, T., Kok, J., Lagoudakis, M., Littman, M., Ried-
miller, M., Russell, B., Scherrer, B., Sutton, R., Timmer, S., Vlassis, N.,
White, A., Whiteson, S.: Reinforcement learning benchmarks and bake-offs II.
http://www.cs.rutgers.edu/˜mlittman/topics/nips05-mdp/bakeoffs05.pdf (2005)

13. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In: Advances in Neural Information Processing Systems 8.
(1996)

