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Mechanism design has traditionally been a largely analytic process, relying on assumptions such
as fully rational bidders. In practice, however, these assumptions may not hold, making bidder
behavior difficult to model and complicating the design process. To address this issue, we propose
a different approach to mechanism design. Instead of relying on analytic methods that require

specific assumptions about bidders, our approach is to create a self-adapting mechanism that
adjusts auction parameters in response to past auction results. In this paper, we describe our
approach and then present an example of its implementation to illustrate its efficacy.
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1. INTRODUCTION

Mechanism design has traditionally been a largely analytic process. Assumptions
such as full rationality are made about bidders, and the resulting properties of the
mechanism are analyzed in this context [Parkes 2001]. Even in large-scale real-
world auction settings such as the FCC Spectrum auctions, game theorists have
convened prior to the auction to determine the best mechanism to satisfy a set
of objectives. Historically, this process has been incremental, requiring several live
iterations to iron out wrinkles, and the results produced have been mixed [Cramton
1997; Weber 1997].

A large component of this incremental design process involves reevaluating the
assumptions made about bidders in light of auction results. These assumptions
pertain to things such as:

—Bidders’ motivating factors such as valuation distributions and risk aversion;

—Information that is available to the bidders; and

—Bidder rationality.

Even when the assumptions about bidders can be successfully modified to explain
past results, the process requires human input and is time consuming, delaying the
speed with which changes can be made to the mechanism.

Perhaps the largest challenge involves the case where the assumption of fully
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rational bidders is violated. In practice, bidders are not able to attain full rationality
in complex, real-world settings. Rather, they employ heuristic strategies that are
in general opaque to the seller, certainly a priori, and often even after the auction.
Modeling such bidder behavior analytically is challenging at best.

To address these difficulties, we propose a substantially different approach to
mechanism design - developing self-adaptive mechanisms that require minimal as-
sumptions about bidders. We describe this approach at a high level in the next
section, and then present an illustrative example of its implementation in Section 3.
We discuss how this approach compares to related work in Section 4, and Section 5
concludes.

2. AN ADAPTIVE APPROACH

The strategies employed in an auction by bidders are often unknown to the seller.
Nonetheless, the effectiveness of the mechanism can vary drastically as a function of
the bidding strategies used. As a result, we view adaptive mechanism design as an
online empirical process whereby the mechanism adapts to maximize a given objec-
tive function based on observed outcomes. Because we do not assume any insight
into the bidders’ strategies, their behaviors cannot be simulated. Consequently,
this process is necessarily online.

Our view of adaptive mechanisms is illustrated in Figure 1. A parameterized
mechanism is defined such that an evaluator module can revise parameters in re-
sponse to observed results of previous auctions. Upon execution, the parameterized
mechanism clears one or more auctions involving a population of bidders with var-
ious, potentially unknown, bidding strategies. The results of the auction are then
taken as input to the evaluator as it revises the mechanism parameters in an effort
to maximize an objective function such as seller revenue. Any number of continuous
or discrete auction parameters may be considered, such as reserve prices, auction-
eer fees, minimum bid increments, and whether the close is hard or soft. (For an
extensive parameterization of the auction design space, see [Wurman et al. 2001].)

We view the mechanism selection module as the key active element in this pic-
ture. It is essentially an online machine learning module aiming to characterize
the function from mechanism parameters to expected revenue (or any other objec-
tive function). Because the learner can select its training examples and the target
output is in general a continuous value, the problem is an active learning [Saar-
Tsechansky and Provost 2004] regression problem. A key characteristic is that the
learning is all done online, so that excessive exploration can be costly.

The bidders in Figure 1 use a variety of different bidding strategies, including
heuristic, analytic, and learning-based approaches. For the latter to make sense, the
same bidders must interact repeatedly with the mechanism, leading to a potential
co-evolutionary scenario in which the bidders and mechanism continue to adapt in
response to each other [Phelps et al. 2002]. However, our approach does not depend
on repeated interactions with the same bidders. The only assumption about the
bidders is that their behavior either remains consistent or changes slowly enough
that it is possible to learn to predict auction results as a function of the mechanism,
at least in expectation.

In the following section we instantiate an adaptive mechanism in the most straight-
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Fig. 1. A high-level illustration of the concept of adaptive mechanisms. From the point of view
of the evaluator, the various bidder behaviors are unknown aspects of the environment.

forward way possible, considering a case in which there is a small discrete set of
possible mechanism parameters.

3. AN EXAMPLE IMPLEMENTATION

In this section, we describe how a seller could use an adaptive mechanism to max-
imize its revenue in a series of sequential auctions. After giving some background
on bidder behavior in sequential auctions, we describe the seller’s situation in detail
and present experimental results.

3.1 Sequential auctions

Sequential auctions are a common method of selling groups of similar or identical
items. In sequential auctions, items are sold one at a time, with separate bidding on
each item. Milgrom and Weber [1982] were the first to derive equilibrium solutions
for sequential auctions. For the case of identical items, independent private values,
and unit demand, they determined that prices follow a martingale1, remaining
constant on average throughout the auction. With affiliated values, prices tend to
drift upwards, due to the information revealed by winning prices.

In practice, however, prices in sequential auctions often decrease. This phe-
nomenon is known as the “price decline anomaly”. Ashenfelter [1989] first observed

1http://mathworld.wolfram.com/Martingale.html
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the anomaly in wine auctions, noting that prices were twice as likely to decrease
as they were to increase when pairs of identical items were considered. Additional
studies since then have identified this phenomenon in other auction settings and
attempted to offer explanations. For example, McAfee and Vincent [1993] consider
the possibility of risk aversion, while von der Fehr [1994] explores the effects of
participation costs. Jones et al. [2004] study Australian wool auctions and detect
a statistically significant price change over the course of an auction approximately
thirty percent of the time. Surprisingly, when there is a change, it is just as likely
to be positive as negative, and no properties of the auctions appear sufficient to
predict this effect.

This potential for unpredictable bidder behavior in sequential auctions motivates
the following scenario.

3.2 An auction design choice

We consider a somewhat artificial but illustrative scenario in which a seller is re-
peatedly required to auction off large sets of items. Within each set, items are
identical. For the sake of simplicity, we will assume that each set contains the same
number of items, in this case 60. The seller would like to conduct uniform-price
sealed-bid auctions, where each winning bidder must pay the amount of the highest
losing bid (known as an n+1st-price auction), and each bidder may only purchase
a single item. However, the seller is unsure whether it would be more profitable to
sell entire sets at once, or to take a more sequential approach and sell each set over
a number of periods, dividing the set equally among the periods and announcing
the winning price after each period. For example, the seller could sell all 60 items
in a single auction, or sell 30 items, announce the winning bidders and the price
they will pay, and then auction off the remaining items to the remaining bidders.
Thus, the only free auction parameter to be experimented upon by the seller is the
number of periods. The seller considers between one and four periods.

We assume that the seller has almost no knowledge concerning the bidders that
will participate in the auctions. In particular, the seller knows nothing about the
potential bidder types, where a bidder’s type consists of its signal and the strategy
it employs. This lack of knowledge rules out an analytical approach to choosing
the number of periods. The only assumption made by the seller is that for each
auction, the number of bidders and the bidders’ types are drawn from the same
distributions.

The seller’s goal is to maximize its revenue over a large number of auctions. In
order to accomplish this goal, the seller must identify the optimal value of a dis-
crete parameter (the number of periods) through online experimentation producing
noisy results. This situation is an instance of the k-armed bandit problem (here k
equals four), a classic reinforcement learning problem. One approach to k-armed
bandit problems, and the one we use here, is sample averaging with ǫ-greedy action
selection [Sutton and Barto 1998].2 This method records the average revenue re-

2More sophisticated approaches, such as softmax action-selection and interval estimation [Kael-

bling and Nilsson 1990], also exist. Our purpose in this paper is not to compare approaches to the
k-armed bandit problem, but rather to demonstrate that adaptive mechanism design is feasible in
our setting.
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ceived for each choice over the seller’s entire history. At each step, the choice with
the highest average is taken with probability 1-ǫ, and a uniformly random choice is
made otherwise. We now demonstrate that by using this approach, the seller can
come close to obtaining the optimal revenue for any given situation, and can on
average obtain a higher total reward than would be expected from sticking with
one parameter choice.

3.3 Experiment

In order to test the value of adaptivity in this scenario, we need to identify the
properties of the bidders. We assume that 120 bidders will participate in each
auction, and that the bidders’ types will be drawn from the same distribution in
each auction. A type consists of a signal, chosen uniformly randomly from the
interval [0,1], and one of five heuristic strategies to use, chosen randomly according
to a fixed distribution. The five strategies are designed to represent a variety of
plausible, but not optimal, bidding approaches that might be employed by a bidder.
Recall that a key motivation for this work is the fact that bidders are not able to
bid optimally in complex real-world scenarios. The five bidder strategies are as
follows.

(1) A bidder using the equilibrium bidding strategy for the case of independent
private values drawn from a uniform distribution with unit demand [Milgrom
and Weber 1982]. The strategy is to bid one’s value in the final period, and to
bid

total bidders − total items

total bidders − items sold
∗ value

in previous periods, where items sold includes those sold up to and including
the current period. Note that if all bidders use this strategy, the auction will
be revenue-equivalent regardless of the number of periods chosen.

(2) A bidder that tries to play the same equilibrium strategy, but overestimates the
number of bidders participating (which is not announced) by 40. This strategy
results in higher bids in all but the last period.

(3) A bidder that similarly underestimates the number of bidders by 40.

(4) A bidder that is either impatient or faces some type of participation cost, and
therefore has a tendency to drop out in later periods. This is modeled by simply
setting a fixed probability of .15 for the bidder to drop out after each period.
When bidding, the aforementioned equilibrium strategy is used.

(5) A simple approximation of an affiliated values case. A dealer buys items to
sell later at a profit. Although the dealer has little knowledge of the value
of each item, the price at which he can resell items can be predicted from the
winning prices. The dealer’s heuristic is to bid conservatively in the first period
(one fourth his signal), and afterwards to bid according to the aforementioned
equilibrium strategy using the previous period’s winning price as his value.

Note that these strategies are defined only for the purpose of permitting simula-
tion, and are completely unknown to the seller we are modeling.

With these strategies defined, we can now measure the average revenue obtained
for each choice of number of periods for any given distribution of bidder types,
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and compare the results to those obtained using our adaptive method. Figures 2
and 3 show the average results for 1000 runs of 1000 auctions for two different
bidder distributions P , where Pi represents the probability that a bidder will have
the ith strategy from the list above. A value of 0.1 is used for ǫ. The average
revenue per auction is graphed as a constant for each fixed period choice, but is
shown varying over time for the adaptive method. The optimal choice of periods
for each distribution is different, but in each case our adaptive method is able to
approach the revenue of the optimal choice. The average revenue does not actually
converge to that of the optimal choice because of the ǫ probability of exploring at
each step. Decreasing ǫ over time or using a more sophisticated learning method
would remedy this limitation.

The true measure of the success of our adaptive method is whether the seller
would expect a higher total revenue from using it than from choosing a fixed number
of periods for an unknown bidder distribution. To determine this, we found the
average revenue per auction for each choice of number of periods over a large number
of distributions. We randomly chose 1000 bidder distributions, and ran each period
choice for 1000 auctions on each distribution. The average revenue per thousand-
auction trial for each period choice is shown in Table I. We can see that our
adaptive method does in fact result in a higher expected revenue than any fixed
choice. The difference between the results of the adaptive method and each fixed
choice is statistically significant at the 95% confidence level according to a paired
t-test.

We also consider a more challenging scenario in which we relax the assumption
that the distribution of bidder types is stationary. It is reasonable to assume that
over a period of time, the number of bidders might increase or decrease, and bidders
might refine their strategies in response to past auction results. A robust auction
mechanism should be able to handle such variation. With a changing bidder dis-
tribution, the expected revenue for each period choice changes from one auction
to another. As a result, we are now faced with a nonstationary k-armed ban-
dit problem. To solve this problem, we again use the ǫ-greedy method, but with
recency-weighted averaging of the results for each parameter choice, as described
in Table III.

We evaluated our method as before, by running 1000 auctions for 1000 random
starting bidder distributions. This time, however, we allowed the distribution to
change over time by having the probability of each bidder strategy follow a random
walk, as shown in Table IV. A value of 0.01 is used for step size, and ǫ is set to 0.1
again. The results are shown in Table II. Again, our adaptive method is able to
outperform any fixed choice, and the differences are statistically significant at the
95% confidence level according to paired t-tests.

With this illustrative example we have demonstrated that by applying a form of
adaptivity to the design of an auction mechanism, a seller may be able to increase
its revenue.

4. RELATED WORK

To our knowledge, only a few recent articles have begun to explore the subject of
adapting auction mechanisms in response to bidder behavior. In this section, we
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Table I. Avg. revenue, fixed bidder dist.
# Periods Revenue Std. dev.

1 24,707 ±2,531

2 24,933 ±2,447

3 24,867 ±2,345

4 24,757 ±2,331

adaptive 25,334 ±2,341

Table II. Avg. revenue, bidders change
# Periods Revenue Std. dev.

1 24,281 ±966

2 24,294 ±887

3 24,368 ±881

4 24,268 ±878

adaptive 24,500 ±877

briefly survey that work and relate it to our own.
Cliff [2001] explores a continuous space of auction mechanisms defined by a pa-

rameterized version of the continuous double auction, where the parameter repre-
sents the probability that a seller will make an offer during any time slice. The
mechanism parameter and the parameters of the simulated bidding agents used
are evolved simultaneously using a genetic algorithm. For different underlying sup-
ply and demand schedules, the system converges to different values of the auction
parameter. Phelps et al. [2002] also address continuous double auctions, using ge-
netic programming to co-evolve buyer and seller strategies and auction rules from
scratch.

Byde [2003] takes a similar approach in studying the space of auction mecha-
nisms between the first and second-price sealed-bid auction. The winner’s payment
is determined as a weighted average of the two highest bids, with the weight-
ing determined by the auction parameter. For a given population of bidders, the
revenue-maximizing parameter is approximated by considering a number of param-
eter choices over the allowed range, using a genetic algorithm to learn the param-
eters of the bidders’ strategies for each choice, and observing the resulting average
revenues. For different bidder populations (factors considered include variable bid-
der counts, risk sensitivity, and correlation of signals), different auction parameter
values are found to maximize revenue.

The primary difference between these previous approaches and the method ad-
vocated in this paper is that these approaches adapt mechanisms in simulation,
while our aim is to develop mechanisms that are self-adapting in an online setting.
Although the auction mechanisms developed by these approaches may work well
under the assumed conditions, when they are used in real-life settings the same
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—Let step size represent the weight given to new samples.

—For each period choice i, initialize the variables sumi and weighti optimistically to
encourage initial exploration. We used the values weighti = 5 ∗ step size and sumi =
35 ∗ weighti.

—After each auction, perform the following updates for each period choice i:
—sumi = sumi ∗ (1 − step size)
—weighti = weighti ∗ (1 − step size)

—Then, if the auction used period choice j and yielded revenue r, perform these updates:
—sumj = sumj + step size ∗ r
—weightj = weightj + step size

—To find the expected revenue for period choice i, compute sumi/weighti.

Table III. Implementation of recency-weighted averaging

—Let P be the distribution over bidder strategies, and let R control the rate at which P
changes.

—Initialize each Pi randomly in [0,1], and normalize P to obtain a valid distribution.

—Set R to a random integer between 0 and 500.

—After each auction, repeat R times:
—Choose i and j as random integers between 1 and 5
—If Pi > .001, set Pi = Pi − .001 and Pj = Pj + .001

Table IV. Implementation of the random walk

problem may arise as with analytical mechanism design: bidders’ goals, beliefs,
and strategies may be different from those assumed, leading to unexpected results.
Although the adaptive measures used in these approaches could be applied in an
online setting, they would likely be found unsuitable. For example, evolutionary
methods frequently explore highly suboptimal solutions that could be disastrous if
actually tried. Our goal is to design adaptive mechanisms that are both safe to
use and capable of quickly finding the parameters best suited to the participating
bidders, all while making as few assumptions as necessary about the behavior of
these bidders.

The lack of assumptions about bidders also differentiates this work from Conitzer
and Sandholm’s automated mechanism design [2004], in which mechanisms are com-
putationally developed for specific situations based on complete knowledge of the
distribution over bidders’ types.

The particular case of a seller responding to customer behavior by using a k-armed
bandit algorithm has been well studied (e.g. [Rothschild 1974]), but generally in
the context of price selection. The aim of this paper is not to analyze a particular
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learning algorithm, but to propose the use of such algorithms to adaptively tune
parameters for any chosen auction parameterization.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to mechanism design. Instead of
relying on analytical methods that depend on specific assumptions about bidders,
our approach is to create a self-adapting mechanism that adjusts auction parameters
in response to past auction results.

We have demonstrated the efficacy of this approach in a situation where a seller
must choose from a space of sequential auctions in order to maximize its revenue.
This illustrative example represents a first step toward applying adaptive mecha-
nisms to more challenging problems. The fact that we were able to have success
using a straightforward adaptive method with no parameter-tuning is encourag-
ing; it suggests that the success or failure of our method is not dependent on such
choices, while offering hope of even better results from the use of more sophisticated
methods.

There are several directions in which this work could be extended. Many auction
parameters are available for tuning, ranging from bidding rules to clearing poli-
cies. The problem becomes more challenging in the face of continuous parameters
and multidimensional parameterizations. In those cases, more sophisticated online
learning methods will be required. Our on-going research agenda also includes ex-
amining the effects of including some adaptive bidders in the economies that are
treated by adaptive mechanisms.
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