
Preprint 0 (2000) 1{36 1

The First International Trading Agent Competition:

Autonomous Bidding Agents

Edited by �

Peter Stone

AT&T Research, 180 Park Ave., Room A273, Florham Park, NJ 07932
E-mail: pstone@research.att.com

Amy Greenwald

Department of Computer Science, Brown University, Box 1910, Providence, RI 02912
E-mail: amygreen@cs.brown.edu

This article summarizes the bidding algorithms developed for the on-line Trading
Agent Competition held in July, 2000 in Boston. At its heart, the article describes
12 of the 22 agent strategies in terms of (i) bidding strategy, (ii) allocation strategy,
(iii) special approaches, and (iv) team motivations. The common and distinctive
features of these agent strategies are highlighted. In addition, experimental results
are presented that give some insights as to why the top-scoring agents' strategies
were most e�ective.

Keywords: automated trading agent, auctionbot, e-commerce, multiagent systems

1. Introduction

The �rst international Trading Agent Competition (TAC-2000) challenged
its entrants to design an automated trading agent that was capable of bidding
in simultaneous on-line auctions for complementary and substitutable goods [13].
A TAC agent is a simulated travel agent whose task is to organize itineraries for
a group of clients who wish to travel from TACTown to Boston and back again
during a �ve-day period in July.1 Travel goods, such as airline tickets and hotel
reservations, are complementary, and tickets to entertainment events, such as the
Boston Red Sox and the Boston Symphony Orchestra, are substitutable. The
trading agent's objective is to win items that best satisfy its clients' preferences
as inexpensively as possible. The goals of the tournament included providing a
benchmark problem in the complex domain of e-marketplaces, and motivating
researchers to apply unique approaches to a common task.

� This article is the result of the e�orts of many people. The agent descriptions were originally
written by team members as listed in Table 1 and the appendix.

1 The TAC workshop was held at ICMAS '00 in Boston in July, 2000.

2 Stone and Greenwald / Autonomous Bidding Agents

This article reports on the competition from the participants' perspective.
It describes both the task-speci�c details of, and the general motivations behind,
12 of the 22 competing agents (see Table 1).2 The participants' motivations
illuminate the general applicability of the TAC setup and its relevance to today's
research agendas. We present the task-speci�c details of the particular agent
strategies as instantiations of the participants' varied research agendas. Agent
designs are reported in terms of (i) bidding strategy, (ii) allocation strategy, (iii)
special approaches, and (iv) team motivations.

Agent Country Designers

ATTac�� USA Peter Stone, Michael Littman,
Satinder Singh, Michael Kearns

RoxyBot�� USA Justin Boyan, Amy Greenwald

Aster�� USA Andrew Goldberg, Umesh Maheshwari

UmbcTAC�� USA Youyong Zou

ALTA�� Russia Andrey Tarkhov, Dmitry Uspensky,
Eugene Vostroknautov

DAIHard�� USA Rajatish Mukherjee, Partha Dutta, Sandip Sen

RiskPro�� Sweden Magnus Boman, Sven-Erik Ceedigh

T1�� Sweden Lars Olsson, Erik Aurell, Lars Rasmusson,
Martin Aronsson, Per Larsson, Glenn Lawer

Nidsia� Switzerland Nicoletta Fornara, Luca Maria Gambardella,
Marco Colombetti

EZAgent� USA Betsy Strother

UATrader USA Daniel Zeng, Jiang Zhu, Bart Wilson

EPFLAgent Switzerland Omar Belakhdar, Patrice Jaton, Boi Faltings

Table 1
The TAC agents represented in this article, their countries, and their designers. Semi-�nalists

are indicated by an asterisk (�), �nalists by two asterisks (��).

The results of the TAC competition are shown in Figure 1. The �rst graph
depicts the scores in qualifying rounds (90 games, with the lowest 10 scores
dropped), and the second graph depicts the scores on competition day (13 games).
Throughout the qualifying rounds and up until the �nals, the agents were con-
tinually changing as development proceeded. The agent descriptions that appear
in this article re
ect their characteristics during the �nal round. As the graphs
illustrate, the four top-scoring teams in the �nal round, ATTac, RoxyBot, Aster,
and UMBCTac, �nished in a statistical tie.

2All participants were invited to contribute; those who chose to do so are represented herein.

Stone and Greenwald / Autonomous Bidding Agents 3

-2000

-1000

0

1000

2000

3000

4000

5000

6000

RoxyBot Aster DAIhard ATTac RiskPro UMBC ALTA T1

S
co

re

Preliminary Round (~70 Games)

-2000

-1000

0

1000

2000

3000

4000

5000

6000

ATTac RoxyBot Aster UMBC ALTA DAIhard RiskPro T1

S
co

re

Final Round (13 Games)

Figure 1. (a) Preliminary Round (90 games, lowest ten scores dropped): horizontal lines indicate
mean, minimum, and maximum scores; box delimits 95% Con�dence Interval. (b) Final Round
(13 games, no scores dropped): horizontal lines indicate mean, minimum, and maximum scores;

box delimits 95% Con�dence Interval.

This article is organized as follows. Section 2 summarizes the intricacies
of the TAC domain. In Section 3, we highlight the common and contrasting
approaches taken in the general strategic design of TAC agents. The heart of this
article is found in Section 4, which contains the details of the agent strategies.
Following the individual agents' descriptions, Section 5 includes experimental
results that are intended to give insights as to why the winning agents' strategies
were most e�ective. We conclude in Section 6 with participants' suggestions as
to how the design of future trading agent competitions might be improved.

2. Market Game

A TAC agent is a simulated travel agent whose task is to organize itineraries
for a group of clients who wish to travel from TACTown to Boston and back
again during a �ve day period. Travel and entertainment goods are traded at
simultaneous auctions that run for �fteen minutes. An agent's objective is to
secure the goods necessary to satisfy the particular desires of its clients, but to
do so as inexpensively as possible. An agent's score is the di�erence between the
utilities it earns for its clients and the agent's expenditures. In this section, we
summarize the design of a TAC game instance.

2.1. Supply

The market supply consists of three types of travel goods: (i)
ights to
and from Boston, (ii) hotel room reservations at two competing hotels, namely,
the Grand Hotel and Le Fleabag Inn, and (iii) entertainment tickets for the
Boston Red Sox, the Boston Symphony, and Phantom of the Opera. There is
a separate auction corresponding to every combination of travel good and day,

4 Stone and Greenwald / Autonomous Bidding Agents

yielding twenty-eight auctions in total: eight
ight auctions (there are no inbound

ights on the �fth day, and there are no outbound
ights on the �rst day), eight
hotel auctions (two hotel types and four nights), and twelve entertainment ticket
auctions (three entertainment event types and four nights). All twenty-eight
auctions are simultaneous. The rules of the various auctions are as follows:

� An in�nite supply of
ights3 is sold by the \TAC seller", a specially designated
supplier, at continuously clearing auctions in which prices follow a random
walk. Prices are initialized between $250 and $400, and perturbed every 30{
40 seconds by a random value uniformly selected in the range [$-10, $10], but
con�ned within the bounds of $150 and $600. No resale of
ights is permitted.

� The TAC seller also makes available sixteen hotel rooms per hotel per night,
which are sold at open-cry, ascending, multi-unit, sixteenth-price auctions. In
other words, the winning bidders are those who bid among the top sixteen,
and these bidders uniformly pay the sixteenth-highest price. Transactions clear
when the auctions close, which typically occurs at the end of a game instance,
although these auctions are subject to early closing after random periods of
inactivity. No bid withdrawal or resale in hotel auctions is permitted.

� Entertainment tickets are traded among TAC agents in continuous double
auctions, where agents can act as either buyers or sellers, and transactions
clear continuously. Each agent receives an initial endowment of tickets for
each event on each night|zero with probability 1/4, one with probability
1/2, and two with probability 1/4. Ticket resale is permitted.

2.2. Demand

A TAC game instance pits eight trading agents against one another, with
each agent representing eight clients. The market demand is determined by the
sixty-four clients' preferences. Each client is characterized by a random set of
preferences for ideal arrival and departure dates (IAD and IDD, which range over
days 1 through 4 and 2 through 5, respectively), a grand hotel room reservation
value (HV, which takes integer values between 50 and 150), and reservation values
for each of the three types of entertainment events (RV, SV, and TV|integers
between 0 and 200|for Red Sox, symphony, and theater, respectively). A sample
set of preferences appears in Table 2; these preferences were those of the clients
assigned to ATTac during game 3070 of the competition.

The job of each TAC agent is to assemble a feasible package of goods for
each of its clients. A package is characterized by arrival and departure dates (AD
and DD, respectively, ranging over days 1 through 5), a hotel type (H, which
takes on value G for Grand Hotel or F for Le Fleabag Inn), and entertainment
tickets (I(j; k) is an indicator variable that represents whether or not the package

3 Technically speaking, the
ight \auctions" are not auctions, but they are handled by the
auction server in a way that is similar to how it handles the other auctions.

Stone and Greenwald / Autonomous Bidding Agents 5

Client IAD IDD HV RV SV TV

1 2 5 73 175 34 24
2 1 3 125 113 124 57
3 4 5 73 157 12 177
4 1 2 102 50 67 49
5 1 3 75 12 135 1110
6 2 4 86 197 8 59
7 1 5 90 56 197 162
8 1 3 50 79 92 136

Table 2
ATTac's client preferences in game 3070.

includes a ticket on night j to event k 2 fr; s; tg; we also write R1, for example, to
indicate that the package includes a Boston Red Sox ticket on night 1). In order
to obtain positive utility for a client, an agent must construct a feasible package
for that client; otherwise, the client's utility is zero. A feasible package is one in
which (i) the arrival date is strictly less than the departure date, (ii) the same
hotel is reserved during all intermediate nights, (iii) at most one entertainment
event per night is included, and (iv) at most one of each type of entertainment
ticket is included. Given a feasible package, a client's utility for that package is
calculated as follows:

utility = 1000 � travelPenalty + hotelBonus + funBonus (1)

where

travelPenalty = 100(jIAD �ADj+ jIDD�DDj)

hotelBonus=

�
HV if H = G
0 otherwise

funBonus=
P

j [I(j; r)RV + I(j; s)SV + I(j; t)TV]

At the end of a TAC game instance, the agents had 4 minutes to report the
�nal allocation of their goods to their clients; otherwise, the TAC server produced
a default allocation in a greedy fashion. The �nal set of goods acquired by ATTac

in game 3070 is listed in Table 3. Given the client preferences in Table 2 and the
goods in Table 3, ATTac allocated goods to clients as shown in Table 4.

3. General Strategies

In this section, we summarize the common features of the agents described in
this article, outline a range of di�erences among them, and give a brief high-level
overview of each agent's particular focus.

6 Stone and Greenwald / Autonomous Bidding Agents

Good Day1 Day2 Day3 Day4 Day5

R 1 1 1 2 {
S 1 1 0 0 {
T 1 0 1 1 {
G 4 1 0 0 {
F 1 2 3 3 {
I 5 2 1 0 {
O { 4 1 0 3

Table 3
ATTac's �nal set of goods in game 3070. R, S, and T denote tickets to the Red Sox, symphony,
and theater, respectively; G and F denote the Grand Hotel and Le FleaBag Inn, respectively; I

and O denote inbound and outbound
ights, respectively.

Client AD DD H Tickets Utility

1 2 5 F R4 1175
2 1 2 G R1 1138
3 3 5 F T3, R4 1234
4 1 2 G | 1102
5 1 2 G S1 1110
6 2 3 G R2 1183
7 1 5 F S2, R3, T4 1415
8 1 2 G T1 1086

Table 4
ATTac's �nal allocation in game 3070. In this case, no goods were left unallocated, and the total
utility is 9443. During the game, the agent spent $5364 acquiring goods and earned $75 selling

entertainment tickets, leading to a �nal score of 9443 � 5364 + 75 = 4154.

3.1. Common Approaches

The basic decisions that comprise TAC agents' inner bidding loops are listed
in Table 5. The details of making decisions 1, 2, and 3|on what goods to bid,
for how many of each good to bid, and at what price to bid|are postponed
until the speci�c agent strategies are described. The strategic timing of the
placement of bids, however, exhibited common features across agents, and is
described presently.

The timing aspects of TAC agents' bids in hotel auctions is particularly
intriguing. By virtue of the design of the TAC auctions, the supply of
ights
is unlimited and their prices are predictable (the expected future price equals
the current price, unless the current price is the lower bound on
ight prices),
while the supply of hotel rooms is limited, and their prices are unpredictable.
Given the risks associated with the hotel auctions, together with their importance
in securing feasible travel packages, hotels were the most hotly contested items
during the TAC competition.

Stone and Greenwald / Autonomous Bidding Agents 7

REPEAT

1. Decide on what goods to bid

2. Decide at what price to bid

3. Decide for how many to bid

4. Decide at what time to bid

UNTIL game over

Table 5
High-level overview of TAC agents' bidding decisions.

Recall that TAC hotel auctions are ascending (English) mth-price auctions
subject to random closing times given suÆcient levels of inactivity. Most TAC
agents refrained from bidding for hotels early on, unless (i) the ask price had not
changed recently, implying that the auction might close early, or (ii) the ask price
was very low, in the hopes of being one of the winning bidders should the auction
indeed close early. Ultimately, the most aggressive hotel bidding took place at
the \witching hour"|in the �nal few moments of the game|although precisely
when was determined by each agent individually. More often than not TAC hotel
auctions reduced to mth price sealed-bid auctions.

Not only were �nal hotel prices unpredictable, they often skyrocketed (see
Figure 2). Treating all current holdings of
ights and entertainment tickets as
sunk costs, the marginal utility of an as-yet-unsecured hotel room reservation is
precisely the utility of the package itself.4 During the preliminary competition,
few agents bid their marginal utilities on hotel rooms. Those that did, however,
generally dominated their competitors; such agents were high-bidders, bidding
� $1000, always winning the hotels on which they bid, but paying far less than
their bids. Having observed a dominant strategy during the preliminary rounds,
most agents adopted this high-bidding strategy during the actual competition.
The result: many negative scores, as there were often more than m high bids.

For example, a one-night package in which the hotel room is purchased
at the value of its marginal utility yields a negative score equal to the price of

ights and entertainment tickets; but an agent cannot do better than to bid its
marginal utility, since bidding any lower and therefore not purchasing the hotel
room yields precisely the same negative utility,5 whereas bidding any higher could
potentially yield an even more negative score. In the �nal competition, the top-
scoring TAC agents were those who not only bid aggressively on hotels, but who

4 As stated, this observation holds only when the length of stay is exactly one night; for longer
stays it relies on the further assumption that all other hotel rooms in the package are secured.

5 Technically, this claim is not true of an mth price auction of m goods, although it is true of
an m+ 1st price auction of m goods. Thus, in the case of TAC hotel auctions, the claim only
holds true so long as the bid in question is not the mth highest bid, or the di�erence between
the mth highest and the m+ 1st highest bids is suÆciently small.

8 Stone and Greenwald / Autonomous Bidding Agents

0
5 10 15

200

400

600

800

1000

A
SK

 P
R

IC
E

 (
do

lla
rs

)

GAME TIME (minutes)

Typical Hotel Price Trajectory

Figure 2. A typical hotel price trajectory. The price increases gradually until near the end of
the game, at which point it skyrockets.

also incorporated risk and portfolio management into their strategy in order to
reduce the likelihood of buying highly-demanded and highly-priced hotel rooms.

In the
ight auctions, if we ignore the possibility of prices reaching the upper
or lower bounds of their range, expected future prices equal current prices. Since
airline prices periodically increase or decrease by a random amount chosen from
the set f�10;�9; : : : ; 9; 10g with equal probability, the expected change in price
for each airline auction is 0. Thus, given the simultaneous auction design, there
is no incentive to bid on airline tickets before the witching hour, since by waiting
there is some chance of obtaining information about hotel room and entertain-
ment ticket acquisitions. There are, however, substantial risks associated with
delaying the submission of bids. These risks arise from unpredictable network
and server delays, which sometimes have the undesirable e�ect of causing bids
placed before the end of a game instance to be received after the game's end.

In order to cope with these risks, most agents dynamically computed the
length of their bidding cycles, and then placed their
ight bids some calculated
amount of time before the end of a game. For example, a risk-averse agent might
compute the average length of its three longest bidding cycles, say l, and then
place its
ight bids as soon as game time exceeds 900 � 2l seconds. A more
risk-seeking agent might place its
ight bids after 900 �m seconds, where m is
the minimum length of its �ve most recent bidding cycles. In practice,
ight
bids were placed anywhere from 5 minutes to 30 seconds before the end of the
game. Recall that
ight auctions are such that agents who place a winning
bid pay not their bid, but rather the current ask price. Thus, at the time of
their decision, most agents bid above the current price|often, agents bid the
maximum possible price, namely $600|to ensure that these bids, which were
placed at critical moments, would not be rejected because of information delays
resulting from network asynchrony.

Stone and Greenwald / Autonomous Bidding Agents 9

3.2. Contrasting Approaches

TAC agents' bidding strategies di�er most substantially in the realm of
entertainment ticket auctions. While some agents focus on obtaining complete
packages, others make bidding decisions on travel packages alone (i.e.,
ights and
hotel rooms) without regard for entertainment packages, essentially breaking the
TAC problem down into two sub-problems, and then solving greedily. Although
simpler to implement, the greedy strategy is not optimal. For example, if a client
does not already have a ticket to an event, then it is preferable to extend the
client's stay whenever the utility obtained by assigning that client a ticket to this
event exceeds the cost of the ticket and an additional hotel room plus any travel
penalties incurred. Similarly, it is sometimes preferable to sell entertainment
tickets and shorten a client's stay accordingly.

A further strategic dichotomy in TAC-agent design principles is evident in
the methods by which agents allocate purchased goods to their clients.6 Some
agents focus on satisfying each of their clients in turn, whereas others make global
decisions regarding all their clients' interests simultaneously. This aspect of an
agent's design is relevant to both agent's on-going decisions as to what to bid on,
and to the �nal allocation of purchased goods to clients at the end of the game.
The top two teams' bidding strategies considered the TAC problem from a global
perspective, but most of the other agents used the greedy method of satisfying
each of their clients in turn. (One notable exception is the third-highest-scoring
agent, which used a local search algorithm that considers clients in pairs.) Once
again, the greedy approach is suboptimal, as the following example demonstrates.

Example 3.1. Consider two clients, A and B, with identical travel preferences,
and the following entertainment preferences: A values the symphony at $90 and
the theater at $80; B values the symphony at $175 and the theater at $150.
Suppose each client is to be in town on one and the same night, and that the agent
has one entertainment ticket of each type. An agent using a greedy approach who
considers client A before client B will assign A the ticket to the symphony and
B the ticket to the theater, obtaining an overall utility of $140 rather than the
optimal utility of $155, which corresponds to the reverse assignment.

The percentage of optimal allocations reported by each agent during the
competition, as computed by the TAC organizing team, is listed in Table 6.

6 The general allocation problem (i.e., allocation without TAC's feasible package constraints)
is NP-hard, as it is equivalent to winner determination [3], which in turn is equivalent to the
weighted set-packing problem [8].

10 Stone and Greenwald / Autonomous Bidding Agents

Agent Aggregate Minimum Number

ATTac 100.0% 100.0% 13/13
RoxyBot 100.0% 100.0% 13/13
Aster 99.6% 98.0% 9/13
UmbcTAC 99.4% 94.5% 7/13
T1 98.8% 88.8% 7/13
DAIHard 98.3% 95.1% 1/13
ALTA 97.1% 90.4% 2/13
RiskPro 96.7% 88.1% 1/13

Betsy 98.2% 96.2% 0/6
nidsia 95.0% 80.7% 0/6
gekko 92.2% 54.8% 1/6
kuis 85.7% 73.4% 0/6

Table 6
The semi-�nalists listed in order of their e�ectiveness in optimizing �nal allocations during the
competition. The �rst measure (\Aggregate") is the percentage of the optimal utility (ignoring
expenditures) achieved with the reported allocation, aggregated over the 13 games each of
the top 8 agents played, and the 6 games each of the bottom 4 played. The second measure
(\Minimum") is the minimum among these aggregated values. The third measure (\Number")

is the number of times the agent reported an optimal allocation.

4. Individual Strategies

This section describes in detail the agents' particular bidding and allocation
strategies, and any special approaches and motivations. To guide the reader, we
�rst provide one sentence descriptions of each agent's approach. The numbers
beside each sentence correspond to the subsection that describes that agent.

1. The key to ATTac's success is its built-in adaptability, giving it the
exibility
to cope with a wide variety of scenarios during the competition.

2. RoxyBot optimally solves the problems of allocation|assigning resources to
clients|and completion|determining what quantity of each resource to buy
and sell|using an innovative data structure called a priceline.

3. Aster is an agent that is neither strictly greedy, nor strictly optimal; in-
stead its designers' goal was to create an agent whose performance would be
scalable, since they expect many situations of practical interest to be more
complex and less structured than TAC.

4. UmbcTAC conserves network bandwidth by being sensitive to network load
and adapting the number of bids it places accordingly; on average, this agent
updates its bidding data every 4{6 seconds, providing a signi�cant advantage
over the reported 8{20 second delays experienced by competing agents.

5. ALTA, the Arti�cial Life Trading Agent, uses a search/allocation strategy
based on genetic algorithms.

Stone and Greenwald / Autonomous Bidding Agents 11

6. DAIHard was developed by a research group that is interested in empirically
studying, from the buyer's perspective, the utility of participating in one or
more auctions of varying types in which similar goods are sold.

7. RiskPro is designed as a risk-averse, rather than a risk-seeking, agent,
equipped with security levels and threshold values that lead to decisions con-
sistent with the risk attitude of the decision maker.

8. T1 was the unique entrant that came out of a development e�ort that created
a set of collusive agents designed to investigate the power of collusion in TAC.

9. Nidsia's team is researching the design of algorithms that construct opti-
mal bidding policies in combinatorial auctions for complementary and sub-
stitutable goods.

10. EZAgent was designed to perform e�ectively using simple heuristics.

11. The general bidding strategy employed by UATrader can be characterized as a
\myopic" trading strategy with iterative adjustments based on neighborhood
search.

12. EPFLAgent represents a distributed solution to the TAC game; it uses the
CSP formalism and caching to anticipate its decision-making needs which it
outsources to its Solver.

4.1. ATTac

ATTac placed �rst in TAC using a principled bidding strategy, which in-
cludes several elements of adaptivity . This adaptivity gave ATTac the
exibility
to cope with a wide variety of possible scenarios during the competition. The
design of ATTac was motivated by the multiagent learning research interests of
its developers.

Bidding
At every bidding opportunity, ATTac begins by computing the most prof-

itable allocation of goods to clients (which we shall denote G�), given the goods
that are currently owned and the current prices of hotels and
ights. (As spec-
i�ed under On-Line Adaptation, ATTac actually uses predicted closing prices of
the hotels based on the results of previous game instances.) For the purposes of
this computation, ATTac allocates, but does not consider buying or selling, enter-
tainment tickets. In most cases, G� is computed optimally using mixed integer
linear programming, as described under Allocation.

ATTac bids in two di�erent modes: passive and active. The passive mode,
which lasts until the witching hour, is designed to keep as many options open as
possible. During the passive mode, ATTac computes the average time it takes for
it to compute and place its bids, Tb. Call the time left in the game Tl. When
Tl � 2 � Tb, ATTac switches to its active mode, during which it buys the airline

12 Stone and Greenwald / Autonomous Bidding Agents

tickets required by G� and places high bids for the required hotel rooms. ATTac
expects to run at most 2 bidding iterations in active mode.

Based on the current G�, its current mode, and Tl, ATTac bids for
ights,
hotel rooms, and entertainment tickets. Full details of ATTac's strategy are avail-
able in [12]. Here we focus on strategies for bidding on entertainment tickets,
allocation of goods to clients, and adaptivity.

On every bidding iteration, ATTac places a buy bid for each type of en-
tertainment ticket, and a sell bid for each type of entertainment ticket that it
currently owns. In all cases, the prices depend on the amount of time left in the
game (Tl), becoming less aggressive as time goes on.

For each owned entertainment ticket E, if E is assigned in G�, let V (E) be
the value of E to the client to whom it is assigned in G�. ATTac o�ers to sell E
for min(200; V (E) + Æ) where Æ decreases linearly from 100 to 20 based on Tl.

7

ATTac uses a similar \sliding price" strategy for entertainment tickets that
it owns but did not assign in G� (because all clients are either unavailable that
night or already scheduled for that type of entertainment in G�).

Finally, ATTac bids to buy each type of entertainment ticket E (including
those that it is also o�ering to sell) based on the increased value of G� that
would be derived by owning E (i.e. G� is entirely recomputed with a hypothetical
additional resource). Again, a sliding price strategy is used, this time with the
buy price increasing as the game proceeds.

Allocation
As is evident above, ATTac, relies heavily on computing the current most

pro�table allocation of goods to clients, G�. Since G� changes as prices change,
ATTac needs to recompute it at every bidding opportunity. By using a mixed-
integer linear programming approach, ATTac was able to compute optimal �nal
allocations in every game instance during the tournament �nals | one of only 2
entrants to do so (see Table 6).

The mixed-integer LP approach used by ATTac works by specifying the de-
sired output: a list of new goods to purchase, and an allocation of new and owned
goods to clients, to maximize utility minus cost.

ATTac searches for optimal solutions to the de�ned linear program using
\branch and bound" search. This approach is guaranteed to �nd the optimal
allocation, and usually does so in under one second on a 600 MHz Pentium
computer.

On-Line Adaptation
ATTac was entered in TAC in large part due to the developers' research in-

terests in multiagent learning, and past success in agent tournaments [11]. Based
on the problem description, the domain appeared to be a good candidate for

7 $200 is the maximum possible value of E to any client under the TAC parameters.

Stone and Greenwald / Autonomous Bidding Agents 13

applying machine learning techniques.
However, TAC was conducted in such a way that it was impossible to de-

termine how much each competitor was bidding in the auctions; only the current
ask prices are accessible. This precluded learning detailed models of opponent
strategies. ATTac instead adapts its behavior on-line in three di�erent ways:

1. ATTac decides when to switch from the passive to the active bidding mode
based on the observed server latency Tb during the current game instance
(see Bidding section).

2. ATTac adapts its allocation strategy based on the amount of time it takes
for the linear program to determine optimal allocations in the current game
instance (see Allocation section)

3. Perhaps most signi�cantly, ATTac is adaptive in its risk-management strategy
to account for potentially skyrocketing hotel prices. It was stated above that
ATTac computes G� based on the current prices of the hotel rooms. In fact,
it uses the predicted closing prices of hotel auctions based on their closing
prices in previous games.
ATTac divided the 8 hotel rooms into 4 equivalence classes, exploiting sym-
metries in the game (due to the uniform distribution of client preferences,
hotel rooms on days 1 and 4 should be equally in demand as should rooms
on days 2 and 3), assigned priors to the expected closing prices of these
rooms, and then adjusted these priors based on the observed closing prices
during the tournament. Whenever the actual price for a hotel was less than
the predicted closing price, ATTac used the predicted hotel closing price for
computing all of its allocation values.
Empirical testing indicates that this strategy is extremely bene�cial in sit-
uations in which hotel prices do indeed escalate, while it does not lead to
signi�cantly degraded performance when they do not [12]. Indeed, ATTac
performed as well as the other top-�nishing teams in the early TAC games
when hotel prices (surprisingly) stayed low, and then out-performed the com-
petitors in the �nal games of the tournament when hotel prices rose to high
levels.

4.2. RoxyBot

RoxyBot's algorithmic core is based on AI heuristic search techniques and
approximates optimal behavior. In particular, RoxyBot incorporates an optimal
solver for the problem of allocation|assigning purchased resources to clients
at the end of the game so as to maximize total utility|and an approximately
optimal solver for the more general problem of completion|�nding the optimal
quantity of each resource to buy and sell given current holdings and forecast
prices. This section describes the formulations of and solutions to these two
problems in the context of RoxyBot's overall strategy. The formulation of the

14 Stone and Greenwald / Autonomous Bidding Agents

completion problem involves a novel data structure called a priceline, which is
designed to handle (estimated) closing prices, (estimated) supply and demand,
sunk costs, hedging, and arbitrage in a uni�ed way. RoxyBot's high-level strategy
is outlined in Table 7; full details are available in Boyan and Greenwald [6].

(A) REPEAT

1. Update current prices and holdings

2. Estimate clearing prices and build pricelines

3. Run completer to �nd optimal buy/sell quantities

4. Set bid/ask prices strategically

UNTIL game over

(B) Run optimal allocator

Table 7
RoxyBot's high-level strategy.

Allocation
We �rst describe the allocator, although it runs at the end of a game in-

stance, since it helps to motivate the completer algorithm that is used during
each bidding cycle. The allocator solves the following problem: given a set of
travel resources purchased at auction, and given the clients' utility functions de-
�ned over subsets of travel resources, how can the resources be allocated to the
clients so as to maximize the sum of their respective utilities? Although this
problem is NP-complete, an optimal solution based on A� search is tractable for
the dimensions of TAC.8 Indeed, using an intricate series of admissible heuristics,
RoxyBot managed to prune down the search tree of possible optimal allocations
from roughly 1020 to 103 or 104 possibilities, resulting in provably optimal al-
locations typically being discovered in just half of a second. RoxyBot produced
optimal allocations in 100% of the competition games.

The A� search traverses a tree of depth 16. Search begins at the top of the
tree with the given collection of resources. At each level of the tree, a subset
of the remaining resources is allocated to a client and those resources are sub-
tracted from the pool. Levels 1 through 8 correspond to the decisions of which
legal travel package|i.e., combination of
ights and hotel rooms|to assign to
clients 1 through 8, respectively. There are 21 such travel packages, including
the null package. Levels 9 through 16 of the tree correspond to the decisions
of which entertainment package|i.e., sets of entertainment tickets of di�erent
types on di�erent days|to assign to clients 1 through 8. There are 73 entertain-

8 For descriptions of standard AI search techniques, including A� search and beam search, see [9].

Stone and Greenwald / Autonomous Bidding Agents 15

ment packages, though many of these are infeasible due to earlier assignments
of travel packages. The heuristics compute an upper bound on a quantity|e.g.,
the maximum possible number of legal packages using good hotels, or arriving
on day 3|and then subject to these upper bounds, all as-yet-unassigned clients
are assigned their preferred package among those remaining, ignoring con
icts.
Caching tricks employed at the start of each instance enable these heuristics to
be computed very quickly.

Completion
The completer that runs during each bidding cycle is the heart of RoxyBot's

strategy. Its aim is to determine the optimal quantity of each resource to buy
and sell, given current holdings and forecast closing prices. Like the allocator,
it considers all travel resources from a global perspective, and makes integrated
decisions about which hotels and
ights to bid for, which entertainment tickets
to buy and sell, and how many of each. Unlike the allocator, the completer faces
the added complexity that the resources being assigned may not yet be in hand;
they may still need to be purchased at auction. Furthermore, in the case of
entertainment tickets, resources which are in hand might be more pro�tably sold
on the market than allocated to RoxyBot's own clients.

To reason about the resource tradeo�s involved, RoxyBot's completer relies
on a data structure called a priceline for each resource, which transparently han-
dles either one-sided or double-sided auctions, short-selling of resources, hedging,
and both limited and unlimited supply and demand. Using this construction, the
completer's task is much simpli�ed: a package's cost is computed by popping o�
the leading prices from the corresponding pricelines. The value of a package to a
client equals the client's utility for that package less its cost. Given the pricelines
and the corresponding client valuations of packages, A� search can be used to
�nd the optimal set of buying and selling decisions: i.e., how to \complete" the
current set of holdings by transforming it into an optimal set of holdings by game
end. Unfortunately, most of the A� heuristics used in RoxyBot's optimal allocator
were not applicable in the completer scenario, and running times for an optimal
completer occasionally took as long as 10 seconds. Nonetheless, using a greedy,
non-admissible heuristic, and a variable-width beam search over the same search
space, in practice RoxyBot usually found an optimal completion within about 3
seconds of search. Therefore, during the competition, RoxyBot used beam search
rather than provably optimal A� search.

Estimation
RoxyBot's pricelines are data structures in which to describe the costs of

market resources. In auctions such as those fundamental to the TAC setup, how-
ever, costs are not known in advance. Therefore, the actual input to RoxyBot's
pricelines are but estimates of auction closing prices and estimates of market
supply and demand (current holdings are known). Inspired by its creators' pri-

16 Stone and Greenwald / Autonomous Bidding Agents

mary research interest, RoxyBot was designed to use machine learning techniques
to produce these estimates. However, the �nal round of the TAC competition
was both too short and too di�erent (due to changing agent strategies) from the
preliminary rounds in order to e�ectively use most of the learning algorithms
that were developed. Only entertainment ticket price estimates were adaptively
set, using an adjustment process based on Widrow-Ho� updating [4]. In future
competitions, RoxyBot's creators hope that TAC will be more suited to the use
of learning algorithms for price-estimation based on bidding patterns observed
during a game instance and an agent's own clients' preferences.

4.3. Aster

Designed by members of the Strategic Technologies and Architectural Re-
search (STAR) Laboratory at InterTrust Technologies Corp., Aster �nished third
on competition day. Aster's framework for cost estimation is
exible and can be
tuned to respond to strategic behavior of competing agents. Aster's allocation
heuristics are relatively simple and fast, and they produce high quality solutions.

Like RoxyBot, Aster runs a loop: during each iteration, Aster gets the
status of all auctions, estimates the costs of resources, computes a tentative al-
location based on estimated costs, and bids for some of the desired resources.
After all auctions close, Aster runs a sophisticated algorithm to compute the
�nal allocation.

Estimating Costs
Just as RoxyBot computes a priceline for each resource, Aster computes a

cost vector, whose ith entry gives the cost of holding or acquiring the ith copy
of that resource. Also like RoxyBot, when estimating costs, Aster observes the
principle that sunk costs are no costs. For
ights, the estimated cost is zero for
tickets that are currently held, and the current ask price for additional tickets.

For hotels, estimating costs is tricky because both price and holdings are
uncertain until an auction closes. Aster predicts the closing price for a hotel
room by linearly extrapolating previous ask prices based on current time. This
extrapolated price is then adjusted as follows: For rooms for which Aster holds
hypothetical winnings, the cost is reduced; the amount of this reduction depends
on the probability that these winnings would be ultimately realized (the higher
the bid, the higher the probability, and the lower the estimated cost). For addi-
tional rooms, the cost is increased exponentially to model potential increases in
closing prices due to Aster's own bids.

Since the AuctionBot only provides one bid and ask quote per entertainment
ticket, Aster assumes the cost of buying an additional ticket is the current ask
price, and that of further tickets is in�nite. For all tickets that Aster currently
holds, the (opportunity) cost of one ticket is set to the current bid price, while
the (opportunity) cost of all the remaining tickets is set to zero.

Stone and Greenwald / Autonomous Bidding Agents 17

Tentative Allocation
On each iteration, Aster computes a tentative allocation of resources using a

local search algorithm that considers pairs of clients in turn, given estimated costs
and current holdings. It starts with a null allocation of resources to all clients.
Then it iterates over all pairs of clients, deallocating their current resources and
allocating new resources so as to maximize utility. This procedure uses the cost
vectors as stacks: deallocating a resource frees up the cost of the last allocated
copy, and allocating a resource incurs the cost of an additional copy. Repeated
iterations are conducted until utility does not improve.

Bidding
Aster bids using one of two strategies, depending on whether the stage of

the game is pre-commit (before the witching hour) or committed. Like ATTac,
Aster initiates its committed stage as late as feasible, based on previous delay in
accessing the AuctionBot, with the hope that it will be able to complete at least
one iteration during the committed stage. During the pre-commit stage, Aster
does not bid on
ights; during the committed stage, Aster places all necessary

ight bids to achieve the current allocation.

In the pre-commit stage, Aster places limited bids on hotel rooms in the
hopes of capturing early closings. At the same time, Aster tries to avoid engaging
in price hikes by placing bids at the minimum allowable increment, namely the
ask price plus $1. Aster limits its bids for each client to at most two consecutive
nights, even if the allocator has scheduled the client for a longer stay. (With
at most two nights, if the hotel price on one night shoots up, Aster can drop
the expensive night without having purchased unnecessarily. If it were to bid for
more than two nights, and the price on a middle night were to shoot up, it could
get stuck with an extra room or two for the outer nights.) During the committed
stage, Aster bids for every night of each client's allocated stay. The amount of
these bids is equal to the utility due to that client.

Aster's bidding strategy for entertainment tickets is independent of the
stage of the game. It sets the bid and ask prices for tickets using their utility in
the current allocation as well as pre-computed expected utilities for other trading
agents; the goal, of course, is to obtain greater utility than the other agents, not
to maximize one's own utility. In some games, Aster pro�ted by buying and
selling the same entertainment ticket.

Final Allocation
Aster uses heuristic search to compute its �nal allocation. It searches a

tree consisting of all possible travel packages (i.e., arrival dates, departure dates,
and hotel types) for all clients to compute the globally optimal allocation of its
travel goods to its clients. Then, at each leaf of this tree, Aster computes an
entertainment assignment by iterating over all pairs of clients deallocating and
reallocating entertainment tickets optimally until the entertainment allocation

18 Stone and Greenwald / Autonomous Bidding Agents

cannot be improved.
The above search algorithm is not optimal because the entertainment ticket

assignment process is only locally optimal, but need not be optimal over all clients
viewed from the global perspective. Thus, after this �rst search terminates,
Aster starts another search in an attempt to compute an optimal entertainment
allocation over all clients while keeping their travel packages �xed. The allocation
heuristic performs well, usually �nding an optimal or a near-optimal solution (see
Table 6).

Aster uses pruning in both searches to cut down on execution time. Al-
though not provably optimal, Aster's designers believe that approximate ap-
proaches of this nature will scale better to larger games than exact approaches,
since the size of the search tree can be explicitly controlled.

4.4. UmbcTAC

UmbcTAC, created at University of Maryland Baltimore County, placed fourth
in the competition. By being sensitive to network load and adapting to network
performance, it received the most frequent updates regarding market prices.

Bidding
UmbcTAC maintains the most pro�table itinerary for each client individually

based on the latest price quotes (as opposed to solving the full 8-client optimiza-
tion problem). UmbcTAC balances strategies that avoid switching travel plans too
frequently against strategies that encourage switching travel plans early on:

� When a client's itinerary is changed, the value of the goods that will no longer
be needed are subtracted from the value of the new itinerary as a penalty for
changing plans. Thus, the client's travel plans will not change unless the gain
in pro�t overrides the value of wasted goods. Subsequently, wasted goods are
marked as \free" goods: i.e., they are treated as sunk costs. As such, the price
of free goods is set to 0, which encourages their use in the itineraries of other
clients.

� UmbcTAC only changes a client's travel plans if the pro�t di�erence between
the new and the old plans exceeds a threshold value (typically between $10
and $100).

� When it is necessary to change a client's travel plan, it is important to do
so as early in the game as possible: the earlier the plan changes, the more
likely it is that the obsolete bids will either not win, or will win at a low price.
UmbcTAC risks wasting one good in each bidding iteration in order to ensure
that at least one client changes to a better plan. It does so by setting the
penalty for the �rst wasted good to 0.

Once the desired goods have been determined, UmbcTAC sets its bid prices
as follows:

Stone and Greenwald / Autonomous Bidding Agents 19

Flights: The agent bids a price signi�cantly higher than the current price to
ensure that the client gets the ticket.

Hotels: The agent computes the price increment, de�ned to be the di�erence
between the current price quote and the previous price quote. It sets the bid
price to be the current price plus the price increment. During the witching
hour, UmbcTAC bids for hotels at a price such that if it wins a hotel at that
price, the client's utility would be 0.

Entertainment: The agent buys entertainment tickets for a client if the client
is available (i.e., in town and without an entertainment ticket for that night
or of that type). It buys the ticket that the client most prefers at the market
value. Any extra tickets are sold at auction at an ask price equal to the average
of the preference values of all UmbcTAC's clients.

UmbcTAC continually bids for hotels to guard against the possibility of hotel
auctions closing early. It only bids for airline tickets and raises hotel bids to their
limit in the last few seconds of the game.

Allocation
At the end of the game, UmbcTAC allocates the purchased
ights and hotel

rooms greedily to the clients according to the most recent travel plans used during
the game. If a client cannot be satis�ed, its goods are taken back and marked as
free. Other clients can then try to make use of free goods to change travel plans
if a greater utility would result.

Entertainment tickets are also allocated greedily. This strategy is simple
and nearly optimal. UmbcTAC begins by allocating an entertainment ticket to the
available client with the largest preference value for that ticket.

Bandwidth Management
In TAC, prices change every second and hotel auctions may close at any

time. Therefore, keeping bidding data up to date is very important. UmbcTAC

bases its bidding strategy on the computed network delay between the agent and
the TAC server. When the network delays are longer than usual, UmbcTAC is more
aggressive, o�ering higher prices and bidding for
ights earlier. The agent never
bids for any entertainment tickets during the last three minutes of the game in
order to save network bandwidth. The agent also does not change travel plans
during its last two or three bidding opportunities in order to save time. On aver-
age, UmbcTAC updates its bidding data every 4{6 seconds, providing a signi�cant
advantage over the reported 8{20 second delays experienced by competing agents.

4.5. ALTA

ALTA is an Arti�cial Life Trading Agent, named after the company of its
designers, namely Arti�cial Life, Inc. ALTA is unique in that its search/allocation
strategy is based on genetic algorithms.

20 Stone and Greenwald / Autonomous Bidding Agents

Bidding strategy
ALTA limits its concern to travel packages, participating only in the ascend-

ing auctions for hotel rooms, but ignoring the continuous double auctions (i.e.,
buying and selling of entertainment tickets) altogether. In this way, the search
space is limited to only 20 feasible travel packages, although ALTA did attempt to
allocate its endowed entertainment tickets. ALTA uses combinatorial search (plus
heuristics) to maximize the expected utility of entertainment ticket allocations.

Like most other agents, ALTA divides the entire duration of the game into
two parts. During the �rst period, current ask prices are dynamically monitored
and decisions regarding what to bid for are made (using optimization techniques).
ALTA also estimates the �nal prices of auctions during this phase, and increases
its bids based on these predictions, the ask current quote, and cycle time. The
point in time at which ALTA converts to its second phase is de�ned dynamically
based on the performance of the AuctionBot, but is intended to guarantee at
least three additional iterations.

After the �rst phase is complete, ALTA ceases any further optimization, freez-
ing the current allocation: days of arrival/departure and hotel type. At this
point (i.e., during the second phase), ALTA focuses on ensuring the purchase of
the desired goods. In doing so, ALTA bids aggressively, sending o� high bids and
increasing those bids whenever the desired holdings are not realized. Also during
the second phase, ALTA bids the maximum possible amount for
ights; this guar-
antees that
ight purchases will be successful regardless of possible last minute
price
uctuations. Lastly, it should be noted that in addition to concerns raised
earlier about the feasibility of search, ALTA also decides to ignore continuous dou-
ble auctions simply because it does not commit to an allocation until the second
phase.

Allocation Strategy
As mentioned previously, ALTA's allocation strategy is based on the principles

of genetic algorithms. As soon as the game ends, ALTA compiles the list of acquired
resources, and begins searching for the optimal allocation of its goods among
its clients given their preferences. According to the TAC setup, there are 392
feasible packages, plus the null allocation. Each chromosome, therefore, consists
of 8 genes (one corresponding to each client), with every gene numbered between
0 to 392. ALTA simulates a population of 500 such chromosomes, with each one
representing one possible allocation. Using genetic algorithms, ALTA searches
for the optimal allocation by selection, mutation, crossover, and replacement
within the population of chromosomes, seeking that which maximizes overall
utility. This optimization process converges within the appropriate time frame.
Although ALTA rarely reports an optimal allocation, it did �nd allocations within
97% of the optimal on competition day (see Table 6).

Stone and Greenwald / Autonomous Bidding Agents 21

Special Approaches/Motivations
In attempt to optimize the performance of ALTA's communication/transport

level, ALTA was built in Java, based on the pure auction server API, rather than
the C++ bidding agent classes. Another unique feature in the design of ALTA
was its ability to control its expenditures. Although hotel prices often escalated
at the end of the competition games, as other agents engaged in price wars, ALTA
raised its �nal bids to an extent, but tried to ensure that its total expenses were
below its total expected utility.

The designers of ALTA participated in TAC not just for the fun of it, rather
because their company, Arti�cial Life, Inc., implements market and auction-based
approaches for tasks such as scheduling and resource allocation for distributed
search engines and network management. The designers are also interested study-
ing the market-driven behavior of multiagent systems, in order to gain an under-
standing of the problems and scenarios of future automated e-commerce systems.

4.6. DAIHard

DAIHard was created by the Distributed Arti�cial Intelligence Group at the
University of Tulsa.

Bidding Strategy
DAIHard bid for three items for each client, as follows:

Airline tickets: DAIHard bids for airline tickets only after a pre-speci�ed time
period (a parameter of the agent). This time window is large enough to account
for the possibility of having to submit multiple bids because of changing auction
prices. Delaying the bidding for airline tickets enables the agent to be more

exible in setting the length of each client's stay.

Hotel rooms: Initially, DAIHard bids for both bad and good hotel rooms for
the duration of each client's stay. However, if an ask price exceeds a certain
value, the agent stops bidding for one of the hotel rooms. In particular, if the
di�erence between the price of the Grand Hotel and the price of Le Fleabag
Inn exceeds the good hotel bonus, then DAIHard bids for Le Fleabag Inn;
otherwise, DAIhard bids for the Grand Hotel.
There is also a reserve price which the agent does not exceed when it bids for

hotel rooms. The reserve price in an English ascending auction is the agent's
valuation of the good, which in the case of TAC hotel rooms is a function of
airline ticket prices, entertainment ticket prices, and the prices of alternative
hotel rooms. For a given hotel room, DAIHard computes this value as follows:
for all pairs of arrival and departure days,

1. The pre-hotel utility of the package is computed using the formula

1000 + Fun Bonus + Hotel Bonus - (Current Flight Cost +

Entertainment Ticket Cost + Travel Penalty)

22 Stone and Greenwald / Autonomous Bidding Agents

2. The hotel cost is computed by calculating the sum of the current ask prices
over the duration of stay.

3. The di�erence between 1 and 2 is stored as the package utility.

Now for each pair of arrival and departure days, there is an associated utility.
The pair for which this utility is maximum is chosen, and the estimate of the
corresponding hotel reserve prices are set at the value obtained in step 1. If
all utilities are negative, DAIHard stops bidding for the client altogether.

Entertainment tickets: DAIHard begins bidding on entertainment tickets at
the start of each game instance. The agent never bids above the entertainment
reserve value for each client. In a competitive environment, where the objective
is to win, rather than to maximize utility and minimize costs, agents may
sacri�ce a competitive advantage by selling unneeded tickets. Hence, in selling
any entertainment tickets, DAIHard's minimum ask price is �xed at $100.

Allocation Strategy
The problem of �nding optimal allocations, in general, is computationally

intensive. Nonetheless, DAIHard does successfully compute a near-optimal allo-
cation, which it accomplishes as follows:

1. It �rst allocates its airline tickets depending on each client's set arrival and
departure days.

2. It then allocates hotel rooms to each client depending on a stored
ag in
the client data, indicating good or bad hotel. If the agent is unable to fully
accommodate a client for the entire duration of its stay, it puts that client
on a waiting list. Similarly, unassigned hotel rooms are stored in a common
hotel-room pool { DAIHard's hotel bidding strategy may result in the purchase
of extra hotel rooms. After iterating over all its clients, the agent tries to
allocate the hotel rooms in the common pool to the clients on the waiting
list. Priority is given to clients with shortest stays.

3. DAIHard optimally, rather than greedily, allocates entertainment tickets.

Special Approaches/Motivations
TAC is closely related to the other projects of interest to the DAI-HARD re-

search group. In general, the group is interested in developing pro-active, market-
aware agents that can educate the on-line consumer about his/her domain of
interest (e.g., travel, shopping). This objective involves (i) analyzing market
conditions, knowing user preferences, so as to facilitate users taking advantage of

eeting opportunities, and (ii) organizing and presenting the information struc-
ture of a domain in such a way as to enable users to formulate e�ective queries.
In addition, the DAI-HARD group is interested in empirically studying, from the
buyer's perspective, the utility of participating in one or more auctions of vary-
ing types in which similar goods of interest to the user are sold. Participation in

Stone and Greenwald / Autonomous Bidding Agents 23

TAC enabled the group to begin to understand the dynamics of on-line auctions
among multiple intelligent agents.

4.7. RiskPro

Bidding Strategy
RiskPro periodically updates bids for all types of auctions, until the end of

the game instance. The expected utility of each client is monitored and compared
with the total client debits, assuming that all auctions will clear at the current
asking price. RiskPro bids in all auctions as long as the expected utility exceeds
the expected client debits. Otherwise, the agent withdraws all the bids for the
client in question in all auctions that have not already cleared. RiskPro sleeps for
a prede�ned number of seconds after completing each bidding round, depending
on the amount of time left in the game. In the �rst half of the game, the sleep
time is ten seconds, in the second half �ve seconds, until three minutes remain
when sleep is disabled.

RiskPro tries to minimize the risk of buying
ight tickets early in the game
that will not be of use at the end of the game, due to a lack of hotel rooms.
Another reason for postponing the purchase of
ights is the possibility of hotel
prices in
ating at the end of the game. RiskPro therefore waits until the last
three minutes of the game before submitting
ight bids. Since the ask price is
updated independently of the submitted bids, RiskPro bids well above the ask
price in order to ensure winning the goods even if the ask price increases before
the next auction clears. As the supply of tickets is unlimited, RiskPro needs only
submit
ight bids once in order to win the
ights at the next clear.

By contrast, the strictly limited supply of hotel rooms leads RiskPro to bid
for both types of hotel simultaneously. RiskPro initially submits bids of $1 in
auctions for both hotel types, modulo client preferences. The chance of winning
goods early and at a low price is hence increased, if it so happens that the demand
for one of these days is low, resulting in the auction closing prematurely. At the
very last minute of the game, RiskPro uses a bid increment of half the asking
price, in order to avoid the risk of losing goods to other agents.

The creators of RiskPro observed that the outcome of eÆciently allocating
the entertainment ticket endowment to clients can be more successful than at-
tempting to trade tickets with other agents via the continuous double auctions.
At the outset, RiskPro allocates tickets to all clients whose preferences exceeds
$75, checking for each available ticket that it is allocated to the client with the
highest utility for that ticket, and that this client does not already hold such a
ticket. The remaining tickets in the endowment are saved for trading, which is
initiated halfway into the game. The reason for the delay is to avoid aiding other
agents at the beginning of the game, and to hopefully create some disorder by
initiating a sudden change in prices in the middle of the game.

24 Stone and Greenwald / Autonomous Bidding Agents

Allocation Strategy
RiskPro uses a simple allocation strategy which identi�es clients with the

highest preferences for the goods acquired. The strategy does not involve �nd-
ing optimal allocations by evaluating the utilities of all possible combinations
of goods. Instead it generates an allocation of all available goods by regarding
subsets of goods as a single bundle, and searches for bundles according to a satis-
�cing scheme [10]. Using this scheme, the �nal allocation of goods is independent
of RiskPro's information as to which goods were intended for which client.

Special Approaches/Motivations
Two relevant past experiences in
uenced the design of RiskPro. The �rst is

prior work within the research lab (www.dsv.su.se/DECIDE) related to decision
analysis and risk modeling, and the second was participation in several RoboCup
competitions (www.dsv.su.se/~robocup/).

Boman, one of RiskPro's designers, is a researcher interested in developing
theories, methods, and tools for human decision analysis, some of which have
recently been applied to arti�cial decision makers [1]. His main agenda has been
to extend rational choice theory with realistic models and tools for risk manage-
ment. In brief, his approach introduces general risk constraints [5], which allows
for the setting of security levels and threshold values, leading in turn to rec-
ommendations of future actions consistent with the risk attitude of the decision
maker. The main concern has been low-probability outcomes with catastrophic
utility (close to, or equal to -1).

In the case of TAC, this perspective led to the following observation: a night
without a hotel room might be considered a small disaster. In order to mitigate
the e�ects of such disasters, RiskPro is a risk-averse agent. Realizing that this
approach might adversely a�ect their standings, RiskPro's developers accepted
small performance degradations in order to connect their agent to their research
agenda, and perhaps more importantly, to make it suitable to more realistic sce-
narios. Indeed, a possible future version of TAC might enhance the negative
e�ects of infeasible allocations with catastrophic outcomes, as a game manifesta-
tion of, for example, a client suing the trading agent company. RiskPro's code
for optimizing with respect to server speed and network load, based on experi-
ences from testing and participating in qualifying rounds, compensated for the
non-optimality (at least in part) caused by a devotion to risk mitigation.

4.8. T1

The design of T1 was a joint project between the Swedish Institute of Com-
puter Science (SICS: http://www.sics.se/) and Industrilogik (http://www.
L4i.se/). T1 �nished eighth in the competition, as the last-place �nalist.

Stone and Greenwald / Autonomous Bidding Agents 25

Bidding Strategy
T1 is essentially a set of parameterized heuristics optimized for the TAC

setup. T1 has three stages of execution: initial bidding, an intermediate loop
that updates bids every �fteen seconds and estimates �nal prices, and a �nal
stage when it determines a tentative allocation and buys
ights.

In the initial stage, T1 bids $5 for 8 rooms in all the hotel auctions, ensuring
that it will have already obtained any necessary rooms in the event that an auction
closes prematurely. Similarly, it bids $3 in all entertainment ticket auctions.
(Tickets that it buys but turn out not to be useful are later auctioned o� for
$110 or more. The $110 limit was set based on the intuition that low prices could
provide the buyer | a competing agent | with more utility than the transaction
yields for T1, resulting in a relative net loss.)

In intermediate looping stage, T1 updates its bids every �fteen seconds, by
placing a bit at $10 above the current ask price if the hypothetical quantity won is
lower than the desired quantity. Also during this stage, T1 uses current ask prices
to estimate �nal prices using a thresholding heuristic. The price trajectories for
the hotel auctions were roughly characterized by T1's designers as falling within
one of the following of three categories: steady low prices, linearly increasing
prices, or \unlimited" growth. This behavior was captured in a heuristic that
estimates �nal prices using a pair of breakpoints for every hotel auction. If the
current ask price is below the �rst breakpoint, T1 predicts that the price will
close at that breakpoint. If the price is above the �rst breakpoint but below the
second, T1 predicts that the price will end at the second breakpoint, unless the
calculated linear trend is lower than this point, in which case T1 predicts the
price will close at the calculated trend price. If the current price is higher than
both breakpoints, T1 predicts according to the calculated trend price. The break
points are parameters supplied to the agent at startup; the actual values were
tuned based on the price data observed during the qualifying rounds.

With 2 minutes left in the game, T1 changes its focus to trying to avoid hotel
room auctions whose prices it predicts will skyrocket. Speci�cally, T1 does not
consider any hotel room in subsequent allocations whose price increase between
the two last quotes exceeds a pre-speci�ed amount. At the same time, T1 also
estimates the cost of not winning each hotel room, i.e., its marginal utility. This
utility is approximated as the average of the in
ight prices on the two days
before the night in question plus the average of the out
ight prices on the two
days after that night plus a tuning parameter. The agent adds this calculated
utility to the current ask price and places the resulting amount as the �nal bid
in the hotel auctions. With 45 seconds left of the game, T1 buys the necessary

ights, assuming it will obtain all the hotel rooms for which it has bid.

Allocation Strategy
Once �nal prices are estimated, T1 performs a greedy search to decide

whether it should buy more of any resources. The agent computes tentative

26 Stone and Greenwald / Autonomous Bidding Agents

allocations of resources to its clients so to maximize utility, considering each in
turn. The allocation process is repeated for all 8! = 40; 320 permutations of
client orderings, and the optimal allocation among those considered is then used
to decide whether to buy more resources. This search is suboptimal, but the
post-competition analysis shows that it performs reasonably well (within 98%
of the optimal allocation), with a few catastrophic failures (around 75% of the
optimal). During the last 2 minutes of a game instance, the tentative allocation
is only performed on a randomly selected subset of permutations of the client
orderings.

Motivations and Observations
T1's designers were primarily interested in TAC as a route to understanding

the nature of the diÆculties that a real world combinatorial trading agent faces,
such as the e�ect of response time, server failures, price wars, and malicious
bidding. Initially, the team registered several agents, on the one hand because
they were considering several di�erent approaches, but in addition, because they
wanted to determine whether the rules of the game favored collusion among
agents. They discovered, for example, that one could exploit the fact that agents
were given unlimited credit; in particular, one agent could earn billions by selling
expensive event tickets to a colluding agent that was deliberately losing millions.
Eventually, this type of collusion was disallowed by the organizers.

The design of T1 involved a number of simple heuristics together with a large
number of tunable parameters. This approach appears not to have been suÆcient
for the TAC setup, since it requires the ability to observe several representative
games in order to manually tune the parameters. Since the characteristics of
the game changed quite drastically between the time of the qualifying rounds
and the �nal competition, T1's parameters were unfortunately not tuned for the
appropriate situation.

4.9. Nidsia

The Nidsia team focused their e�orts on solving an open research problem,
of which TAC provides a particular instantiation. The nature of the TAC setup
is such that clients' utility functions dictate the value of complete packages, but
the value of any particular good within a package, taken independently, is not
always well-de�ned. Given an auction mechanism and an independent resource
valuation, auction theory provides an optimal bidding strategy. Such valuations
do not exist in TAC, however, nor do they exist in other combinatorial auctions
for complementary and substitutable goods. Thus, the relevant bidding problem
in such settings is how to best construct bids for individual goods, which are sold
in separate auctions, but are of no value when considered in isolation, and only
take on value in conjunction with other relevant goods. Nidsia's approach to this
problem, inspired by the paper of Boutilier et al. on sequential auctions [2], is

Stone and Greenwald / Autonomous Bidding Agents 27

to construct an agent bidding policy conditioned on the possible outcomes of its
bids.

Bidding Strategy
Nidsia's bidding strategy considers clients in turn; this discussion therefore

applies to an arbitrary client. State st is a bit vector where each bit st;i describes
Nidsia's current holdings for said client at time t. A bidding policy is a function
from states to actions, where an action a is a vector of bids, one per auction, and in
general, each bid is a price-quantity pair. Under certain simplifying assumptions,
Nidsia computes an optimal bidding policy.

The number of possible bids (and therefore actions) is in�nite, if one con-
siders all possible values of price and quantity. To reduce the space of actions to
a manageable size, Nidsia only considers bids in which the quantity is 1 and the
price for auction i is the ask quote qt;i at time t plus a �xed increment Æ. With
this simpli�cation, an action a is a bit vector, where ai = 1 if a bid is submitted
at price qt;i + Æ and ai = 0 if no bid is submitted.

To further reduce the search space, Nidsia focuses only on auctions for travel
goods (i.e.,
ights and hotels), and therefore, by the nature of the TAC auction
mechanisms, is primarily concerned with hotel auctions. For each client, Nidsia
computes the expected utility of each of 256 possible actions|each corresponding
to whether or not each of the 8 possible hotel rooms is included|given current
holdings. Nidsia bids according to the action that maximizes expected utility.

The expected utility E [U(st ; a)] of taking action a in state st is the sum over
all possible states st+1 of the probability P (st+1jst; a) of reaching state st+1 times
the utility V (st+1) of state st+1. The quantity P (st+1jst; a) is computed as the
product of the probability of the outcomes of the bids described by the action
a, taken in state st, that lead to state st+1. This formulation assumes that the
probability distributions among the various auctions are independent.

The probability of obtaining item i is assumed to be near 0 at the beginning
of the game and near 1 at the end of the game. For the purposes of TAC, these
probabilities were given by the equation for the straight line F (t) = mt+ b that
satis�es the conditions F (1) = 0:1 and F (15) = 1; that is, m = 0:9=14 and
b = 0:1 � m (recall that 15 is the number of minutes in a TAC game). The
probability of failing to obtain item i at time t is simply 1� F (t; i).

The utility V (st) at state st is taken to be the reward r(st) for being in
state st less the cost c(st) of obtaining the items held in this state: i.e., V (st) =
r(st) � c(st). The cost c(st) =

P
i st;ict;i(h), where ct;i(h) = 0 if Nidsia owns

hotel i at time t, and ct;i(h) = qt;i otherwise. The reward r(st) is taken to be the
maximum possible value attainable among all feasible packages that include the
hotels indicated by bit vector st. Formally,

E [U (st; a)] =
X
st+1

P (st+1jst; a) V (st+1)

28 Stone and Greenwald / Autonomous Bidding Agents

P (st+1ja; st) =
Y
i

P (st+1;i)

P (st+1;i) = st+1;iF (t+ 1; i) + (1� st+1;i) (1� F (t+ 1; i))

Allocation Strategy
Due to time constraints during development, Nidsia allocates its goods to

clients according to a �xed heuristic, rather than computing optimal allocations
(using e.g., integer programming). One minute before the end of the game,
Nidsia bids on
ights that coincide with the hotel room auctions that it expects
to win for each client. Also at this time, the initial endowment of entertainment
tickets is greedily allocated to clients. Unused tickets are auctioned o� at the
current bid-quote price, and useful tickets that are currently on sale are purchased
at the current ask-quote. At the end of the game, Nidsia con�rms that its clients
have all the necessary goods to complete their travel, and it heuristically tries to
allocate any unused goods so as to satisfy as many clients as possible.

Special Approaches/Motivations
The approach taken by Nidsia's developers to the TAC competition incor-

porated aspects of their more general research agenda, including the creation of
techniques for computing optimal bidding policies. The Nidsia algorithm is not
tailored to the particular auction mechanisms of TAC; rather it is more general in
its applicability to any combinatorial auctions of substitutable and complemen-
tary goods. As a result, the implementation of Nidsia's TAC agent required some
strong simplifying assumptions. Nonetheless, Nidsia's overall performance illus-
trates the promise of this general method. Had Nidsia's general algorithms been
tailored to the speci�c TAC setup, Nidsia's performance would have improved.

4.10. EZAgent

EZAgent was one of the 12 TAC semi-�nalists. The objective of its designer
was to obtain positive utility with minimum coding.

Bidding Strategy
EZAgent enforces that all clients travel on the days that they prefer. No

analysis was performed to see if changing the travel days could increase the utility.
(This decision turned out to be a costly mistake, as often it is more bene�cial to
travel on di�erent days to maximize utility.)

Given each client's travel days, EZAgent calculates how much utility it could
obtain by purchasing the Grand Hotel for a client and compares this value with
the current cost of rooms at the Grand Hotel. If it obtains positive utility from
the Grand Hotel, the agent bids on the Grand Hotel. If the utility is less than
the current cost, the agent bids on Le FleaBag Inn. If Le FleaBag Inn costs
more than $300, the agent opts not to acquire travel arrangements for this client.

Stone and Greenwald / Autonomous Bidding Agents 29

During the last minute of the game, EZAgent does not change its hotel preference
since doing so could lead to acquiring multiple accommodations.

EZAgent updates bids continuously until a game is complete. If it wants a
hotel and does not have a winning bid, EZAgent bids $10 above the current ask
price. An analysis of the executions during the �nal round showed that it bid
approximately every 10 seconds. Since an unknown period of inactivity could
result in an early closing of a hotel auction, no delay was inserted in between
bidding cycles.

During the last �ve minutes of the game, the agent acquires airline tickets
for any travelers for whom it has obtained or is still trying to obtain hotel ar-
rangements. Also during this time, entertainment tickets are auctioned o�. The
ask price is set at a small increment over the value of the ticket to the client to
whom it is currently allocated. A ticket is bought if it is o�ered at less than the
utility that would be gained by assigning it to a client.

Allocation Strategy
After the last auction closes, EZAgent �rst distributes its hotel rooms among

its clients. Clients with higher good hotel values are given preference for the
Grand Hotel. If any rooms at Le FleaBag Inn were obtained, they are allocated
to clients as yet without rooms according to their potential entertainment bonus.
After allocating hotel rooms, the entertainment preferences of those clients with
accommodations are ordered. Tickets are distributed in a descending manner
until all possible tickets are allocated. This does not obtain an optimal allocation,
but generally performs well. In a review of the games played, EZAgent averaged
98% optimal resource allocation (see Table 6). Since the allocation mechanism
only considers one possible allocation of resources, it is able to quickly distribute
its resources.

Special Approaches
EZAgent attempted to obtain positive utility with minimum coding.

EZAgent did not use an optimal strategy, but rather it used a strategy that
its designer hoped would result in a positive score. EZAgent originally attempted
to gain more hotel rooms than necessary so that other agents would not be able
to secure complete travel packages. Most other agents were not willing to pay
high prices for hotel rooms, and dropped out of the market when the price ex-
ceeded some threshold. EZAgent's policy of greedy acquisition resulted its paying
high prices, hoarding rooms, and achieving low utility. This feature (bug) was
disabled during the semi-�nals.

4.11. UATrader

The travel agent UATrader developed at the University of Arizona partici-
pated in the TAC qualifying rounds.

30 Stone and Greenwald / Autonomous Bidding Agents

Bidding Strategy
The general bidding strategy employed by UATrader can be characterized as

a \myopic" trading strategy with iterative adjustments based on neighborhood
search. After analyzing several game instances and observing the behavior of
other trading agents, the Arizona team realized that the decisions as to what
days each client should stay in Boston play a decisive role in agent performance.
Thus, UATrader actively participates in the
ight and hotel auctions and seeks
to coordinate its bidding activities in these auctions, while its involvement in the
entertainment ticket auctions is secondary and largely opportunistic.

UATrader bases most of its bidding decisions on the anchor solution|a
hypothetical assignment of travel dates for each client. The anchor solution is
initialized to re
ect each client's preferred arrival and departure dates. Whenever
a price change is observed, UATrader evaluates small variations (neighbors) of the
current anchor solution on a client-by-client basis. This evaluation is based on the
sum of the potential changes across all three types of auctions given the current
price quotes. If the overall impact of switching from the current anchor solution
to some variation is positive, this variation is made the new anchor solution for
the corresponding client.

UATrader bids in two phases. The duration of the �rst phase is 13 minutes;
then with 2 minutes remaining, it switches to the second phase.

Flight Auctions. In the �rst bidding phase, UATrader submits �xed low bids
(e.g., $165) for all available
ights to take advantage of possible low airfares. In
the second phase, UATrader assures the booking of the
ights that match the
anchor solution for each client by submitting high bids.

Hotel Auctions. UATrader's behavior in hotel room auctions is coordinated with
its bidding strategy for
ights. In the �rst phase, UATrader submits dummy bids
at �xed time intervals to keep the auctions from closing. In the second phase,
UATrader relies on anchor solutions to examine whether the Boston Grand Hotel
(BGH) or Le Fleabag Inn (LFI) rooms should be targeted. At �rst, UATrader
prefers that all clients stay in BGH. Then, as the auctions proceed, for each
client, UATrader estimates the utility change of switching from BGH to LFI (or
switching from LFI to BGH, if the current target is LFI) based on the current
prices. If, for certain nights, prices of both hotels exceed pre-speci�ed thresholds,
UATrader automatically modi�es the corresponding anchor solutions and adjusts
its bids in the
ight auctions to avoid those nights.

Entertainment Ticket Auctions. In the �rst bidding phase, UATrader is not
active in any of the entertainment ticket auctions. In the second phase, after
the anchor solution is booked, UATrader makes a one-time decision based on the
current price quotes pertaining to selling and buying tickets with the objective
of maximizing total client utility.

Stone and Greenwald / Autonomous Bidding Agents 31

Allocation Strategy
UATrader relies on the default allocator strategy provided by the TAC server.

Motivations
The University of Arizona team consists of researchers from Management In-

formation Systems, Computer Science, and Experimental Economics. The team
is currently conducting research on comparing di�erent electronic exchanges in-
cluding auctions and negotiations; developing intelligent trading strategies in
software agents for various online trading institutions; and investigating human-
agent interaction for strategic decision-making tasks. TAC was a valuable re-
search experience, closely related to their research goals.

4.12. EPFLAgent

EPFLAgent is the middle tier of a multiagent system composed of the TAC
AuctionBot and a slave agent responsible for solving constraint satisfaction prob-
lems (CSPs) submitted by the EPFLAgent (see Figure 3).

Customers
EPFLAgent

Solver Agent

Preferences
Market

AuctionsInfo

Transactions

addBid

updateBid

deleteBid

InitClientPref

InitAuctionValues

UpdateAuctionValues

Distribution
(CSP solution)

Figure 3. General overview of EPFLAgent communications with the other agents

The Solver uses constraint satisfaction algorithms provided by the JCL (Java
Constraint Library) for solving the CSPs it receives. The CSPs are described in
CCL (Constraint Choice Language) using an XML content description.

Bidding Strategy
EPFLAgent initializes the Solver using a CSP representation of the prob-

lem's variables (e.g., the client preferences, market state, etc.). Then, the agent
classi�es its clients into di�erent classes, from the most constrained client to
the least constrained, according to their preferences. Speci�cally, the clients are
classi�ed into three categories | very favorable (VF), favorable (FV), and unfa-
vorable (UF) | based on their utilities (di�erence between the client's valuation
of a package and its cost) and experimental thresholds. As the market evolves,
EPFLAgent continually reclassi�es the clients.

32 Stone and Greenwald / Autonomous Bidding Agents

EPFLAgent starts by focusing on the clients who are FV, trying to satisfy
them �rst since it is likely to be easy to satisfy VF clients when the end of the
game is near. The agent continues spending the client's money (bidding slightly
above the market price) until the client becomes UF or it is satis�ed with an
agent's utility. The bidding is done in parallel for all the FV clients.

Allocation Strategy
At the end of a game instance, the solver agent is given a limited amount

of time to �nd a better solution than the current allocation. Since the solver is
time-constrained, it uses simple heuristics to limit the search space. It may fail
to �nd an optimal solution.

CSP-based Multiagent Approach to TAC
EPFLAgent represents a distributed solution to the TAC game. It focuses

on the execution of a high-level strategy, delegating all speci�c tasks to other
agents to achieve its goals. Speci�cally, it uses the CSP formalism and caching
to anticipate its decision-making needs which it outsources to its Solver. The
motivation for such an approach is to investigate the potential of multiagent
solutions with the hope of discovering ways to tackle complex problems eÆciently.

5. Results

We now describe some controlled experiments that explore speci�c aspects
of two of the agents, namely ATTac and RoxyBot.

5.1. Adaptivity

In the �nal rounds of the TAC competition, adaptive hotel bidding played
an important role. ATTac, who performed as well as the other teams in the early
games when hotel prices (surprisingly) stayed low, out-performed its competitors
in the �nal games of the tournament when hotel prices suddenly rose to high
levels. Indeed, in the last 2 games, some of the popular hotels closed at over
$400, but ATTac successfully steered clear of these hotel rooms. In order to study
the impact of an adaptive hotel bidding strategy in a controlled manner, we ran
several game instances with ATTac playing against two variants of itself:

1. High-bidder computes its optimal tentative allocation based on the current
hotel prices, as opposed to using priors and averages of past closing prices.

2. Low-bidder computes its optimal tentative allocation as do high-bidders, but
then bids for hotel rooms at only $50 above the current ask price, as opposed
to bidding its marginal utility, which tended to be more than $1000.

At the extremes, playing ATTac vs. 7 high-bidders, at least one hotel price
skyrockets in every game since all agents bid very high for the hotel rooms. On

Stone and Greenwald / Autonomous Bidding Agents 33

#high agent 2 agent 3 agent 4 agent 5 agent 6 agent 7 agent 8

7 (14) 8671 8248 9369 11673 9253 9059 10406
6 (87) 11696 10552 10557 10328 10644 10295 1389
5 (84) 10579 10551 10474 10118 9830 2707 2650
4 (48) 10172 9982 9851 10016 3873 3360 4812
3 (21) 5085 5521 4595 3227 3533 4513 3284
2 (282) 214 203 2809 2918 2877 2295 2652

Table 8
The di�erence between ATTac's score and the score of each of the other seven agents averaged
over all games in a controlled experiment. All scores are statistically signi�cant at the 0:001
level, except the two marked in italics. Each row corresponds to a di�erent number of high-
bidders (excluding ATTac itself). The �rst column presents the number of high-bidders as well as
the number of experiments we ran for that scenario in parentheses. The column labeled \agent
i" shows how much better ATTac did on average than agent i. Scores above the stair-step line
are for high-bidders and scores below the line are for low-bidders. In all cases, ATTac beats the
other agents, and in all but the �rst two columns of the last row it does so with a very high

level of statistical signi�cance.

the other hand, playing ATTac vs. 7 low-bidders , hotel prices never skyrocket
since all agents but ATTac bid close to the ask price. Our goal was to measure
whether ATTac could perform well in both extreme scenarios as well as the various
intermediate ones. Table 8 summarizes our results.

Each row of Table 8 corresponds to a di�erent number of high-bidders in
the game; for example, the row labeled with 4 high-bidders corresponds to ATTac
playing against 4 high-bidders and 3 low-bidders. In the �rst column, we also
show in parentheses the number of games played for the results in each row|each
row re
ects a di�erent number of runs. In all cases, we ran enough game instances
to achieve statistically signi�cant results, but in some cases we ran more instances
than turned out to be required. The column labeled agent i shows the di�erence
between ATTac's score and the score of agent i averaged over all games. In all
scenarios, these di�erences are positive, showing that ATTac outscored all other
agents on average. Note, however, that ATTac's average score (and the scores
of all other agents) tended to decrease with increasing numbers of high-bidders,
since games became more volatile.

Statistical signi�cance was computed from paired T-tests; all results are
signi�cant at the 0:001 level except for the two marked in italics. As mentioned
before, as the number of high-bidders increases (in fact, any number greater
than or equal to 3 suÆces), the price for contentious hotels also rises. In all
such scenarios ATTac outperforms all the other agents with a very high level
of statistical signi�cance. In the last row, when the number of high-bidders is
only 2, very little bidding up of hotel prices ensues. As a result, we did not
obtain statistically signi�cant results relative to the two high-bidders (agent 2
and agent 3), since ATTac's strategy essentially reduces to high-bidding in this
case. We do achieve high statistical signi�cance relative to all the low-bidding

34 Stone and Greenwald / Autonomous Bidding Agents

agents, however. Overall, ATTac's adaptivity was successful when hotel prices did
skyrocket, without impeding success when they did not.

The results of Table 8 provide strong evidence for ATTac's ability to adapt
robustly to varying numbers of competing agents that bid up hotel prices near
the end of the game. Combined with the fact that the top three �nishers in the
competition all had some form of price prediction strategy for avoiding expensive
hotels, we can conclude that price prediction and adaptivity to hotel prices is a
necessary component of a successful trading agent.

5.2. Allocation

We now present empirical results on the allocation problem. We compared
the integer linear programming (ILP) approach of ATTac and the heuristic search
approach of RoxyBot.9 As our testbed, we used the 16 games of the TAC �nals.
There are eight agents per game; thus, these games comprise client preferences
and �nal holdings for 128 agents.

In our �rst series of tests we veri�ed that the optimal utility values output
by RoxyBot's A� algorithm were consistent with those of the ATTac's ILP on our
128 datapoints. A� achieved a median run time of 0.59 seconds on a 600 MHz
linux PC. Using CPLEX 6.5.3 on a 400 MHz SPARCstation with 2Gb of RAM,
the ILP's median run time was only 0.02 seconds. This series of tests con�rm
what some TAC participants had already learned: optimal solutions are tractable
for the dimensions of TAC.

Next, we experimented with the scalability of the algorithms. We produced
instances of the allocation problem with 16, 32, and 64 clients by concatenating,
for each game, �rst two, then four, and �nally all eight agents' datapoints. Our
complete dataset included 240 allocation instances: 64 16-client cases, 32 32-
client cases, and 16 64-client cases in addition to the original 128 8-client cases.
While A� did not scale even to the 16-client cases, ILP fared much better, solving
all but one of the 64-client cases. On the problematic case, however, the machine
exhausted its 2Gb of RAM after six hours and aborted. The ILP also struggled
with several other cases, spending �ve hours on one and over an hour on two
others. Figure 4 summarizes ILP performance as a function of problem size.
Each datapoint is graphed as a box plot re
ecting the minimum, 25th percentile,
median, 75th percentile, and maximum value of the running time. The ILP's
running time can be characterized as fast on average but with very high-variance.

By contrast, beam search scales predictably: its running time is quadratic
in the number of clients and linear in the beam width. We therefore designed
experiments to test its degree of suboptimality. We ran a series of tests with beam
widths varying from 1 to 1280 on all our instances except the one whose optimal
solution was unknown (because the ILP was unable to solve it). We found that a

9 Summaries of these approaches appear in Sections 4.1 and 4.2, respectively. Full details can
be found in Stone et al., [12] and Greenwald and Boyan [6].

Stone and Greenwald / Autonomous Bidding Agents 35

0.01

0.1

1

10

100

1000

10000

8 16 32 64

S
ec

on
ds

Number of clients

CPlex search time vs. number of clients

Figure 4. ILP running time at di�erent problem sizes. (Note the log scale of the y-axis.)

beam width of only 1 (i.e., best-�rst search) yielded a median accuracy of 99.4%
in the 8 client case, with a median running time of less than 0.01 seconds. In
the case of 64 clients, a beam width of 1 achieved a median accuracy of 97.9%
in roughly 1 second. At the other extreme, a beam width of 1280 produced a
median accuracy of 99.4% in the 64-client cases, but the median run-time was
nearly 22 minutes. It seems a practical choice might be a beam width of 40, which
achieved a median accuracy of 99.2% in the 64 client cases in 41.71 seconds.

Figure 5 illustrates how search quality and running time increase with beam
width. Each datapoint is graphed as a box plot re
ecting the minimum, 25th
percentile, median, 75th percentile, and maximum value. Note that the running
times have extremely low variance, while the performance is reliably above 96%
of optimal for all but the smallest beam widths.

As allocation is simpler than completion, we do not expect completion to
prove any less complex for the ILP. We also do expect completion to prove any
more complex for beam search, since it solves allocation and completion in an
identical way. We conclude that approximate heuristic search is a practical choice
for use in the inner loop of a real-time bidding agent.

6. Conclusion

The �rst international trading agent competition was a very successful event,
drawing twenty-two entrants from around the world. This article has compared
and contrasted the strategies of twelve agents, including all of the �nalists and
most of the semi-�nalists.

The large number of entrants and the range of agent strategies indicates that
the organizers successfully created a problem that was relatively simple to attack,
yet complex enough to prevent a trivial optimal strategy. From examining the
di�erent agent strategies, we can draw the following conclusions.

36 Stone and Greenwald / Autonomous Bidding Agents

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 5 10 20 40 80 160 320 6401280

P
er

ce
nt

ag
e

of
 o

pt
im

al
 u

til
ity

Beam width

Search accuracy vs. beam width (8 clients)

0.01

0.1

1

10

100

1000

1 2 5 10 20 40 80 160 320 6401280

S
ec

on
ds

Beam width

Search time vs. beam width (8 clients)

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 5 10 20 40 80 160 320 6401280

P
er

ce
nt

ag
e

of
 o

pt
im

al
 u

til
ity

Beam width

Search accuracy vs. beam width (16 clients)

0.01

0.1

1

10

100

1000

1 2 5 10 20 40 80 160 320 6401280

S
ec

on
ds

Beam width

Search time vs. beam width (16 clients)

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 5 10 20 40 80 160 320 6401280

P
er

ce
nt

ag
e

of
 o

pt
im

al
 u

til
ity

Beam width

Search accuracy vs. beam width (32 clients)

0.01

0.1

1

10

100

1000

1 2 5 10 20 40 80 160 320 6401280

S
ec

on
ds

Beam width

Search time vs. beam width (32 clients)

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 5 10 20 40 80 160 320 6401280

P
er

ce
nt

ag
e

of
 o

pt
im

al
 u

til
ity

Beam width

Search accuracy vs. beam width (64 clients)

0.01

0.1

1

10

100

1000

1 2 5 10 20 40 80 160 320 6401280

S
ec

on
ds

Beam width

Search time vs. beam width (64 clients)

Figure 5. left: Optimality of beam search, as a function of beam width and number of clients.
(Note the o�set on the y-axis.) right: Beam search runtimes, as a function of beam width and

number of clients. (Note the log scale on the y-axis.)

Stone and Greenwald / Autonomous Bidding Agents 37

� In a dynamic marketplace such as that modeled by TAC, the strategice timing
of bid placement is crucial. Most of the agents strategies' incorporated some
mechanism for placing bids as close to the end of the game as possible.

� When multiple goods with interacting values are auctioned simultaneously,
agents must devise an eÆcient method for determining the values of sets of
goods. Much of the e�ort of the more successful TAC agents was devoted to
the allocation problem. The experiments reported in Section 5.2 explore the
trade-o� between optimal and scalable algorithms.

� When auction closing prices can vary dramatically, agents must incorporate
some mechanism for predicting closing prices in advance, or at least taking
into account the possibility that prices could shift unexpectedly. Indeed, the 3
top-scoring TAC agents had some form of price prediction or risk management
strategy for the hotel auctions. The experiments reported in Section 5.1 serve
to demonstrate the importantance of such adaptivity.

Notwithstanding the enthusiasm of the participants, a few suggestions have
been proposed for the structure of future tournaments:

� There is no incentive to buy airline tickets until the end of the game. Were
the price of
ights to tend to increase, or were availability limited, agents
would have to balance the advantage of keeping their options open against the
savings of committing to itineraries earlier.

� The hotel auctions were e�ectively reduced to sealed-bid auctions. There was
usually no incentive for agents to reveal their clients' preferences before the
very end of the game. As a result, it was impossible for agents to model market
supply and demand, and thereby estimate prices.

The phenomenon of English auctions with set closing times reducing to sealed-
bid auctions has been observed in other on-line auction houses such as eBay.
Roth and Ockenfels [7] argue that in such auctions, it is an equilibrium strategy
to place two bids (with increasing valuations) and to place the second bid at the
last possible moment. This strategy contradicts the usual intuition pertaining
to second-price sealed-bid auctions, namely that a single bid at one's true
valuation is a dominant strategy. In contrast, Amazon runs on-line auctions
in which the length of the auction is extended beyond its original closing time,
say T , by 10 minutes each time a new (winning) bid is received. In this case,
in equilibrium, all bidders bid their true valuations before time T .

Were the TAC hotel auctions to be implemented in the style of Amazon, rather
than eBay, agents would likely bid earlier. In this way, it would be possible
for TAC agents to obtain information pertaining to the speci�c market supply
and demand induced by the random client preferences realized in each game
instance, and to use this information to estimate hotel prices. Unfortunately,
Amazon-style auctions are not as well-suited for an agent competition, since
there is no prespeci�ed end time. Nevertheless, parallel auctions Amazon-

38 Stone and Greenwald / Autonomous Bidding Agents

style for substitutable and complementary goods would almost surely induce
fascinating market dynamics.

� Activity in the entertainment auctions was limited during the �rst trading
agent competition. This outcome, however, is not obviously correlated with
the design of the entertainment auction mechanism. On the contrary, if more
structure were added to the
ight auctions, and if the hotel auctions were
modi�ed, perhaps in the way suggested above, interest in entertainment ticket
auctions might be augmented.

� The information structure of the TAC setup was such that it was impossible to
observe the bidding patterns of individual agents. Nonetheless, the strategic
behavior of individual agents often profoundly a�ected market dynamics|
particularly in the hotel auctions. It seems that either (i) the dimensions of
the TAC game should be extended such that the impact of any individual
agent's bidding patterns is truly negligible; or (ii) to avoid issues of scalability
and at the same time facilitate strategic reasoning, it should be possible to
directly model the behavior of each individual agent, perhaps by associating
names with bids. Were information provided regarding the bidding behavior of
the agents (such that agents could infer other agents' clients' preferences, and
therefore market supply, demand, and prices), TAC agents would potentially
be able to learn to predict market behavior as the game proceeds.

The second trading agent competition took place in October, 2001 in Tampa,
Florida, and incorporated some of these suggestions. TAC continues to be a
worthwhile and exciting event in the emerging domain of designing autonomous
agents for e-commerce.

Appendix

ATTac: Peter Stone, Michael Littman, Satinder Singh, Michael Kearns
AT&T Labs { Research
180 Park Ave.
Florham Park, NJ 07932
fpstone,mlittman,baveja,mkearnsg@research.att.com

RoxyBot: Justin Boyan Amy Greenwald
NASA Ames Research Center and
MIT Arti�cial Intelligence Lab Department of Computer Science
545 Technology Square NE43-753 Brown University, Box 1910
Cambridge, MA 02139 Providence, RI 02912
jboyan@mail.arc.nasa.gov amygreen@cs.brown.edu

Stone and Greenwald / Autonomous Bidding Agents 39

Aster: Andrew Goldberg, Umesh Maheshwari
Strategic Technologies and Architectural Research (STAR) Laboratory
InterTrust Technologies Corp.
4750 Patrick Henry Drive
Santa Clara, CA 95054-1851
fumesh,goldbergg@intertrust.com

UmbcTAC: Youyong Zou
ECS 201
Department of Computer Science and Electrical Engineering
University of Maryland at Baltimore County
1000 Hilltop circle
Baltimore, MD,21250
yzou1@cs.umbc.edu

ALTA: Andrey Tarkhov, Dmitry Uspensky, Eugene Vostroknoutov
Arti�cial Life, Inc.
Four Copley Place
Skylobby, Suite 102
Boston, MA 02116
fDmitry.Uspensky,Andrey.Tarkhov,Eugene.Vostroknoutovg@artificial-life.com

DAIHard: Rajatish Mukherjee, Partha Dutta, Sandip Sen
600 South College Avenue
Mathematical And Computer Sciences Department
University Of Tulsa
Oklahoma 74104
frajatish,parthag@euler.mcs.utulsa.edu, sandip-sen@utulsa.edu

RiskPro: Magnus Boman Sven-Erik Ceedigh
SICS Department of Computer & Systems Sciences
Box 1263 Stockholm University & The Royal Institute of Technology
SE-164 29 Kista Electrum 230
Sweden SE-164 40 Kista, Sweden
mab@sics.se s-e-ceed@dsv.su.se

T1: Erik Aurell, Martin Aronsson, Glenn Lawyer Lars Rasmusson, Lars Olsson
Industrilogik L4i AB SICS
Gvlegatan 22, P.O. Box 21024 P.O. Box 1263
SE-100 31 Stockholm, Sweden S-164 29 Kista, Sweden
feaurell,mar,glenng@L4i.se fLars.Rasmusson,larreg@sics.se

40 Stone and Greenwald / Autonomous Bidding Agents

Nidsia: Nicoletta Fornara, Luca Maria Gambardella Marco Colombetti
IDSIA Universit�a della Svizzera Italiana
Switzerland Lugano, Switzerland
fnicoletta,lucag@idsia.ch marco.colombetti@lu.unisi.ch

EZAgent: Betsy Strother
North Carolina State University
Raleigh, NC 27695
epriggin@eos.ncsu.edu

UATrader: Daniel Zeng, Jiang Zhu, Bart Wilson
Department of Management Information Systems
Department of Computer Science
Economic Science Laboratory
University of Arizona
Tucson, AZ 85721
zeng@bpa.arizona.edu, jiangzhu@cs.arizona.edu,
bwilson@econlab.arizona.edu

EPFLAgent: Omar Belakhdar, Patrice Jaton, Boi Faltings
Arti�cial Intelligence Laboratory
Swiss Federal Institute of Technology
Lausanne, Switzerland
belakdar@lia.di.epfl.ch

References

[1] M. Boman. Norms in arti�cial decision making. Arti�cial Intelligence and Law, 7:17{35,
1999.

[2] C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions for the allocation of
resources with complementarities. In Proceedings of 16th International Joint Conference
on Arti�cial Intelligence, volume 1, pages 478{485, August 1999.

[3] J. Boyan, A. Greenwald, R. M. Kirby, and J. Reiter. Bidding algorithms for simultaneous
auctions. In Proceedings of IJCAI Workshop on Economic Agents, Models, and Mecha-
nisms, pages 1{11, 2001.

[4] D. Cli� and J. Bruten. Zero is not enough: On the lower limit of agent intelligence for
continuous double auction markets. HP Technical Report HPL-97-141, 1997.

[5] L. Ekenberg, M. Boman, and J. Linnerooth-Bayer. General risk constraints. Journal of
Risk Research, Forthcoming.

[6] A. Greenwald and J. Boyan. Bidding algorithms for simultaneous auctions: A case study.
In Proceedings of Third ACM Conference on Electronic Commerce, 115-124 2001.

[7] A. Roth and A. Ockenfels. Late minute bidding and the rules for ending second-price
auctions: Theory and evidence from a natural experiment on the internet. Working Paper,
Harvard University, 2000.

Stone and Greenwald / Autonomous Bidding Agents 41

[8] M. H. Rothkopf, A. Peke�c, and R. M. Harstad. Computationally manageable combinatorial
auctions. Management Science, 44(8), 1998.

[9] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Prentice-Hall, 1995.
[10] H. Simon. Rational choice and the structure of the environment. In Models of Bounded

Rationality, volume 2. MIT Press, Cambridge, 1958.
[11] P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer.

MIT Press, 2000.
[12] P. Stone, M. L. Littman, S. Singh, and M. Kearns. ATTac-2000: An adaptive autonomous

bidding agent. In Fifth International Conference on Autonomous Agents, 2001.
[13] M. P. Wellman, P. R. Wurman, K. O'Malley, R. Bangera, S.-d. Lin, D. Reeves, and W. E.

Walsh. A trading agent competition. IEEE Internet Computing, April 2001.

