
Event Tables for Efficient Experience Replay

Varun Kompella* 1, Thomas Walsh1, Samuel Barrett1, Peter Wurman1, Peter Stone1, 2

1 Sony AI
2 The University of Texas at Austin

* Corresponding author, varun.kompella@sony.com

Abstract

Experience replay (ER) is a crucial component of many deep
reinforcement learning (RL) systems. However, uniform sam-
pling from an ER buffer can lead to slow convergence and
unstable asymptotic behaviors. This paper introduces Strati-
fied Sampling from Event Tables (SSET), which partitions an
ER buffer into Event Tables, each capturing important subse-
quences of optimal behavior. We prove a theoretical advantage
over the traditional monolithic buffer approach and combine
SSET with an existing prioritized sampling strategy to fur-
ther improve learning speed and stability. Empirical results in
challenging MiniGrid domains, benchmark RL environments,
and a high-fidelity car racing simulator demonstrate the advan-
tages and versatility of SSET over existing ER buffer sampling
approaches.

1 Introduction
Many recent deep reinforcement learning (RL) breakthroughs
(Mnih et al. 2013; Silver et al. 2016; Wurman et al. 2022) rely
on Experience Replay (ER) and the corresponding buffer (an
ERB) to store massive amounts of data that is re-sampled dur-
ing training. Consider, however, a high-frequency car-racing
simulator where an agent takes thousands of steps to complete
a lap and where crucial events, such as passing another car,
may occur on just a few of those steps. Uniform random sam-
pling from an ERB populated with all the lap data is highly
unlikely to focus on this key event. Prioritized Experience
Replay (PER) (Schaul et al. 2016), which skews sampling
based on TD Errors, might do better, but may also focus on
states unlikely to be reached by the optimal policy (Oh et al.
2021). To address these limitations of existing ER methods,
this paper introduces Event Tables, ERB partitions that hold
sub-trajectories leading to events, and a corresponding wrap-
per algorithm, Stratified Sampling from Event Tables (SSET),
to build training samples for off-policy RL.

In large domains, simply over-sampling the small number
of disconnected state / actions where events occur is unlikely
to be beneficial since initial state values would still rely on
uniform sampling of the states between event occurrences.
Instead, we take a lesson from previous works on trajectory-
based backups (Barto, Bradtke, and Singh 1995; Karimpanal
and Bouffanais 2018) and store the finite-length history that
preceded the event in the corresponding event table. Intu-
itively, this data forms a “fast lane” for backups between

event occurrences that chains back to the initial state(s). And
by sampling individual steps from each table i.i.d., SSET
avoids the instability (de Bruin et al. 2015, 2016) of using
temporally correlated data in mini-batches.

We develop a theoretical underpinning for the fast-lane
intuition and show that, if the events are correlated with
optimal behavior and histories are sufficiently long, SSET can
dramatically speed up the convergence of off-policy learning
compared to using uniform sampling or even PER. Even if
those conditions fail, a bias correction term preserves the
Bellman target, although convergence may be slowed. From
our empirical results, these properties translate to different
off-policy RL base learners including DDQN (Van Hasselt,
Guez, and Silver 2016), SAC (Haarnoja et al. 2018), and the
distributional QR-SAC (Wurman et al. 2022) algorithm.

While SSET is a new way to optimize sampling from an
ERB, it is complementary to many existing prioritization ap-
proaches or behavior shaping techniques. Specifically, SSET
can be applied based on known events with TD-error PER
used within each table, thereby focusing on crucial states that
also need value updates. We apply this “best of both worlds”
approach in many of our experiments and show that it per-
forms better than using only one of the techniques. Similarly,
SSET outperforms potential-based reward shaping in our em-
pirical experiments, but the combination of two provides both
better agent exploration and more efficient backups. Finally,
viewing each event table as a data set for a particular skill,
SSET can mitigate catastrophic forgetting (Goodfellow et al.
2014; Kirkpatrick et al. 2017) in RL. Our experiments show
this advantage in acquiring multiple skills (Section 5.3) and
retaining skills over time (Section 7.2).

This paper makes several contributions for ER using Event
Tables. (1) We introduce Event Tables and the SSET frame-
work. (2) We derive theoretical guarantees quantifying the
sample complexity improvement with properly designed
events and provide a bias correction that ensures the Bellman
target is preserved. (3) We empirically demonstrate the advan-
tages of SSET over uniform sampling or PER in challenging
MiniGrid environments and continuous RL benchmarks (Mu-
JoCo and Lunar Lander), and find that combining SSET with
TD-error PER or potential-based reward shaping can further
improve learning speed. (4) We also provide results in the
highly-realistic Gran Turismo Sport race-car simulator where
SSET improves learning speed and policy stability.

ar
X

iv
:2

21
1.

00
57

6v
1

 [
cs

.L
G

]
 1

 N
ov

 2
02

2

2 Terminology
Following standard definitions (Sutton and Barto 2018), we
consider a reinforcement learning agent acting in an episodic
Markov Decision Process M = 〈S,A,R,P, γ, I, β〉 with
state space S, action space A, reward function R : S,A →
Pr[<], transition kernel P : S,A→ Pr[S], discount factor
γ ∈ [0, 1), initial state distribution I : Pr[S], and episode
termination function β : S → {0, 1} . At time step t, the
agent uses its current behavior policy πt : S → Pr[A] to
select an action and then observes the reward rt ∼ R(st, at)
and next state s′ ∼ P(st, at). If β(s′) = 1 or a horizon
of T is reached, then the episode ends. The value func-
tion of a policy is defined by its long-term discounted re-
turn: Qπ(s, a) = R(s, a) + γEs′∼P(s,a)[V

π(s′)], where
V π(s) = Qπ(s, π(s)). The agent is tasked with finding an
optimal policy π∗ and the corresponding Q∗(s, a) that max-
imizes the expected discounted return. In this paper we fo-
cus on model-free off-policy methods that learn Q∗(s, a)
directly from data through incremental updates, such as
Q-learning’s (Watkins and Dayan 1992) gradient-style up-
date to the current value function Qk(s, a): Qk+1(s, a) =
(1− α)Qk(s, a) + αδ with learning rate α ∈ (0, 1] and tem-
poral difference (TD)-error δ = r(s, a)+γVk(s′)−Qk(s, a)
for Vk(s′) = maxa′ Qk(s′, a′).

In deep reinforcement learning, S is typically continuous
and high dimensional, so the value function and (sometimes)
policy are represented by neural networks with parameters
θik for each network i. To update the value networks, model-
free deep RL algorithms like DDQN (Van Hasselt, Guez, and
Silver 2016) make updates toQ(s, a|θk) along the gradient of
the TD-error. To improve stability, deep RL methods typically
utilize a fixed target network for computing Vk(s′) that is
only updated after a batch of updates.

Experience replay (Lin 1992) is a technique used in off-
policy RL to improve sample efficiency by performing gra-
dient updates based on many experience tuples 〈s, a, r, s′〉
stored in an ERB (see Algorithm 2 in the Appendix as an
example). In the deep learning case, the ERB often stores tens
or hundreds of millions of tuples with mini-batches sampled
from the buffer and then used in gradient updates to θik.

Formally, we define an event specification (event spec):
ν = 〈ω, τ〉, composed of a (Boolean) event condition over
states ω : S → {0, 1} and a history length τ . We say an
event occurs in state s if ω(s) is true. In this paper, we as-
sume event conditions are specified by domain experts or RL
practitioners; we provide guidance on selecting useful event
conditions (refer to Section A.2). Section A.1 proves that
event conditions that are true only in states that are visited
more often by the optimal policy than the behavior collection
policy (see Definitions 2, 3, and 4 in the Appendix) yield
sample efficiency gains when paired with sufficiently long
histories. Terminal goal states, high reward states, bottleneck
states, or important rare states (e.g. passing another car) are
all strong candidates. To avoid under-sampling any crucial
states, histories τ must be long enough (in expectation) to
reach back to a previous event occurrence, an initial state,
or the horizon and chain together from I to the optimal pol-
icy’s final state(s) (see Figure 1). Finally, outside of the core

theory, when using function approximation, negatively re-
warding states that are not often encountered by the optimal
policy may be useful event conditions to avoid catastrophic
forgetting of these possible outcomes from nearby states.

3 Related Work
Many approaches have been proposed for prioritized ERB
sampling. The most widely used is Prioritized Experi-
ence Replay (PER) (Schaul et al. 2016), which prioritizes
state/actions with the largest TD errors. However, PER does
not specifically focus on states aligned with the optimal pol-
icy: indeed experiences that have zero TD error under one
policy may never be sampled again even after the behavior
policy has changed. In addition to empirical comparisons
against PER, we show that SSET can be used with PER to
leverage the benefits of both approaches: focusing leaning
on high-value event trajectories aligned with the optimal pol-
icy, but also prioritizing states along those trajectories with
high Bellman error. Other methods that augment vanilla PER
with prioritization based on model error (Oh et al. 2021) or
a meta-learning process (Zha et al. 2019) could similarly be
used in conjunction with SSET .

The importance of sampling along “good” trajectories was
explored in classical RL through RTDP (Barto, Bradtke, and
Singh 1995) and in deep RL (Karimpanal and Bouffanais
2018). The latter can cause unwanted data correlation in
mini-batches (de Bruin et al. 2015, 2016; Huang, Xu, and
Oppermann 2019). By contrast, SSET does not attempt to use
data from the same trajectory in a mini-batch, instead relying
on sampling to spread trajectories across many mini-batches,
providing both stability and backups along a trajectory. Vari-
ants of Topological Experience Replay (Hong et al. 2021;
Lee, Sungik, and Chung 2019) also attempted to prioritize
backups along a trajectory using a graph embedding originat-
ing from goal states. By contrast, SSET does not require goal
states or a discrete state embedding.

Event Tables generalize the ideas explored in several
“multi-table” partitioning schemes for ERBs. In (Narasimhan,
Kulkarni, and Barzilay 2015) and (Sharma et al. 2020) dif-
ferent tables are used to store high (or high and low) reward
transitions separately from common transitions and strati-
fied sampling is used to construct mini-batches. By contrast,
SSET allows for any state-based event to partition the ERB,
and more importantly stores trajectories that led to events,
not just the events themselves, which is essential to ensure
the sample complexity guarantees. Empirical comparisons
to a reward-based event approach without histories are pro-
vided in Section A.2. Lucid Dreaming (Du et al. 2022) stores
trajectories that produce better Monte Carlo returns than the
current value estimates in a separate table, but relies on gen-
erative access to the domain to create them, which is not
a requirement for SSET. (de Bruin et al. 2016) keeps two
buffers, one for on-policy data and another more “uniform”
buffer, but requires heavy kernel computation to maintain
them.

A closer comparison is the use of multi-tables in the train-
ing of a simulated race car (Wurman et al. 2022). There, the
ERB is partitioned into multiple tables for different skill train-
ing scenarios based on initial states (e.g. tables for driving

Legend

Initial State

Event Table
Data

At-Gap Event State

Done Event State

Wall

Default Table
Data

+

Figure 1: An example MiniGrid domain with event conditions
for reaching the goal or a gap between rooms. Blue squares
indicate the “fast lane” of states that can be over-sampled
because they appear in both the event tables and the default
table. Grey states appear only in the default table.

alone, driving in traffic, etc.) Event Tables are a generaliza-
tion of this idea where data is dynamically mapped to tables
rather than partitioning on an episode’s initial state.

SSET also bears resemblance to multi-task and lifelong
learning RL algorithms that balance the amount of data used
from different tasks. Some of these approaches (e.g. (Lin et al.
2019)) sacrifice general performance for success on a “main”
task, or mitigate catastrophic forgetting across a sequence
of tasks(Isele and Cosgun 2018; Rolnick et al. 2019; Yin
and Pan 2017) which are not applicable in our single-task
setting. Hindsight Experience Replay (Andrychowicz et al.
2017) augments the monolithic ERB in a multi-task setting
by imagining goals that the trajectories could have achieved.
SSET is not restricted to the multi-task setting but could
be combined with HER in such cases. CAGrad (Liu et al.
2021) constructs gradients in a way that minimizes policy
degradation on the worst affected task, and is a natural pair
with SSET, where updates to the model can be performed in a
way that preserves performance in each of the ERB partitions
(see experiments in Section A.2).

SSET uses prior knowledge to ensure a focus on key areas
of the state space and therefore has connections to initial
state selection (Ivanovic et al. 2019) and potential-based
reward shaping (Ng, Harada, and Russell 1999; Grzes 2017).
Section 5.2 shows SSET outperforming reward shaping on
comparable states, but also demonstrates that the two can
be used together to improve exploration (shaping) and focus
value function backups (Event Tables). Because Event Tables
often align with bottleneck states, they have a relationship to
options (Sutton, Precup, and Singh 1999), but the mechanism
in our work is through ER. While events in our case come
from domain knowledge, future work could utilize subgoal
discovery techniques (Kulkarni et al. 2016; McGovern and
Barto 2001) to identify potential events.

4 Stratified Sampling from Event Tables
We now formally define Stratified Sampling from Event Ta-
bles (SSET; Algorithm 1) and state our main theoretical
result. The full proof appears in Section A.1. Given n event
specs {νi|i ∈ [1, n]}, the ERB is partitioned into n event
tables, Bνi and a “default” table B0. Each Bνi holds only
time steps where ωi(s′) was true or steps preceding the event
occurrence in the τi-length history. The default table B0 holds
all time steps, including those with event occurrences. Data
is inserted into each table in a FIFO manner with table ca-
pacities governed by parameter κi and later used to construct

Algorithm 1: SSET: STRATIFIED SAMPLING FROM
EVENT TABLES

//input parameters:
1 • νi = (ωi, τi) ∀i ∈ [1, n]: event conditions and their

corresponding history lengths
2 • (ηi, κi, di) ∀i ∈ [0, n]: sampling probabilities,

capacity sizes, and minimum data requirements
3 • A, πb, T - Off-policy RL algorithm, behavior

policy and episode length
4 B0← [](κ0),Bνi ← [](κi) ∀i ∈ [1, n],
5 for episode k = 1 to∞ do
6 E ← [] // init episode buffer
7 for t = 0 to T − 1 (or episode termination) do
8 s← current state observation
9 execute action a sampled from πb(s)

10 observe r and next state s′

11 store transition (s, a, r, s′) in B0 and E
12 for i = 1 to n do

//update event tables
13 if ωi(s′) then
14 store last τi transitions

[Et−τi+1, ..., Et] in Bνi
15 end
16 end
17 end

//sample & concat i.i.d. minibatches

18 D ∼ B0 ∪
i
Bνi , ∀i s.t. |Bνi | ≥ di

// (Lemma 2 in Appendix)
19 Update weights for bias correction using E
20 Update critic and policy networks using A and D
21 end

training data for an off-policy RL algorithm A.
On each agent step in SSET, experience 〈st, at, rt, st+1〉 is

stored in B0 as well as an ephemeral buffer E for the current
episode (line 11). If ωi(st+1) is true (line 13), the experience
and all the τi steps preceding the event that were not already
sent to Bνi are added there as well. Intuitively, each table
contains data necessary to train the value function in the
area approaching an event occurrence and chain together
to form a “fast lane” (Figure 1) for backups that will be
over-sampled compared to monolithic ER. For simplicity
Algorithm 1 assumes each event spec maps to a unique table
(lines 4 and 14) but the mapping could also be surjective.
Note that the (potentially overlapping) data stored in these
tables can be managed efficiently by ERB implementations
like Reverb (Cassirer et al. 2021).

When mini-batches are constructed (line 18), fixed
i.i.d. proportions are collected from each table using probabil-
ities ηi, for i ∈ [0, n]. To prevent early over-fitting, minimal
data requirements (based on the mini-batch size) can be ap-
plied, with proportions normalized appropriately if one or
more tables has insufficient data.

Like PER and other ERB prioritization schemes, SSET
can introduce bias in stochastic environments. In the extreme
case, if P(s, a) has equal probability for two terminal states

s1 and s2 but only ω(s1) is true, then sampling from the event
table will skew the data distribution higher for s1 outcomes.
To alleviate this error, line 19 applies a weighted correction
derived in Lemma 2 (Appendix). The full correction term
applies a weight based on the probability of 〈s, a〉 not being in
each event table, which can be computed in discrete domains
by counting the number of times a (s, a) pair was not part
of any event history. For continuous domains, a priority sum
tree data-structure could be used similarly to PER (Schaul
et al. 2016) by setting priorities for samples in the event buffer
equal to (1+η) and samples outside to (1−η). The correction
weights for each transition inside the event tables would be
priority-sum

1+η . However, this approach is aggressive and might
slow down learning, as seen in PER. Note, for deterministic
MDPs the correction is not needed. In environments without
non-goal terminal states, increasing τ may mitigate some
bias by storing more non-event outcomes in the event table.
In our mildly stochastic empirical studies we use this longer
τ approach.

We now state the main theoretical result of the paper, with
the full proof in Section A.1. Intuitively, the theorem states
that SSET using event conditions that are correlated with an
optimal policy and histories that are sufficiently long, will
have sample complexity NB

ν∪B0,K for learning Q∗(s, a) in
the necessary part of the state space (Sf), and NB

ν∪B0,K is
(with high probability) smaller than the sample complexity
of learning with a monolithic buffer of the same size.

Theorem 1. Let Sf = {s | P (Γπ
∗

s,· ⊂ Bν) ≥ p̄} denote the
set of states s.t. the sampled optimal trajectories (Γπ

∗
; Def. 2)

starting from those states are contained in the combined
event-buffer with a probability greater than p̄ ∈ (0, 1], and
η =

∑n
i=1 ηi. Under the conditions of Prop. 1 and using µ as

defined in Lemma 1 if τ∀i∈[1,n] ≤ (1−η)m
(m+1)nµ , then at iteration

K of Q-learning with a target function:

P
(
NB

ν∪B0,K ≤ (1− η)2mNB,K
)
≥ p̄, ∀s ∈ Sf ,m ∈ Z0+

Proof sketch. We make use of lower bounds (Li, Xu, and Yu
2022) on the convergence rate of tabular Q-learning with
a target function (Algorithm 2 in the Appendix). We define
the state probability distribution (density) following a given
policy to a finite horizon from an initial state and use that
to define the state density disparity to the optimal policy.
We then formally define event conditions on the states with
low optimal-policy disparity or final states of the optimal
policy. We extend this definition to event sections and their
corresponding tables that include sufficient history to (on
expectation) reach back to a previous event or initial state.
We then quantify (Lemma 1) the over-sampling of experience
in the event tables and derive the convergence rate (Prop. 3)
and bias correction procedure (Lemma 2). Finally, we show
that the resulting convergence bound is an improvement over
uniform sampling.

5 MiniGrid Experiments
We now provide experimental validation of SSET in envi-
ronments from the MiniGrid (Chevalier-Boisvert, Willems,

250 500 750 1000 1250 1500 1750 2000

800

600

400

200

0

SSET

Prioritized ER
Prioritized SSET

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

(d)

0 250 500 750 1000 1250 1500 1750 2000
training epoch

1400

1200

1000

800

600

400

200

0

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Episode Return

With TD-Error Prioritization

(a)

(b) (c)

(e)

Uniform ER

SSET
Reverse Sweep*

Uniform ER

SSET
Reverse Sweep*

SSET

Prioritized ER
Prioritized SSET

training epoch

training epoch training epoch

Episode Return

Summed Q-Values

Summed Q-Values

Return

Return

Get to the green square

Figure 2: Three Room Grid World Statistical results from
30 randomly seeded runs (mean-solid lines, stddev-shaded re-
gions) (a) Environment (b) Learned target Q-values summed
across the entire state-action space vs training epoch. SSET
Q-values converge with a significantly low variance. (c)
Episode return vs training epoch (d)-(e) Results with TD-
error prioritized sampling.

and Pal 2018) domain using the DDQN (Van Hasselt, Guez,
and Silver 2016) RL algorithm. We use a dense neural net
architecture with hidden layers to encode the Q-functions and
an ε-greedy behavior policy for collecting data. In each exper-
iment SSET demonstrates improvements in sample complex-
ity or decreased variance against uniform experience replay
(Uniform ER), an off-policy version of an (on-policy) reverse
sweep of updates from the goal (Reverse-sweep*; in the spirit
of EBU (Lee, Sungik, and Chung 2019)), and TD-error pri-
oritized experience replay (PER; (Schaul et al. 2016)). The
Supplemental material (Section A.2) reports further results
showing SSET’s resistance to catastrophic forgetting, a com-
parison against reward-based events with no histories, and a
combination of SSET with CAGrad.

5.1 Proof of Concept: Three Room Grid World
We first demonstrate the sample complexity speedup of SSET
in a three-room world (Figure 2(a)). The agent’s observation
is its 3D grid position and orientation (x, y, θ) and its avail-
able actions are turn-left, turn-right and forward. The rewards
are +1 at the green square and −0.1 otherwise. We use two
event conditions for SSET with a history length of 200: one
that occurs at any gap state between two rooms, and another
that occurs at the green square. Refer to the Appendix for
more details. Figures 2(b)-(c) show the mean and standard
deviation (from 30 randomly initialized runs) of the learned
Q-values summed across the entire state-action space and the
resulting episodic return during the course of training. SSET
performs best in terms of both sample efficiency and learning
stability (lower variance between runs). The result against a
reverse-sweep approach demonstrates the utility of the inter-

50

40

30

20

10

0

0 200 400 600 800 1000

Uniform ER

SSET

Shaping (gap)

Shaping+SSET
1000

800

600

400

200

0

Uniform ER

SSET

Shaping (gap)

Shaping+SSET

Mission: Get to the green square

(a)

(b) (c)

Episode ReturnSummed Q-Values

0 200 400 600 800 1000

training epoch training epoch

Figure 3: Comparison with Intermediate Shaping Re-
wards. Results from 30 randomly seeded runs comparing
SSET against using intermediate shaping reward at the gap.
(a) Environment (b) Learned target Q-values summed across
the entire state-action space vs training epoch. (c) Episode
return vs training epoch.

mediate gap events, which serve as waypoints for the backups.
Figure 2(d)-(e) compares SSET to PER and a combination
of the two. PER speeds up learning compared to uniform
sampling, but with considerably more variance across seeds
than SSET, possibly due to overestimation bias. Combining
SSET with TD-error prioritization yields the best of both
worlds; providing reliable local Bellman target estimates and
prioritizing samples with high error to those targets.

5.2 Comparison with Shaping Rewards
Potential-based shaping (PBS) (Ng, Harada, and Russell
1999; Grzes 2017) provides a framework for adding rewards
to speed up learning without affecting the optimal policy.
Similar to PBS, SSET preserves optimality (see Lemma 2 in
Appendix) while providing an effective way to infuse domain
knowledge. Here, we compare the performance of SSET and
reward shaping as well as their combination in a grid-world
domain similar to the previous experiment (Figure 3(a)). A
shaping potential with φ(s) = 1 at the gap and 0 elsewhere
is used to provide a reward component of (γφ(s′) − φ(s))
in addition to the environmental (goal) reward. SSET uses
events that occur at the gap and the goal. Figures 3(b)-(c)
show SSET outperforms both shaping and the no-shaping
baseline. While reward shaping acts as a heuristic to speed
up exploration, those rewards still need to be bootstrapped
back to the initial states, which is the forte of SSET . Thus,
when the two are combined (brown line), even better perfor-
mance is realized as shaping guides exploration and SSET
provides a “fast lane” to bootstrap the values. Comparisons to
less ideal potential shaping functions and ablations of the η0
parameter for SSET in this domain are provided in Sec. A.2.

5.3 Obstacle Course and Randomized Skill
Environment

The more complex obstacle course environment consists
of multiple sections (Figure 4(a)) containing spikes with -1
reward (yellow squares), lava with -1 reward and episode
termination (orange squares), and colored keys to open doors.

(a)

(b) (c)

(d) (e)

Get to the green square

Uniform ER

SSET
Reverse Sweep*

SSET

Prioritized ER

Prioritized SSET

With TD-Error Prioritization

Episode Return

Uniform ER

SSET
Reverse Sweep*

SSET

Prioritized ER

Prioritized SSET

Episode Return

training epoch

training epoch

training epoch

training epoch

Return

Return

Q-Values Averaged Over Agent's Trajectory

Q-Values Averaged Over Agent's Trajectory

Figure 4: Obstacle Course Results from 30 randomly seeded
runs (mean-solid lines, stddev-shaded regions) (a) An envi-
ronment with spikes (yellow), lava (orange), colored keys and
locked doors (b) Learned target Q-values averaged over agent
trajectories vs training epoch (c) Episodic return vs training
epoch (d)-(e) Results with TD-error Prioritized Sampling

The exact positions of lava, gaps in the walls, keys, doors, and
key/door colors are randomly set in each episode but the or-
dering of the rooms is fixed (e.g. the spikes are always in the
first room). The agent’s task is to get to the green square start-
ing from the top-left corner. The agent’s observation consists
of (a) an egocentric 5×5 localized forward-view image (high-
lighted region in Figure 4(a)) that encodes a representation
of obstacles around it, (b) a Boolean indicator for carrying an
object, (c) a 2D representation (category, color) of the object
it is carrying, otherwise (−1,−1), and (d) 3D grid position
and orientation (x, y, θ). The agent’s action space includes 3
additional actions (pickup key, drop key, toggle door). We use
event conditions with a history length of 50 associated with
each obstacle category (e.g. picked-up-a-key, opened-a-door,
etc. see Appendix for more details). Figure 4(b)-(c) clearly
illustrates the improved efficiency and stability of using event-
tables over reverse-sweep and uniform ER. In comparison to
TD-error prioritization (Figure 4(d)-(e)), again PER exhibits
more variance across multiple seeded runs. Interestingly, in
this domain, SSET performs equally well with or without
additional TD-error prioritization.

Finally, we consider a randomized multi-skill setup where
the agent must either avoid lava, go through a gap, or open
the correct door to reach the goal (Figure 5(a)-(c)). The sce-
nario (lava, gap, or open-door) and object positions / colors
are sampled randomly for each training episode. This is a
more challenging task than the obstacle course above because
object locations don’t follow a fixed sequential pattern. A
square that contains a door in one episode may contain lava
in the next one. Using uniform ER, value function learning
is dominated by the easier skills (lava, gap) and the agent

0 1000 2000 3000 4000 5000 6000 7000 8000
30

25

20

15

10

5

0

5

Uniform ER

SSET

Prioritized ER

0 1000 2000 3000 4000 5000 6000 7000 8000
30

25

20

15

10

5

0

5

0 1000 2000 3000 4000 5000 6000 7000 8000

250

200

150

100

50

0

50

(a) (b) (c)

(d) (e) (f)

Lava Configuration Gap Configuration Door-key Configuration

Uniform ER

SSET

Prioritized ER

Uniform ER

SSET

Prioritized ER

training epoch training epochtraining epoch

E
p
is

o
d
e
 R

e
tu

rn

E
p
is

o
d
e
 R

e
tu

rn

E
p
is

o
d
e
 R

e
tu

rn

Figure 5: Randomized Skill Environment Statistical results
from 30 randomly seeded runs (mean-solid lines, stddev-
shaded regions) (a)-(c) Instances of randomly sampled object
configurations. (d)-(e) Episodic return for each skill during
the course of training.

fails to acquire the difficult open-door skill. Learning using
SSET performs much better, acquiring and maintaining all
the skills compared to uniform sampling and even PER.

6 Lunar Lander and Mujoco Experiments
We now demonstrate the improved sample complexity and
stability of SSET on several continuous control benchmark
tasks (LunarLanderContinuous-v3 and MuJoCo (Todorov,
Erez, and Tassa 2012) suite defined in OpenAI Gym (Brock-
man et al. 2016)) that have dense shaping rewards and, in the
case of the MuJoCo domains, no pre-defined goal states. For
the LunarLander environment, we used two event conditions
for SSET with a history length of 200: one that occurs when
both lander’s legs make contact between the flags, and an-
other when the lander’s position is close to the middle of the
flags. For the MuJoCo suite, we used three event conditions
that occur when the agent receives rewards greater than cer-
tain thresholds (See Appendix Table 2). Each of those events
used history lengths of 200. The thresholds were manually
selected for each environment based on the reward bounds.
We used the state-of-the-art SAC (Haarnoja et al. 2018) RL
algorithm to compare SSET against uniform experience re-
play and PER at different priority exponents. Figure 6 shows
the statistical mean and standard deviations of empirical re-
turns computed from 30 randomly seeded episodes evaluated
at different epochs during training. The results definitively
illustrate SSET improves sample-efficiency (by roughly half
the number of epochs) and achieves stable policies by boot-
straping the salient rewards more rapidly. All four of the
MuJoCo domains and LunarLander show similar patterns for
SSET. PER performs at-best similar to the uniform experi-
ence replay and the performance degrades as we increase the
priority exponent. We suspect this is because of the high den-
sity of shaping rewards, which makes the TD-Errors volatile,
making them a bad match for PER.

7 Simulated Car Racing Experiments
Gran Turismo™ Sport is a PlayStation™ racing simulator
that has been previously used as an RL testbed (Fuchs et al.

0 2000 4000 6000 8000 10000

training epoch

500

400

300

200

100

0

100

200

300

solved

Uniform ER

SSET

Prioritized ER(0.2)

Prioritized ER(0.6)

Prioritized ER(0.8)

Lunar Lander (Continuous)

(a)

0 2000 4000 6000 8000 10000 12000 14000

training epoch

0

2000

4000

6000

8000

10000

12000

14000

16000

Episode Return

Uniform ER

SSET

Prioritized ER(0.2)

Prioritized ER(0.6)

Prioritized ER(0.8)

Half Cheetah

(b)

0 2000 4000 6000 8000 10000 12000 14000

training epoch

0

1000

2000

3000

4000

5000

6000

Episode Return

Uniform ER

SSET

Prioritized ER(0.2)

Prioritized ER(0.6)

Prioritized ER(0.8)

Walker2D

(c)

0 1000 2000 3000 4000

training epoch

0

500

1000

1500

2000

2500

3000

3500

Episode Return

Uniform ER

SSET

Prioritized ER(0.2)

Prioritized ER(0.6)

Prioritized ER(0.8)

Hopper

(d)

0 10000 20000 30000 40000 50000

training epoch

0

2000

4000

6000

8000

10000
Episode Return
Humanoid

Uniform ER

SSET

Prioritized ER(0.2)

Prioritized ER(0.6)

Prioritized ER(0.8)

(e)

Episode Return

Figure 6: Continuous Control Benchmark Tasks SSET
outperforms various parameterizations of PER and Uniform
sampling in common RL benchmarks.

2021; Song et al. 2021) and where an RL system recently
outraced human e-sports champions (Wurman et al. 2022).
The latter work used a multi-table ERB based on different
initial state conditions, which in the experiments below is
equivalent to the uniform sampling approach. We show the
SSET speeds up convergence when learning to pass another
car and mitigates off-course driving in a time-trial scenario.

The environment, features, and training details (see Sec-
tion A.3) are the same as Wurman et al.’s except that we
focus on smaller scenarios to isolate the specific effects of
Event Tables. All experiments collected data at 10Hz from
21 PlayStations with one of those typically dedicated to eval-
uation tasks. The state representation includes hundreds of
state features covering aspects such as 3-D velocity, steering
angle, a representation of the upcoming course points, and
a representation of opponent cars including a [0, 1] measure
of the slipstream produced by a car ahead. The Quantile Re-
gression SAC (QR-SAC) algorithm is used with 2048 × 4
feed-forward neural networks for the value functions and
policy. Dropout is used when training the policy network.

7.1 Learning the “Slingshot” Pass
In the first experiment, we demonstrate SSET ’s sample com-
plexity benefits in a “slingshot passing” scenario on the Cir-
cuit de la Sarthe (Sarthe) track, using a Red Bull X2019
Competition race car, similar to a Formula 1 vehicle. The
environment is a relatively straight 1700 meter section of the
course with the RL agent always launched behind (in training
between [10, 40] meters) one built-in-AI from the game. To
succeed, the agent needs to use the opponent’s slipstream to
accelerate beyond its top open-air speed and use the added

0 100 200 300 400 500
epoch

0

20

40

60

80
cu

m
u
la

ti
v
e
 f

ir
st

 p
la

ce
 f

in
is

h
e
s

Cumulative First Place Finishes
SSET(1)

SSET(2)

SSET(3)

SSET(4)

SSET(5)

Uni(1)

Uni(2)

Uni(3)

Uni(4)

Uni(5)

0 5 10 15 20 25
winning margin (meters)

Uni(5)
Uni(4)
Uni(3)
Uni(2)
Uni(1)

SSET(5)
SSET(4)
SSET(3)
SSET(2)
SSET(1)

ru
n
(r

e
p

lic
a
)

Avg. winning margin (w/o losses)
in last 100 epochs

Figure 7: Left: Cumulative wins evaluated every 5 epochs
in the slingshot passing test. Uniform sampling shows high
variance while SSET with a slipstream (0.7) event and a
“won” event consistently has sample complexity on par with
the best uniform-sampling run. Right: Average (and std dev)
of winning margins (excluding losses) in the last 100 epochs
for each run. While one uniform ERB run did best, on average
(dashed lines) SSET has the consistently better performance.

momentum to slingshot by the opponent and hold it off to the
end of the section. Reward function components incentivize
course progress and passing and penalize wall hits, car colli-
sions and off-course driving. Full details are provided in the
supplemental material.

For this task, we introduce two events. A “slipstream”
event (with τ = 10s) occurs when the agent’s slipstream
feature is above a threshold (0.7 in this case) and a “won”
event (with τ = 15s) occurs if the agent ends the section
in first place. Both events use κ = η = 10%. Figure 7 re-
ports the cumulative wins for 5 replicas each of SSET versus
a monolithic ERB with uniform sampling, both with total
capacities (

∑
κi) of 2.5 million steps and sharing common

seeds. Policies were evaluated after every 5 epochs with the
agent started 35 meters behind the opponent. The uniform
sampling runs display high variance, taking anywhere from
70 epochs to 505 epochs to start winning. By contrast the
all 5 SSET runs learn to win consistently by epoch 110. In
addition, the SSET runs seem to learn stronger passing skills,
with an average winning distance (discarding runs where the
agent lost) of 18.4 meters in the last 100 epochs compared to
14.4 meters for uniform sampling. The behavior is somewhat
sensitive to the choice of slipstream threshold. In other exper-
iments, lower or higher thresholds expanded the variance by
degrading signal or complicating exploration, although the
results were still not as varied as uniform sampling.

7.2 Remembering to Stay On Course
We now present an experiment on maintaining multiple skills
in a time-trial (solo car) setting on the full Lago Maggiore
GP (Maggiore) track using a Porsche 911. The experimental
details (see Section A.3) follow Wurman et al.’s except that
we use only the time-trial reward components. The agent is
tasked with running fast laps as well as avoiding off-course
penalties. As learning progresses, off-course events become
very scarce compared to the roughly 1200 steps an agent
takes per lap. Consequently, learned behavior with a mono-
lithic ERB and uniform sampling (red lines in Figure 8)
oscillates: policies may not go off course for several epochs,
then “forget” the potential penalty and shift to a policy that

0 500 1000 1500 2000
epoch

0

50

100

150

200

250

300

cu
m

u
la

ti
v
e
 s

te
p
s

o
n
 t

o
 o

ff

Cumulative Steps Crossed
Out of Bounds

SSET(1)

SSET(2)

SSET(3)

SSET(4)

SSET(5)

Uni(1)

Uni(2)

Uni(3)

Uni(4)

Uni(5)

Metric
(epochs 1000-2000)

SSET

Min/Avg/Max
fraction

policies left track

Avg ± (σ)
best lap time (s)

w/o disqualified policies

Avg ± (σ)
best lap time (s)

with disqualified policies

Uni

.040

.111

.180

.210

.253

.305

114.607
± .12

114.459
± .12

114.618
± .15

114.496
± .22

Figure 8: Left: Cumulative times an agent went off-course
in 3-lap evaluations performed every 5 epochs. Uniform sam-
pling runs (red lines) display catastrophic forgetting, oscillat-
ing between steady laps and policies that take risks and go
off course. SSET converges to policies that more consistently
stay on course (flatter blue lines). Right: Summary statistics
on converged behavior. The worst SSET run stays on course
more than the best uniform one, with comparable lap times.

cuts corners, and the cycle repeats.
To retain consistent on-track behavior, we use SSET with

a re-establish event that occurs if an agent returns to the
track for 2 seconds after having left the course and use a his-
tory length of 7 seconds (roughly the half-life of the agent’s
horizon) to capture the full sub-trajectory of leaving and re-
turning to the course. We set η and κ to 1% and used an ERB
of total capacity 10-million. Note this is an extension of the
formal event spec definition since the event condition here
is based on a history of states, not just s′. The results of this
approach (blue lines in Figure 8) show the oscillating behav-
ior is replaced by consistent on-course laps, with 88.9% of
SSET policies (up from 74.7% of uniform sampling policies)
incurring no penalties after epoch 1000. Notably the worst
off-course percentage for the SSET runs is still better than
the best percentage with uniform sampling. The minimum
(out of 3 in each eval) lap times averaged across later epochs
are also within 0.15 seconds. A second set of 5 runs using
a 1s reestablish requirement with τ = 5s achieved virtually
the same results (86.9% of policies on course with similar
lap times). Thus, in a highly realistic driving simulator with a
deep neural network, SSET mitigates catastrophic forgetting
and balances learning of multiple skills, echoing the results
on MiniGrid domains in Sections 5.3 and A.2.

8 Conclusions and Future Work
This paper introduced Event Tables and SSET algorithm to
improve the sample complexity and stability of off-policy
RL algorithms. The theoretical results quantify the potential
speedups and lend guidance for choosing event conditions.
Experiments in MiniGrid, standard RL benchmarks, and Gran
Turismo Sport show the benefits of SSET over monolithic
ERBs or other prioritization schemes. Furthermore, combin-
ing TD-error PER or reward shaping on top of SSET led to
further improvements in sample complexity and stability.

The current approach relies on domain experts or RL prac-
titioners to designate event conditions. It may be possible to
use subgoal discovery methods (Kulkarni et al. 2016; McGov-
ern and Barto 2001) to automatically identify event condi-
tions. Future studies may also consider dynamically changing

the events or their proportions (η and κ) based on learning
progress. For instance, an event like “driving forward” might
help early in learning but could be supplanted later by an
“overtake” table as the agent hones in on more complex skills.

References
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and
Zaremba, W. 2017. Hindsight Experience Replay. In Ad-
vances in Neural Information Processing Systems.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence, 72(1): 81–138.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Cassirer, A.; Barth-Maron, G.; Brevdo, E.; Ramos, S.; Boyd,
T.; Sottiaux, T.; and Kroiss, M. 2021. Reverb: A framework
for experience replay. arXiv preprint arXiv:2102.04736.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Corless, R. M.; Gonnet, G. H.; Hare, D. E.; Jeffrey, D. J.; and
Knuth, D. E. 1996. On the Lambert W function. Advances
in Computational Mathematics, 5(1): 329–359.
de Bruin, T.; Kober, J.; Tuyls, K.; and Babuška, R. 2015.
The importance of experience replay database composition
in deep reinforcement learning. In Advances in Neural Infor-
mation Processing Systems (NIPS-DRLWS).
de Bruin, T.; Kober, J.; Tuyls, K.; and Babuška, R. 2016. Im-
proved Deep Reinforcement Learning for Robotics Through
Distribution-based Experience Retention. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 3947–3952.
Du, Y.; Warnell, G.; Gebremedhin, A. H.; Stone, P.; and
Taylor, M. E. 2022. Lucid dreaming for experience replay:
refreshing past states with the current policy. Neural Com-
puting and Applications, 34(3): 1687–1712.
Fuchs, F.; Song, Y.; Kaufmann, E.; Scaramuzza, D.; and Dürr,
P. 2021. Super-Human Performance in Gran Turismo Sport
Using Deep Reinforcement Learning. IEEE Robotics and
Automation Letters, 6(3): 4257–4264.
Goodfellow, I. J.; Mirza, M.; Xiao, D.; Courville, A.; and
Bengio, Y. 2014. An empirical investigation of catastrophic
forgeting in gradientbased neural networks. In International
Conference on Learning Representations (ICLR).
Grzes, M. 2017. Reward shaping in episodic reinforcement
learning. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International conference
on machine learning, 1861–1870.
Hong, Z.-W.; Chen, T.; Lin, Y.-C.; Pajarinen, J.; and Agrawal,
P. 2021. Topological Experience Replay. In International
Conference on Learning Representations (ICLR).

Huang, W.; Xu, R. Y. D.; and Oppermann, I. 2019. Efficient
Diversified Mini-Batch Selection using Variable High-layer
Features. In Asian Conference on Machine Learning (ACML).
Isele, D.; and Cosgun, A. 2018. Selective experience re-
play for lifelong learning. In AAAI Conference on Artificial
Intelligence.
Ivanovic, B.; Harrison, J.; Sharma, A.; Chen, M.; and Pavone,
M. 2019. Barc: Backward reachability curriculum for robotic
reinforcement learning. In IEEE International Conference
on Robotics and Automation (ICRA).
Karimpanal, T. G.; and Bouffanais, R. 2018. Experience
replay using transition sequences. Frontiers in Neurorobotics,
12: 32.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Des-
jardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.;
Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran,
D.; and Hadsell, R. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of
Sciences, 114(13): 3521–3526.
Kulkarni, T. D.; Saeedi, A.; Gautam, S.; and Gershman, S. J.
2016. Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396.
Lee, D.; and He, N. 2020. Periodic Q-learning. In Learning
for Dynamics and Control.
Lee, S. Y.; Sungik, C.; and Chung, S.-Y. 2019. Sample-
efficient deep reinforcement learning via episodic backward
update. In Advances in Neural Information Processing Sys-
tems.
Li, Z.; Xu, T.; and Yu, Y. 2022. A Note on Target Q-learning
For Solving Finite MDPs with A Generative Oracle. arXiv
preprint arXiv:2203.11489.
Lin, L.-J. 1992. Self-Improving Reactive Agents Based on
Reinforcement Learning, Planning and Teaching. Machine
Learning, 8(3–4): 293–321.
Lin, X.; Baweja, H.; Kantor, G.; and Held, D. 2019. Adap-
tive auxiliary task weighting for reinforcement learning. In
Advances in Neural Information Processing Systems.
Liu, B.; Liu, X.; Jin, X.; Stone, P.; and Liu, Q. 2021. Conflict-
Averse Gradient Descent for Multi-task learning. In Advances
in neural information processing systems.
Mahmood, A. R.; Van Hasselt, H. P.; and Sutton, R. S. 2014.
Weighted importance sampling for off-policy learning with
linear function approximation. In Advances in Neural Infor-
mation Processing Systems.
McGovern, A.; and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In International Conference on Machine Learning (ICML).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Narasimhan, K.; Kulkarni, T. D.; and Barzilay, R. 2015. Lan-
guage understanding for textbased games using deep rein-
forcement learning. In Conference on Empirical Methods in
Natural Language Processing.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to
reward shaping. In International Conference on Machine
Learning (ICML).
Oh, Y.; Shin, J.; Yang, E.; and Hwang, S. J. 2021. Model-
augmented Prioritized Experience Replay. In International
Conference on Learning Representations (ICLR).
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T.; and Wayne,
G. 2019. Experience Replay for Continual Learning. In
Advances in Neural Information Processing Systems.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016.
Prioritized Experience Replay. In International Conference
on Learning Representations (ICLR).
Sharma, A.; Pal, M. K.; Anand, S.; and Kaul, S. K. 2020.
Stratified Sampling Based Experience Replay for Efficient
Camera Selection Decisions. In IEEE International Confer-
ence on Multimedia Big Data (BigMM).
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587): 484–489.
Song, Y.; Lin, H.; Kaufmann, E.; Dürr, P.; and Scaramuzza, D.
2021. Autonomous Overtaking in Gran Turismo Sport Using
Curriculum Reinforcement Learning. In IEEE International
Conference on Robotics and Automation (ICRA).
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1-2): 181–
211.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double Q-learning. In AAAI Confer-
ence on Artificial Intelligence.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3): 279–292.
Wurman, P. R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.;
Subramanian, K.; Walsh, T. J.; Capobianco, R.; Devlic, A.;
Eckert, F.; Fuchs, F.; Gilpin, L.; Khandelwal, P.; Kompella,
V.; Lin, H.; MacAlpine, P.; Oller, D.; Seno, T.; Sherstan, C.;
Thomure, M. D.; Aghabozorgi, H.; Barrett, L.; Douglas, R.;
Whitehead, D.; Dürr, P.; Stone, P.; Spranger, M.; and Kitano,
H. 2022. Outracing champion Gran Turismo drivers with
deep reinforcement learning. Nature, 602: 223–228.
Yin, H.; and Pan, S. J. 2017. Knowledge transfer for deep
reinforcement learning with hierarchical experience replay.
In AAAI Conference on Artificial Intelligence.

Zha, D.; Lai, K.-H.; Zhou, K.; and Hu, X. 2019. Experience
replay optimization. In International Joint Conference on
Artificial Intelligence (IJCAI).

A Appendix
A.1 Theoretical Analysis
In this section we prove sufficient conditions for the improve-
ment of convergence speed using Event Tables and SSET.
Specifically, we show that the more correlated events are
with optimal behavior, the larger the expected improvement.
To ground the analysis and make use of existing results, we
use tabular Q-learning with a target function. We start from
known finite-time convergence results in this setting (Lee and
He 2020; Li, Xu, and Yu 2022). Specifically, Theorem 1 from
Li et al. (Li, Xu, and Yu 2022) (a refined version of Theorem
3 from Lee et al. (Lee and He 2020)) computes the lower
bound of sample complexity (N) for learning an ε-optimal
solution using an iterative tabular Q-learning algorithm with
target networks (Algorithm 2). We show that the lower bound
of the sample complexity for achieving ε-optimal behavior is
reduced by using event tables for sampling (Theorem 1).

The steps taken from the know result in the uniform sam-
pling case to the new theorem are as follows. We define
the state probability distribution (density) following a given
policy to a finite horizon from an initial state and use that
to define the state density disparity to the optimal policy
(Definitions 2-3). We then formally define event conditions
(Definition 4) on the states with low optimal-policy disparity
or final states of the optimal policy. We extend this definition
to event sections and their corresponding tables that include
sufficient history to (on expectation) reach back to a previous
event or initial state (Definitions 5-6). We then quantify the
over-sampling of experience in the event tables (Lemma 1)
and derive the convergence rate (Prop. 3) and bias correction
procedure (Lemma 2). Finally, we show that the resulting con-
vergence bound is an improvement over uniform sampling
(Theorem 1).

Algorithm 2: TARGET Q-LEARNING USING AN EX-
PERIENCE REPLAY BUFFER B
//input: outer loop iteration number
K, inner loop iteration number I,
initialization Q0, step-sizes αt.
//output: QK

1 for k = 0 to K − 1 do
// outer loop

2 Qk,0← Qk
3 for i = 0 to I − 1 do

// inner loop
// randomly sample a transition

4 (s, a, r, s′) ∼ B
// update

5 Qk,i+1(s, a) = Qk,i(s, a) + αi(r +
γmaxa′ Qk(s′, a′)−Qk,i(s, a))

6 end
7 Qk+1← Qk,I // refresh target

8 end

First, we provide a general overview of the base algorithm
and the existing results.

Assumptions: Throughout the analysis we consider a finite
discrete episodic MDP M = (S,A,P,R, T, γ), where S
and A are finite and discrete state and action spaces, P
is the state transition probability and R is a bounded re-
ward function, s.t. r(s, a) ∈ [0, 1], ∀(s, a) ∈ S × A,
T is the length of each episode and γ ∈ (0, 1) is the
discount factor. We assume for simplicity in notation that
any terminal state traps the agent until time step T . We
assume that the agent takes actions using a fixed stochas-
tic behavior policy πb : S × A → [0, 1], such that it
can visit every state and execute every action with a non-
zero probability within the T time-step horizon. We denote
π∗ : S×A → [0, 1] to be an optimal policy of the MDP (Put-
erman 2014), such that its state-action value function is op-
timal Qπ

∗
(s, a) = maxπ Q

π(s, a), ∀(s, a) ∈ S ×A. Again
for simplicity in notation, we assume that the event-tables
are sampled uniformly with a total sampling probability de-
noted by η =

∑n
i=1 ηi(= η/n) (see Alg. 1). The sampling

probability of the default-table is η0 = 1− η.
Let T : R|S||A| → R|S||A| define the Bellman operator

T Qk(s, a) = Es′∼P (.|s,a)

[
r(s, a) + γmax

a′
Qk(s′, a′)

]
.

Q-learning using a target-network Qk and an experience
replay buffer B can be viewed as minimizing the following
loss function

min
Q∈R|S||A|

l(Q;Qk,B) =

1

2
E

(s,a,r,·)∼B

[(
E

s′∼P (.|s,a)

[
r(s, a) + γmax

a′
Qk(s′, a′)

]
− Q(s, a)

)2
]

(1)

For a given buffer B generated using the fixed behavior policy
πb, we define constants (following the notation used in (Lee
and He 2020; Li, Xu, and Yu 2022))

cB := min
s∈S,a∈A

P ((s, a, ·, ·) ∼ B)

LB := max
s∈S,a∈A

P ((s, a, ·, ·) ∼ B)

Here, cB and LB denote the minimum and the maximum
probability that a state-action pair (s, a) is sampled from the
buffer. From our assumptions, cB > 0.

Carrying out N steps of SGD optimizing Eq. 1, we
get an approximation of T Qk with a certain error bound
E [‖Qk+1 − T Qk‖] ≤ εk+1, which then accumulates across
outer iterations over k.

Proposition 1. (Theorem 1 (Li, Xu, and Yu 2022)) Consider
an MDP with Q0 = 0, cB > 0, αt = α

λ+t , where α = 2/cB
and λ = (13γ2LB)/(2c2B). The minimum number of samples
required to achieve an ε-optimal solution E[‖QK−Q∗‖∞] ≤
ε using Algorithm 2 is given by

NB,K =
832γ2

(1− γ)5ε2
log

(
4

(1− γ)ε

)
LB
c3B
.

We show SSET can decrease this bound when the events
are correlated with an optimal policy and histories are suffi-
ciently long. To quantify these conditions, we use the follow-
ing definitions of optimal trajectories and their state densities
induced by various policies.
Definition 1. Trajectory: We define a trajectory Γπsi,sj of the
MDP M as a temporal sequence of transition tuples

Γπsi,sj =
{

(sk, ak, rk, sk+1) | sk+1 ∼ P (·|sk, ak ∼ π(·|sk)),

rk ∼ Rsk,sk+1
ak

,∀k ∈ [i, j − 1])
}
.

For simplicity, |Γπsi,sj | denotes the length or the number of
transitions of the trajectory.
Definition 2. State Density: We define ρπ,s0,K : S → [0, 1]
as the state probability distribution following any policy π
for the MDP with the initial state s0 over a finite time horizon
K

ρπ,s0,K(s) =
1

C

K∑
k=0

P (sk = s|π, s0). (2)

C enforces the constraint 1T ρπ,s0,K = 1 to make
ρπ,s0,K a probability distribution, where ρπ,s0,K =
[ρπ,s0,K(s1), ..., ρπ,s0,K(sN)]T ∈ RN .
Definition 3. State Density Disparity from Optimal: We de-

fine
∼
ρ
π,s0,K

: S → [−1, 1] as the difference in the state den-
sity following any policy π compared to an optimal-policy
π∗ for the MDP with the initial state s0 over a finite time
horizon K

∼
ρ
π,s0,K

(s) = ρπ
∗,s0,K(s)− ρπ,s0,K(s). (3)

We now formally define an event condition ω : S →
{0, 1}, which is the core concept of our SSET algorithm.
An event occurs when an agent enters a state that satisfies
the event condition, which implicitly defines a set of event
states: I[s∈Sωi]. Intuitively, good event conditions should be
aligned with the optimal policy and also act as waypoints
linking initial and final states visited by the optimal policy.
Therefore, final states visited by the optimal policy should
also satisfy at least one event condition.
Definition 4. Event condition: Let I denote the initial state
distribution of the episodic MDP with the episode length
T . For a given threshold µ ∈ (0, 1), we define a collection
of event sets Sω = {Sω1 , ...,Sωn}, s.t. ∀si ∈ Sωi ∃sj ∈
I ∪ Sωj where the following conditions are true:

either
∼
ρ
πb,sj ,T

(si) ≥ ∆ = (1− µ) (4)

or |Γπ
∗

s∈I,si | = T (5)

We define an event condition ωi : S → {0, 1},∀i ∈
[1, n] s.t. ωi(s) = I[s∈Sωi].

Intuitively Condition (4) covers states that are significantly
(based on µ) more likely under the optimal policy than un-
der πb. Condition (5) covers terminal states visited by the
optimal policy in case they are not satisfied under Condition

(4). Note, the definition above could cover a large amount
of the state space in highly stochastic domains. Therefore,
Theorem 1 filters the set further to focus on higher probability
states without significant degradation to the overall sample
complexity.

For simplicity in the notation used in our proofs, we denote
an event section Eωi as a set of states whose state density
disparity from the optimal policy is less than (or equal to)
∆. Intuitively, these are the states from which the agent can
easily reach the event states.
Definition 5. Event Section: We define an event section Eωi
as

Eωi =

{
s

∣∣∣∣ sup
s′∈S

{
∼
ρ
πb,s′,T

(si), ∀si ∈ Sωi
}

= ∆

}
.

Proposition 2. For a given µ, ∃Sω s.t. all initial states of the
MDP I , the event states Sω∀i , and the optimal terminal states
{s | |Γπ∗s0∈I,s| = T}) belong to at least one event section Eω .

Proof. Let us first consider the case where for a given µ,
Condition (4) does not hold for any s ∈ S. From Def. 4, Sω
contains only a single event-set that includes all the optimal
terminal states Sωterm = {s | |Γπ∗s0∈I,s| = T}). Therefore,
from Def. 5, all initial states belong to the event section
Eωterm , and hence the result is true for this case.

Now for the case where there are non-zero number of
event-sets that satisfy Condition (4), it follows that the event
states belong to either the event section where Condition (4)
is true or the terminal Eωterm .

From the definition of events, we can define an event table
that stores these experiences that lead to them.
Definition 6. Event Table: An event table Bνi for event spec
νi = 〈ωi, τi〉, denotes an experience replay buffer, which is
a multiset (a set with repeated elements) of transitions from
trajectories of a given maximum length τi s.t.

Bνi =
⋃{

(s, a, r, s′) | (s, a, r, s′) ∈ Γπ
b

si,sωi ,

|Γπ
b

si,sωi | ≤ τi,∀s
ωi ∈ Sωi

}
. (6)

Using the above definitions, we can now analyze the likeli-
hood of sampling any particular state from an ERB that con-
tains both event tables and a default table B0 based on fixed
sampling probabilities of the event tables (as used in Algo-
rithm 1). The following lemma quantifies the over-sampling
of experiences in the event tables.
Lemma 1. Let Bν = ∪

∀i∈[1,n]
Bνi denote the union events

table and B0 denote the default table that contains all the
transitions collected following a fixed behavior policy πb.
s
η∼ Bν ∪ B0 denotes a weighted sampling (0 < η < 1) of a

transition tuple (s, ·, ·, ·) between the event and the default
tables. For any event-spec νi,

if τi ≤
(1− η)m

(m+ 1)nµ
,

then P (s
η∼ Bν ∪ B0) ≥ (1− η)−mP (s ∼ B0),

∀(s, ·, ·, ·) ∈ Bνi ,m ∈ Z0+ .

Proof. Expanding the weighted sampling probability, we
have
P (s

η∼ Bν ∪ B0) = ηP (s ∼ Bν) + (1− η)P (s ∼ B0)

= ηP (s ∼ Bν) + (1− η)P (s ∼ B0)

− P (s ∼ B0)

(1− η)m
+
P (s ∼ B0)

(1− η)m

= η

(
P (s ∼ Bν)− 1− (1− η)m+1

η(1− η)m
P (s ∼ B0)

)
+ (1− η)−mP (s ∼ B0)

= η

(
P (s ∼ Bν)−

∑m
k=0(1− η)k

(1− η)m
P (s ∼ B0)

)
+ (1− η)−mP (s ∼ B0)

≥ η
(
P (s ∼ Bν)− m+ 1

(1− η)m
P (s ∼ B0)

)
+ (1− η)−mP (s ∼ B0) (∵ (1− η) < 1)

∵ (s,·,·,·)∈Bνi
=

Def. 6
η

τi∑
k=0

P (sτi−k = s|sτi = sωi , πb)[
P (sτi = sωi |Bν)− m+ 1

(1− η)m
P (sτi = sωi |B0)

]
+ (1− η)−mP (s ∼ B0), sωi ∈ Sωi . (7)

Bνi contains only trajectories of length ≤ τi that all lead

to sωi ∈ Sωi . Therefore P (sτi = sωi |Bνi) ≥ 1

τi
. Given

the event-table sampling algorithm described in Sec. 4
(with the assumption that a table is uniformly sampled),
we have P (sτi = sωi |Bν) = P (ωi ∼ {ωi,∀i})P (sτi =

sωi |Bνi) ≥ 1

nτi
. For the event section Eωi from Def. 4 and

ρπ
∗,·,T (sωi) ≤ 1, therefore P (sτi = sωi |Bν) ≤ µ. Substitut-

ing in Eq. 7, we get

P (s
η∼ Bν ∪ B0) ≥ η

τi∑
k=0

P (sτi−k = s|sτi = sωi , πb)[
1

nτi
− m+ 1

(1− η)m
µ

]
+ (1− η)−mP (s ∼ B0)

≥ (1− η)−mP (s ∼ B0) ∵
1

nτi
≥ m+ 1

(1− η)m
µ

Typically, the threshold µ is very small as the state density
following the behavior policy drops exponentially with the
number of forward time steps. With small values of µ, next
we show that m > 1, thereby quantifying the over-sampling
of experiences in positive powers of 1

(1−η) .

Proposition 3. m is asymptotically convergent to
− ln(τiµ)− ln ln(τiµ) + o(1) as µ→ 0.

Proof. Rearranging the condition in Lemma 1 for equality

e(m+1) ln(1−η) =
(1− η)nτiµ

ln(1− η)
(m+ 1) ln(1− η)

Setting a = 1/(1−η), b = |nu|τiµ/a, x = (m+1) and y =
(x ln a), the equation reduces to yey = ln a

b . The solution
to this equation is the Lambert W function W0(ln a

b), since
ln a
b > 0

m =
1

ln(a)
W0

(
a ln(a)

nτiµ

)
− 1. (8)

W0(x) is asymptotic to lnx− ln lnx+ o(1) for large values
of x (Corless et al. 1996). With small values of µ, we get

m = − ln(τiµ)− ln ln(τiµ) + o(1). (9)

Sampling using event-tables may introduce a bias as it can
change the expected value of the stochastic Bellman operator
T Qk(s, a) = Es′∼P (.|s,a)

[
r(s, a) + γmax

a′
Qk(s′, a′)

]
for

the (s, a) pair whose next state has a finite probability to
either belong to the event-tables or not. We can correct this
bias by computing weights for weighted importance sam-
pling (Mahmood, Van Hasselt, and Sutton 2014) similarly to
PER (Schaul et al. 2016).

Lemma 2. Bias introduced by the weighted sampling s
η∼

Bν ∪ B0 between the event and the default tables is given by

w(s, a) =

1− η

∑
s′∈S

P ((s, a, ·, s′) /∈ Bν | s, a),

if (s, a, ·, ·) ∈ Bν
1

1−η , otherwise.

Proof. Event tables construction (see Algorithm 1) priori-
tizes transitions that are in either of the event buffers over
the ones that are out. Given an (s, a) pair, the transitions that
are not present in any of the event tables are sampled from
the default table with a probability of 1− η. Therefore, the
remainder η

∑
s′∈S P (s′ /∈ Bν | s, a) is adjusted among the

probabilities of transitions in the event-buffers. The correc-
tion weight that is needed is 1− η

∑
s′∈S P (s′ /∈ Bν | s, a).

For the transitions that are not in the event buffers, only a
scaled correction of (1− η) is required.

Now that we have quantified the oversampling and bias-
corrections of event histories, we state our main theorem
showing that with sufficient history and events that are cor-
related with optimal behavior, the convergence speed of Q-
learning to an optimal policy is improved over the monolithic
ERB (B = B0) sample complexity (NB,K).
Theorem 1. Let Sf denote the set of states s.t. the sampled
optimal trajectories starting from those states, are contained
in the combined event-buffer with a probability greater than
p̄ ∈ (0, 1]

Sf = {s | P (Γπ
∗

s,s′ ⊂ Bν) ≥ p̄}.

Under the conditions of Prop. 1 and if

τ∀i∈[1,n] ≤
(1− η)m

(m+ 1)nµ
, then

P
(
NB

ν∪B,K ≤ (1− η)2mNB,K
)
≥ p̄, ∀s ∈ Sf ,m ∈ Z0+ .

Proof. Let MS
f

= (Sf ,A,P,R) be a reduced MDP
of M with the initial, event and terminal states in Sf
(Prop. 2). With the bias correction applied from Lemma 2,

π∗,M
Sf

(s) = π∗,M (s),∀s ∈ Sf . With cB
ν∪B0

:=

min
s∈Sf ,a∈A

P ((s, a, ·, ·) ∼ Bν ∪ B0) and LB
ν∪B0

:=

max
s∈Sf ,a∈A

P ((s, a, ·, ·) ∼ Bν ∪ B0) as constants the result

of the theorem then follows from using Lemma 1 in Prop. 1
for MDP MS

f

using event-tables for experience replay.

Remark 1. Applying the results of Theorem 1 and Lemma 1
in the loss function of Q-learning (Eq. 1), the speed-up (1−
η)−2m compounds across multiple outer iterations of target
Q-learning (Alg. 2). Therefore, the transitions that are not in
the event buffers are also benefited in expectation, countering
the lower sampling rate of (1− η).

A.2 Appendix: Details of MiniGrid Experiments
This section provides details on the parameters of the Min-
iGrid environments and the algorithms used in the experi-
ments from Section 5. Further experiments and extensions
are also detailed below showing an example of SSET avoid-
ing catastrophic forgetting in the obstacle course domain,
advantages of using intermediate events, and a combination
of SSET with the CAGrad (Liu et al. 2021) algorithm, which
avoids conflicts in gradient updates stemming from the dif-
ferent event tables.

Learning Parameters and Resources Used in MiniGrid
and Continuous Control Experiments Table 1 lists the
parameters used in our MiniGrid experiments. Event condi-
tions are true when the agent interacts with an object, the
goal, or crosses between rooms. History lengths are shorter
in the obstacle course where the events are denser (since
there are more objects), but we use a larger buffer there to
accommodate the more diverse skills and larger number of
event tables. For all the MiniGrid experiments, we used two
asynchronous rollout workers each with 1.5 CPUs and 2GB
memory to collect and transmit experience data to a replay
buffer efficiently implemented using Reverb(Cassirer et al.
2021). The training was conducted using two virtual CPUs
and 3 GB of memory at a rate of 40 training steps per sec.
For the continuous control tasks (LunarLanderContinuous
and MuJoCo domains), we used a single rollout worker with
1 CPU and 2GB memory, and the training was conducted
asynchronously using 7.7 CPUs with 8GB of memory. Table
2 lists all the algorithm parameters used for these benchmark
experiments.

Catastrophic Forgetting in Obstacle Course Here, we
illustrate how SSET avoids catastrophic forgetting that ham-
pers even PER during extended learning in the obstacle
course experiment presented in Section 5.3. The result is
a smaller-scale version of the observations on catastrophic
forgetting in Gran Turismo from Section 7.2.

At the end of each episode during training, the agent is
always reset to the top-left corner (1, 1) of the environment.
At a frequency of every 20 epochs during training, we eval-
uated the performance of the agent starting from a slightly

0 250 500 750 1000 1250 1500 1750 2000

training epoch

n
u
m

 e
p
is

o
d
e
s

0

3

6

9

12

15

18

21
Successful Episodes (out of 30)

Prioritized ER

Prioritized SSET

Uniform ER

Init Pos (Training)

Init Pos (Evaluation) (a)

(b)

Figure 9: Evaluation Result of a Slightly Shifted Initial
Position Test-time performance of the agent starting from a
slightly shifted initial grid position (1, 4). (a) Environment
instance (b) Number of successful episodes out of 30 seeded
runs of the experiment for each evaluation checkpoint.

shifted initial grid position (1, 4) as shown in Figure 9(a).
Figure 9(b) shows the number of successful episodes over
the 30 seeded runs of the experiment for each evaluation
checkpoint. An episode is considered successful if the agent
is able to navigate through the obstacles and reach the green
square. The plot shows that the agents with both uniform and
TD-error prioritized experience replay learn how to complete
the task early on, but forget the skill as the training continues.
We hypothesize that due to changing epsilon-greedy behavior
policy, the Q-function updating with samples from a standard
FIFO uniform (and even prioritized) replay buffer, quickly
begins to over-fit trajectories starting from (1, 1) avoiding the
nearby negative rewarding spikes. Over-fitting on these trajec-
tories potentially leads to losing previously learned estimates
for nearby transitions. On the other hand, with SSET and
sampling from the at-spike event table that is unaffected by
the updating behavior policy, the agent continues to improve
its value estimates for those transitions over time resulting in
a better behavior.

In the context of this particular experiment and similar RL
domains, having robust performance against perturbations is
not typically expected and therefore catastrophic forgetting
may not be a serious issue. However, it becomes a challenging
issue to tackle in realistic domains like Gran Turismo where
the training and testing distributions can be different or the
domain is simply so large that one can forget low probability
events, like leaving the course in Section 7.2.

Intermediate Events and Histories The proof of Theo-
rem 1 shows that SSET improves sample complexity along
transitions from the optimal trajectory that are, with high
probability, stored in the Event Tables. We can increase this

Table 1: Parameters in the MiniGrid domain

Parameter Three Room Grid World Obstacle Course

Event conditions (ωi) at-gap, done at-spike, at-lava, at-gap, pickup-key, at-door, done

Event history length (τ) 200 50

Event sampling probabilities
(ηi)

Default: 0.5, at-gap: 0.2, done: 0.3
Default: 0.5, at-spike: 0.1, at-lava: 0.0625, at-gap:
0.0625, pickup-key: 0.0625, at-door: 0.1125, done:
0.1

Max buffer capacity 20000 100000

Value function networks 1 hidden layer of 256 ReLU units 2 hidden layers of 256 ReLU units each

Learning rate 1e-3 5e-4

Table capacity sizes (κi) max buffer capacity * ηi

batch-size 32

epsilon-greedy (ε) 0.3

TD-Priority exponent 0.65

Stale network refresh rate 0.01

Discount factor 0.99

Table 2: Parameters in the Continuous Control Benchmark Tasks

Parameter LunarLanderContinuous MuJoCo

Event conditions (ωi) land-between-flags (lf), land-near-middle (lm)

Salient reward thresholds
Half-Cheetah: (r > 8, r > 12, r > 16)
Hopper: (r > 2.5, r > 3, r > 3.5)
Walker2D: (r > 4, r > 5, r > 6, r > 7)
Humanoid: (r > 5, r > 7, r > 10)

Event sampling probabilities
(ηi)

Default: 0.7, lf: 0.1, lm: 0.2

Default: 0.6,
Half-Cheetah: (r8: 0.2, r12: 0.1, r16: 0.1)
Hopper: (r2.5: 0.2, r3: 0.1, r3.5: 0.1)
Walker2D: (r4: 0.2, r5: 0.1, r6: 0.05, r7: 0.05)
Humanoid: (r5: 0.2, r7: 0.1, r10: 0.1)

Max buffer capacity 20000 1000000

batch-size 32 256

Learning rates Actor: 0.0003, Critic: 0.0003

SAC networks 2 hidden layer of 256 ReLU units each, Gaussian Policy

Target entropy
(optimized entropy) -2.0

Half-Cheetah: -6.0
Hopper: -3.0
Walker2D: -6.0
Humanoid: -17.0

Table capacity sizes (κi) max buffer capacity * ηi

Event history length (τ) 200

Stale network refresh rate 0.005

Discount factor 0.99

100 200 300 400 500 600

training epoch

100

80

60

40

20

0

Advantage of Intermediate Events

SSET

Done (= 300)

Done (= 200)

Done (= 100)

Done (= 1)

Uniform ER

e
p
is

o
d
ic

 r
e
tu

rn

Figure 10: Average episodic return (from 30 randomly seeded
runs) in the obstacle course environment comparing SSET
with intermediate events like, pickup-key, at-door, etc. against
only using a done-conditioned event with different history
lengths.

probability by either increasing the number of event condi-
tioned tables n with short histories or having fewer tables
with longer histories τi. However, the proof of Lemma 1
shows the latter is not as effective, especially in early learn-
ing when the histories leading to a far-off event may contain
many sub-optimal actions, diluting the impact of that table
until the policy is better optimized. Instead, when possible, it
is best to have many events acting as waypoints in the environ-
ment as shown in Figure 1. We now present an empirical test
supporting this insight in the sparse-reward obstacle course
environment presented in Section 5.3. The test doubles as a
comparison to methods that partition an ERB based solely on
reward conditions without corresponding histories (Sharma
et al. 2020).

We compare SSET with the intermediate events used in
Section 5.3 (pickup-key, at-door, etc.), each with a history
length of 50 (see Table 1 for parameters) against only us-
ing a terminal rewarding event with different history lengths.
Figure 10 shows the statistical average curves of episodic
return during the course of training computed from 30 ran-
dom seeded runs. It is clear from the result that SSET with
intermediate events outperforms the rest. Intuitively, interme-
diate events can be seen as waypoints on the fast lane for TD
backups to the initial states, thereby improving the overall
sample efficiency. The plot also highlights that just sampling
terminal goal states (as in SER (Sharma et al. 2020), τ = 1
in the chart) or transition sequences leading to them (as in
TER (Hong et al. 2021), EBU (Lee, Sungik, and Chung 2019)
or Reverse-Sweep*1, higher τ values) may not be sufficient
to achieve improved efficiency in a sparse reward setting like
the Obstacle Course.

1In Section 5 we labelled ”SSET with only the goal event” as
Reverse-Sweep*, which is essentially an off-policy version of an
(on-policy) reverse sweep of updates from the goal (EBU; Lee,
Sungik, and Chung (2019)) by combining it with other data.

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

no shaping

right-wall

left-wall

manhattan_goal

manhattan_gap
gap

Mission: Get to the green square

near_initial

near_goal

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

no shaping (UER)

shaping (UER)

gap_goal

only_goal

only_gap

near_initial

near_goal

Reward
Shaping

(gap)

(a)

(b) (c)

SSET with Different Event Conditions

training epoch

e
p

is
o
d

e
 r

e
tu

rn

training epoch

Potential Shaping Functions

e
p

is
o
d

e
 r

e
tu

rn

Figure 11: SSET performance with ideal and less-ideal
event-conditions (a) Environment (b) Comparisons of differ-
ent potential-based reward shaping functions with uniform
ER to use as baselines (c) SSET’s performance of ideal and
less-ideal event conditions along with baselines (Uniform ER
with our best shaping function and with no shaping rewards).

SSET Performance with Badly Designed Event Condi-
tions Based on the formal definition of event conditions
(Def. 4), good events occur for states that are aligned along
optimal trajectories. We assume that such event conditions
are typically specified by domain experts or RL practitioners.
In this section, we evaluate the performance of SSET when
the event conditions are badly designed and compare them
against good conditions, along with other baselines such as
uniform ER with different potential reward-shaping functions.
Finally, we also study how performance varies with changes
to the default buffer’s sampling probability (η0).

Figure 11(a) shows results from the 2D grid world do-
main used in the reward shaping comparisons (Section 5.2).
The task is to get to the green square starting from an initial
bottom-left grid position, which requires navigating through
the gap between the rooms. We first compare several poten-
tial reward-shaping functions to pick a good baseline. Fig-
ure 11(b) shows the statistical means (computed from 30 ran-
domly seeded runs) of episodic-return during training using
different potential shaping functions: gap (+1 at the gap grid
position and zero everywhere), manhattan goal (normalized
manhattan distance between agent’s position and the goal),
manhattan gap (distance to the gap), right-wall (normalized
x-distance to the right boundary wall), left-wall (normalized
x-distance to the left boundary wall) and no-shaping. Not sur-
prisingly, the best performing shaping function is the ”gap”
function, which motivates the agent to get to the gap first.
Others perform either similar or subpar to the experiment
with no-shaping rewards.

Next, we compare SSET performance for different event
conditions and η0 = 0.7: two conditions (based on Def. 4)
that trigger at the goal and gap (gap goal), or goal alone
(only goal) with a sufficient history length (τ = 30). We se-
lected three less-ideal conditions that occur at positions near
the goal (near goal), at the gap (only gap) and near the initial
position (near initial), respectively. Figure 11(c) shows sta-

(a)
training epoch

Performance vs Default Buffer Sampling Weight (η0)

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Uniform ER

gap_goal

only_goal

only_gap

near_initial

near_goal

E
p
is

o
d
e
 R

e
tu

rn

training epoch

E
p
is

o
d
e
 R

e
tu

rn

0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Uniform ER

gap_goal

only_goal

only_gap

near_initial

near_goal

η0 = 0.9 η0 = 0.7

(b)

training epoch
0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Uniform ER

gap_goal

only_goal

only_gap

near_initial

near_goal

E
p
is

o
d
e
 R

e
tu

rn

η0 = 0.5

(c) training epoch
0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Uniform ER

gap_goal

only_goal

only_gap

near_initial

near_goal

E
p
is

o
d
e
 R

e
tu

rn

η0 = 0.3

(d)

training epoch
0 250 500 750 1000 1250 1500 1750 2000

50

40

30

20

10

0

Uniform ER

gap_goal

only_goal

only_gap

near_initial

near_goal

E
p
is

o
d
e
 R

e
tu

rn

η0 = 0.1

(e)

Figure 12: SSET performance vs default-buffer sampling
weight Statistical means of episodic-return from 30 randomly
seeded runs for different values of η0 and different event-
conditions. Experiments with good conditions (gap goal,
only goal) are least affected by the changes in η0. The ex-
periment with the mediocre condition (near goal) seems to
benefit from fine-tuning (best at 0.7), and the experiments
with bad conditions (near initial, only gap) suffer due to
under-sampling the default buffer.

tistical means of the corresponding experiments along with
the baselines of shaping (using the gap potential function)
and uniform ER with no shaping. The plot shows that there
is a significant improvement in learning efficiency for ex-
periments using the well defined events. The performance
of SSET of near goal event condition is not ideal, but still
much better than our best shaping baseline. Experiments with
only gap and near initial conditions perform similar to the
Uniform ER (no-shaping) as learning relies significantly on
transitions in the default buffer to bootstrap the value from
the rewarding states (goal reward in this case) to the states
where the events occur. Based on these results, we conclude
that both reward shaping and event tables show degradation
when using poorly chosen shaping functions or event con-
ditions but that even with poorly chosen events SSET often
outperforms reward shaping in this domain.

Next, we compare how SSET’s performance varies with
default-buffer’s sampling probability (Figure 12). The plots
show that experiments with good conditions are least affected
by the changes in η0. The experiment with the mediocre
condition (near goal) seems to benefit from fine-tuning (best
at 0.7), and the experiments with bad conditions suffer (η0 <
0.7) due to under-sampling the default buffer. For all practical

purposes, we recommend using higher values for η0 unless
the event conditions are carefully designed.

Recommendations on How to Pick Helpful Events
SSET requires domain knowledge to specify the table par-
titions and in this regard, is similar to designing potential
functions for shaping rewards. In large domains like Mu-
joco (Section 6) and GT (Section 7), there are already dense
reward structures built into the canonical versions of the en-
vironments, so it is difficult to add “yet another reward term”
in a meaningful way, but quite easy to use SSET and gain
benefits from domain knowledge. As for the ease of specify-
ing domain knowledge for SSET, we provide the following
guidelines:

• For users that don’t know their domain well, one can use
a “goal” event (see mini-grid experiments in Section 5) or
in a non-goal environment, use reward-threshold events
(see Mujoco experiments in Section 6) with a fairly long
history and reap benefits, even without understanding the
true subgoals.

• Even if the events are poorly chosen, the technique usually
does only as badly as uniform sampling (see Figures 10,
11, 12). The cases where it would actually hinder perfor-
mance are relatively pathological (i.e.. using the majority
of the buffer for incorrect events) and are easily avoid-
able in practice by setting reasonable caps on the event
table sizes (say no more than 30% total as indicated in
Figure 12 with table size experiments with bad events).

• Event Tables in SSET only require unsigned integer in-
dices pointing to the data that is already stored in the main
buffer. The additional memory footprint expands with the
number of tables times their sizes. The publicly available
Reverb (Cassirer et al. 2021) package already implements
this data structure efficiently.

Conflict Averse Gradient Descent with SSET Most
temporal-difference RL algorithms like Q-learning rely on
minimizing Bellman errors to local target estimates (Qk;
see Alg. 2). With an increasing number of outer iterations,
these local targets inch closer to the true global target Q∗,
thereby optimizing the RL objective asymptotically. During
early training, stratified mini-batch sampling from event ta-
bles could result in local gradients that may conflict with
each other. Using a standard average gradient descent ap-
proach, like SGD, might not be beneficial for uncommon
or difficult-to-learn events as the average gradient would
be skewed in the direction of the easier events. For exam-
ple, in the randomized multi-skill experiment presented in
Section 5.3 (Figure 5), the agent takes longer to learn the
open-door skill compared to the others. Previous multi-task
learning work has proposed several approaches mitigating
this problem, albeit in a multi-task pareto-optimal setting.
We explore using one such recently proposed multi-objective
optimization algorithm called Conflict-Averse Gradient de-
scent (CAGrad; (Liu et al. 2021)) to see if we could boost up
learning the difficult open-door skill.

Figure 13 shows statistical results using CAGrad with
SSET for different values for the algorithm hyper-parameter
c ∈ (0, 1), which controls the extent of minimizing conflicts

0 1000 2000 3000 4000 5000 6000 7000 8000

20

15

10

5

0

5

10

c=0

c=.25

c=.5

0 1000 2000 3000 4000 5000 6000 7000 8000
25

20

15

10

5

0

5

10

c=0

c=.25

c=.5

0 1000 2000 3000 4000 5000 6000 7000 8000

200

150

100

50

0

c=0

c=.25

c=.5

Open Door Skill
training epoch training epoch

Lava Skill Gap Skill

training epoch

E
p

is
o
d

e
 R

e
tu

rn

E
p

is
o
d

e
 R

e
tu

rn

E
p

is
o
d

e
 R

e
tu

rn

Figure 13: CAGrad with SSET Statistical results for differ-
ent values of CAGrad’s coefficient of regularization c ∈ [0, 1)
from 30 randomly seeded runs (mean-solid lines, stddev-
shaded regions). Higher values of c boost early performance
but result in a lower asymptote.

between losses within a local ball centered around the average
gradient. Therefore, setting c = 0 reduces to the standard av-
erage gradient descent. The plots illustrate that higher values
of c boost initial learning but result in lowering the asymp-
totic value. This can be explained by the fact that, as the
local value function targets Qk move closer to the global tar-
get Q∗, the conflicts between event-section losses minimize
making conflict optimization redundant. We hypothesize that
scheduling the parameter c from high values to zero during
the course of training would improve the sample complexity
and reach optimal asymptotic behavior. Exploring different
schedules is outside the scope of this paper and we leave this
for future work.

A.3 Appendix: Details of Gran Turismo
Experiments

The Gran Turismo™ (GT) Sport (https://www.gran-turismo.
com/us/) racing simulator for PlayStation™ 4 allows an agent
to race automobiles with highly realistic dynamics. The en-
vironment was recently used in (Wurman et al. 2022) to
demonstrate an RL system that learned to beat human e-
Sports champions on 3 different tracks in 4v4 (4 humans
and 4 RL agent) competitions. Our experiments investigate
smaller scenarios, either on sections of a track or without
opponents, in order to isolate the specific effects of Event
Tables . Almost all of the parameters of the representation
and learning algorithms are the same as those reported in
(Wurman et al. 2022) for the selected track / car combina-
tions. We provide a summary of these settings below and
note the small deviations for our particular scenarios.

The first experiment investigated is a slingshot passing
scenario on a 1700m. straightaway at the Circuit de la Sarthe

Figure 14: The section of the Sarthe track used for slingshot
passing and a screenshot from the experiment.

(Sarthe) track, using a Red Bull X2019 Competition race car,
similar to a Formula 1 vehicle (see Figure 14). Training is
performed in a one-on-one race against a built-in AI opponent
from the game with the RL agent always starting behind. To
succeed, the RL agent needs to use the opponent’s slipstream
to accelerate beyond its top speed in open air and use the
added momentum to “slingshot” past the opponent and hold
it off to the end of the section. The second setting is a time
trial competition on the full Lago Maggiore GP (Maggiore)
track using a Porsche 911 from the FIA GT3 class of cars
(see Figure 15). There the experiment focuses on driving fast
lap times without going off course.

We used the same state features as the prior work in GT.
State features include information about the agent’s velocity,
acceleration, tire slip, most recent actions (steering, throttle,
and brake), position on the track, and the “course points”
outlining the shape the upcoming track. Indicator features
capture collisions with the walls or other cars as well as going
off course by more than two tires (the game’s definition of
leaving the track). A [0, 1] slipstream feature provided by
the game measures the draft from car(s) ahead is also passed
in as a state feature. Opponent cars were represented by
two lists, one for opponents ahead, and one for opponents
behind, with opponents masked out if they are more than
20 meters behind or 75 m. ahead. Each opponent in view

https://www.gran-turismo.com/us/
https://www.gran-turismo.com/us/

Figure 15: The Maggiore track used for Time Trial training
and a screenshot from the experiment.

was represented with their agent-centered relative position,
velocity, and acceleration. The agent controlled the car by
sending actions for the the steering wheel and a combined
throttle/brake dimension.

The previous work with Gran Turismo used different re-
ward functions on different tracks and different scenarios
(such as Time Trial racing and head-to-head competition).
We used the reward functions from their investigation that
best fit our scenarios. In our slingshot passing tests at the
Sarthe track, we used the reward components previously
used in 4v4 competitive racing. These components and their
weights are specified in Table 3 and included a reward for for-
ward progress, penalties for hitting the wall, and a penalty for
going off course that was linearly proportional to the agent’s
velocity. A passing reward provided reward for approaching
an opponent from behind or pulling away from ahead (and
penalized the opposites). For car collisions, three different
components were used to penalize different aspects of colli-
sions, including hitting cars from behind, at-fault collisions,
and a penalty for any collision at all. Because the Slingshot
experiment focused on a section without difficult curves we
did not use the “mistake learning” spin-out replays that prior
work used on the Sarthe track.

For the off-course experiments at Maggiore, we used the
reward components from previous work at that track but

Table 3: Reward components used in the two experiments in
the paper, slingshot passing and time trial training. The re-
ward weights are all the same as (Wurman et al. 2022)’s
results but the car collision and passing components are
dropped in the time trial scenario.

Reward weight in weight in
Component slingshot (Sarthe) off-course TT (Maggiore)

Progress 1 1
Off-course2 0 0.01

Off-course-linear 5 0
wall penalty 0.1 0.1

tire slip (per tire) 0 0.25
passing bonus 0.5 0

car collision (any) 4 0
car collision (rear) 0.1 0

car collision (unsportsmanlike) 5 0

dropped the reward terms pertaining to other cars (such as
collision or passing). These components include a wheel-slip
penalty and an off-course penalty based on the square of the
agent’s velocity, which replaces the linear off-course penalty
from Sarthe.

The base RL algorithm and all of its parameters were kept
the same as Wurman et al.’s experiments. The base RL algo-
rithm was Quantile Regression Soft Actor Critic (QR-SAC),
a version of SAC where the critic networks represent the
quantiles of the value function rather than just their mean.
The neural networks used for value function and policy net-
works were all feed-forward networks with 2048 ReLU units
in each of 4 hidden layers. Mini-batches of size 1024 were
used with 6000 mini-batches per epoch. These samples were
pulled from an ERB with total capacity (

∑
κi) of 2.5 mil-

lion (slingshot test on a 1.7 kilometer segment) or 10 million
(time trial test on a nearly 6 kilometer track). Each table was
blocked from sampling until it had at least 1024 experiences
in the time trial test or 5000 experience tuples in the sling-
shot test (avoiding over-fitting). The Adam optimizer was
used to optimize the weights with learning rates of 5× 10−5

for the Q-networks and 2.5 × 10−5 for the policy network.
A discount factor of 0.9896 was used and the SAC entropy
temperature controlling exploration was 0.01. Dropout (0.1)
was used when learning the policy network.

Following the hardware setup from the prior work, both
of our experiments used 21 PlayStations in parallel during
training with 1 of those PlayStations typically devoted to
evaluations. In the slingshot experiments on a small segment
of the track, each PlayStation had only one agent racing
against an opponent. The competitor in this scenario was the
game’s own built-in AI with randomization controlling the
spacing of the agents (uniformly drawn in [10, 40] meters)
and lateral spacing. The learning agent always starting be-
hind the opponent. To provide extra diversity, the Balance
of Power on the opponent, that is its horsepower and weight,
were randomly increased or decreased up to 25% in each
training episode. Training episodes were capped at 60 sec-
onds although less than 25 seconds were usually sufficient to
complete the section (also ending the training episode).

For the time-trial training scenario at Maggiore, no op-
ponents were needed but we utilized the parallel collection
strategy from (Fuchs et al. 2021; Wurman et al. 2022) to

0 100 200 300 400 500
epoch

0

20

40

60

80

cu
m

ul
at

iv
e

fir
st

 p
la

ce
 fi

ni
sh

es
Cumulative First Place Finishes [Threshold 0.1]

SSET(1)
SSET(2)
SSET(3)
SSET(4)
SSET(5)
Uni(1)
Uni(2)
Uni(3)
Uni(4)
Uni(5)

0 5 10 15 20 25
winning margin (meters)

Uni(5)
Uni(4)
Uni(3)
Uni(2)
Uni(1)

SSET(5)
SSET(4)
SSET(3)
SSET(2)
SSET(1)

ru
n(

re
pl

ica
)

Avg. winning margin (w/o losses)
 in last 100 epochs [Threshold 0.1]

Figure 16: Left: Cumulative wins evaluated every 5 epochs in
the slingshot passing test with a threshold of 0.1 (almost any
slipstream effect). Uniform sampling shows high variance
while SSET with a slipstream (0.1) event and a “won” event
has better variance but overall performance is not as good
as the results in the main text with a 0.7 threshold. Right:
Average (and std dev) of winning margins (excluding losses)
in the last 100 epochs for each run.

spawn 20 different agents uniformly around the track and
collect data from each of these, yielding roughly 400 expe-
riences per time step. Training episodes in these scenarios
lasted 150 seconds. Notice that in both experiments there is
only one training scenario with some minor randomization on
exact locations, so we did not need to employ a task sampling
scheme like the one needed to master the full racing scenario.

Using the same setup as prior work, agents on the PlaySta-
tions were controlled by rollout workers using two virtual
CPUs and 3.3 GB of memory at a frequency of 10Hz. Poli-
cies were sent from the trainer to the rollout workers at the
beginning of each training episode and kept static until the
next episode. Actions and observations were sent between
the rollout worker and the PlayStation through a restricted
API . Experience was periodically streamed back to a trainer
and stored in an ERB implemented via Reverb (Cassirer et al.
2021). Training was conducted using one NVIDIA V100 or
half of an NVIDIA A100, ∼8 virtual CPUs and 55 GB of
RAM.

A.4 Additional Slingshot Passing Experiments
As mentioned in Section 7, we experimented with different
thresholds on the “slipstream” event to test the sensitivity of
SSET to different event specifications. Figure 16 provides
results in cases where the slipstream event was triggered by
values greater than 0.1, which occurs very commonly when
there is an opponent car ahead of the agent within a 60 meter
range. Under these conditions, the event is not as informa-
tive as the > 0.7 event used in Section 7. Figure 16 shows
that under these conditions, SSET still has better average
performance and less variance than uniform sampling, but its
performance is not as good as the results in Figure 7.

Figure 17 illustrates results when a value greater than 0.9
was needed to trigger the event. This event requires signifi-
cant exploration to trigger the event early in learning, since
the agent must be very close to the car ahead to achieve such a
value. Under these conditions, the variance of SSET increases
significantly as the time it takes for the events to aid in learn-
ing is highly dependent on early exploration. However, SSET
’s variance is still lower than the uniform sampling approach

0 100 200 300 400 500
epoch

0

20

40

60

80

cu
m

ul
at

iv
e

fir
st

 p
la

ce
 fi

ni
sh

es

Cumulative First Place Finishes [Threshold 0.9]
SSET(1)
SSET(2)
SSET(3)
SSET(4)
SSET(5)
Uni(1)
Uni(2)
Uni(3)
Uni(4)
Uni(5)

0 5 10 15 20 25
winning margin (meters)

Uni(5)
Uni(4)
Uni(3)
Uni(2)
Uni(1)

SSET(5)
SSET(4)
SSET(3)
SSET(2)
SSET(1)

ru
n(

re
pl

ica
)

Avg. winning margin (w/o losses)
 in last 100 epochs [Threshold 0.9]

Figure 17: Left: Cumulative wins evaluated every 5 epochs
in the slingshot passing test with a threshold of 0.9 (only
counting slipstream from a very close opponent). In this case
the difficulty of finding states with > 0.9 slipstream leads to
higher variance, but not as high as uniform sampling. Right:
Average (and std dev) of winning margins (excluding losses)
in the last 100 epochs for each run.

and SSET tends to win earlier and by a slightly larger margin.
Overall these results indicate that SSET is robust to events

that happen frequently or (at the other extreme) are hard to
find in early learning. SSET fares no worse than uniform
sampling in these cases, though not as well as when using
better chosen events.

	1 Introduction
	2 Terminology
	3 Related Work
	4 Stratified Sampling from Event Tables
	5 MiniGrid Experiments
	5.1 Proof of Concept: Three Room Grid World
	5.2 Comparison with Shaping Rewards
	5.3 Obstacle Course and Randomized Skill Environment

	6 Lunar Lander and Mujoco Experiments
	7 Simulated Car Racing Experiments
	7.1 Learning the ``Slingshot'' Pass
	7.2 Remembering to Stay On Course

	8 Conclusions and Future Work
	A Appendix
	A.1 Theoretical Analysis
	A.2 Appendix: Details of MiniGrid Experiments
	A.3 Appendix: Details of Gran Turismo Experiments
	A.4 Additional Slingshot Passing Experiments

