
1

Machine Learning Capabilities of a Simulated
Cerebellum

Matthew Hausknecht, Wen-Ke Li, Michael Mauk, and Peter Stone

F

Abstract—This article describes the learning and control capabilities
of a biologically constrained bottom-up model of the mammalian cere-
bellum. Results are presented from six tasks - eyelid conditioning,
pendulum balancing, PID control, robot balancing, pattern recognition,
and MNIST handwritten digit recognition. These tasks span several
paradigms of machine learning including supervised learning, reinforce-
ment learning, control, and pattern recognition. Results over these six
domains indicate that cerebellar simulation is capable of robustly iden-
tifying static input patterns even when randomized across the sensory
apparatus. This capability allows the simulated cerebellum to perform
several different supervised learning and control tasks. On the other
hand, reinforcement learning and temporal pattern recognition both
prove problematic due to the delayed nature of error signals and the
simulator’s inability to solve the credit assignment problem. These re-
sults are consistent with previous findings which hypothesize that in the
human brain, the basal ganglia is responsible for reinforcement learning
while the cerebellum handles supervised learning.

Index Terms—Cerebellum, Inverted Pendulum Balancing (Cart-Pole),
PID Control, Cerebellar Pattern Recognition, Robot Balance, MNIST
Handwritten Digit Recognition

1 INTRODUCTION

Comprising only 10% of total brain volume but containing more
neurons than the rest of the brain put together, the cerebellum
contributes to coordination, precision, and accurate timing of
movements [1], [2], [3]. The cerebellum’s well characterized
synaptic organization and physiology make it a good candidate
for computational simulation. Additionally, tasks such as eyelid
conditioning and the vestibulo-ocular reflex are known to engage
the cerebellum directly and provide a source of data against which
cerebellum simulations can be validated and tuned.

This article applies a biologically constrained cerebellum
simulation to a variety of different types of machine learning
tasks including supervised learning, reinforcement learning, and
sequential pattern recognition. Conclusions are drawn about the
machine learning capabilities of the cerebellar model given its
performance on each different category of task.

Throughout this article, care is taken to differentiate between
conclusions specific to the cerebellum simulator and the actual
cerebellum. All experiments are performed in simulation, and all
conclusions are directly applicable to the cerebellum simulator.
In some cases, enough evidence of actual cerebellar function is

M. Hausknecht and P. Stone; Department of Computer Science, University of
Texas at Austin; {mhauskn,pstone}@cs.utexas.edu.
W. Li and M. Mauk; Center for Learning and Memory, University of Texas at
Austin; wenke.li@utexas.edu, mmauk@mail.clm.utexas.edu.

present to extend conclusions to the physical cerebellum. The
cerebellum simulator is a well tested but not perfect model of
the physical cerebellum and conclusions about the “cerebellum
simulator” apply only to the model and have not been validated
on the real cerebellum.

1.1 Related Work

The cerebellum simulator used in this article is based on the
Marr-Albus-Ito [4], [5], [6] theory of cerebellar function. Alter-
native theories of cerebellar function have been proposed such as
Wolpert’s theory that the cerebellum learns to replace reflexes with
a predictive controller using both forward and inverse controllers
[7], Kawato’s theory of internal models [8], Houk’s theory of the
cerebellum as an adjustable pattern generator [9], [10], and Llinás’
tensor geometrization theory [11], [12].

In several cases, Cerebellar simulations have been used in
the context of robotic control [13]. Specific applications include
cerebellar control of a robotic arm [14] and learning to time when
to release an actuator to throw a ball [15].

Kettner et al. [16] first introduced the idea of using synaptic
eligibility traces as a mechanism to bring the temporal gap be-
tween predictive signals and subsequent reflexive motor responses.
Building on this work, McKinstry et al. [17], [18] use cerebellar
models for predictive robot control tasks such as navigating a
curved path. In order to achieve predictive control, these models
employ an eligibility trace which increases eligibility for plas-
ticity for certain synapses after a fixed delay from the onset of
suprathreshold presynaptic activity. The limitation of this method
is the need for a fixed temporal delay to be specified for each task.
Experiments show that tasks are highly sensitive to this delay.
Eligibility traces were not used in this article due to the lack of
evidence that the cerebellum uses such learning mechanisms.

The idea of using a cerebellum simulator to balance an inverted
pendulum was described by Ruan et al in [19], in which a cerebel-
lar neuronal network worked in conjunction with a feedback (PD)
controller to balance a two-wheeled robot. The resulting system
proved stable and robust to abrupt changes to the load the robot
was carrying. The cerebellar network studied by [19] consisted of
only 128 cells, far fewer than in this article. Additionally, Ruan
uses cerebellar network to fine-tune motor commands generated
from the PD controller while this article uses the cerebellar
network to initiate and control all motor movement.

Yamazaki et al [20] used a gpu-enabled cerebellum simulator
containing 100,000 neurons to learn the correct time to swing a
bat to hit a baseball. While the demonstration is eye catching, this



2

task itself is identical to eyelid conditioning, a known cerebellar
benchmark task. A more ground breaking would be to incorporate
learning of not just when to swing, but where and how hard to
swing. The control problems outlined in this work all require more
sophisticated control paradigms.

1.2 Main Contributions
This article contributes an investigation of the machine learn-
ing capabilities of a simulated cerebellum, characterizing its
strengths and weaknesses along the dimensions of pattern recogni-
tion/supervised learning, control, and Reinforcement Learning. Of
these paradigms, the simulator is strongest on supervised learning
and weakest on Reinforcement Learning. To better understand this
weakness, this article contributes a novel analysis of the causative
factors underlying the cerebellum simulator’s shortcomings on
Reinforcement Learning tasks.

1.3 Organization
Section 2 describes the cerebellum simulator and previous ap-
plication to eyelid conditioning (Section 3). Sections 4-9 extend
the simulator to novel tasks, respectively: inverted pendulum
balancing, PID control, robot balancing, static pattern recogni-
tion, temporal pattern recognition, and MNIST handwritten digit
recognition. Task-specific results and analysis are presented within
each section. Discussion is presented in Section 10. Section 11
examines future work and concludes.

2 MATERIALS AND METHODS

Broadly, this section describes the organization of the human cere-
bellum and the simulator used to capture its essential computations
and learning rules. The descriptions remain at a high level, but
a curious reader may find the specific equations and parameters
underlying the simulation in the Appendices.

2.1 Cerebellum Synaptic Organization
The cerebellum comprises a network of cells with known sites
and rules for plasticity, numerical ratios, convergence/divergence
ratios, and geometry of projections [21], [22], [23]. It contains
an enormous number of neurons but a limited number of neuron
types with a known connectivity (Figure 1).

Fig. 1: Connectivity and scale of the simulated cerebellum. Arrows
and circles respectively denote excitatory and inhibitory synaptic
connections. The number of simulated cells in each region is
annotated. Stars denote sites of synaptic plasticity.

The mossy fibers serve as a bridge for information to flow
into the cerebellum and carry information about the state of the
world. Similarly, error or teaching signals originate in the Inferior
Olive and are transmitted via Climbing Fibers. These errors signal

the need for changes in synaptic plasticity and ultimately changes
in behavior. Behavioral changes are manifested in nucleus cell
outputs which form the basis of muscle control. Comprising half
the total neurons in the human brain [3], granule cells also play a
key role cerebellar learning.

The cerebellum learns by updating synaptic strengths of neu-
rons according to two known pathways: In the first pathway, mossy
fibers increase output responses via direct excitatory connections
onto the deep nuclei. In the second pathway, the granule to Purk-
inje excitatory synapses are modified according to the climbing
fiber inputs such that the synapses active shortly prior to the
climbing fiber input decrease weight, which causes the Purkinje
cells to reduce their activity the next time the same input is en-
countered. The decrease in Purkinje cell activity then induces the
mossy fiber to nucleus excitatory synapses to increase in weight,
thereby causing the nucleus cells to become more responsive to
the same mossy fiber inputs [24]. Synaptic modification at these
two sites (denoted by stars in Figure 1) forms the basis of feed
forward prediction, believed to underlie the cerebellum’s ability
to coordinate and fine-tune motor responses [25].

The cerebellum may also be understood as an artificial neural
network which receives a vector of input and a scalar error signal
at each timestep and produces an output vector of nucleus cell
firings. It is better described as a recurrent neural network due to
the directed cycles of between the granule-golgi, Purkinje-basket,
and olive-Purkinje-nucleus cells. These cycles feature inhibitory
as well as excitatory connections and allow the network to exhibit
dynamic temporal behavior. The learned parameters of the net-
work are the synaptic weights between granule and Purkinje cells
as well as the weights between mossy fibers and nucleus cells.
These parameters are updated every timestep through a process
similar to Hebbian learning. The next section describes the process
of computationally simulating the activity of the cerebellum.

2.2 Cerebellum Simulator

Computer modeling of the cerebellum has been a subject of active
research for over a decade, with increasingly detailed models
continually being created [26], [27], [28], [17]. This article uses
a biologically-constrained, bottom-up cerebellar model based on
the model introduced by Buonomano and Mauk [29] and by
Medina and Mauk [27] based on the Marr-Albus-Ito [4], [5], [6]
theory of cerebellar function. Compared to [27], the cerebellum
simulation used in this article has nearly two order of magnitude
more granule cells, from 12,000 to 1,048,576. Consequently, the
divergence/convergence ratios more closely approximate those
observed in the real cerebellum. The sheer number of cells in
the human cerebellum still dwarfs the simulation by more than
four orders of magnitude.

The simulator uses Nvidia graphics processing units (GPUs)
to parallelize computation of granule cell firings. Speedups from
traditional parallel programming approaches such as OpenMP
were inadequate due to the high memory bandwidth required to
compute firings, roughly 128 GB/s for the simulation to run at real
time speed. However, since calculating granule cell activities in-
volves applying identical equations to each cell, vector processors
like GPUs are particularly well-suited for such tasks.

Compared to other cerebellum models, this model has three
distinct advantages: 1) Instead of modeling high-level cerebellar
learning [15], each cellular region is directly modeled after the
observed physiology and connectivity of the actual cerebellum. 2)



3

The simulator has been validated against and shown to replicate
animal behavior data collected on Eyelid Conditioning. 3) This
simulator is an order of magnitude larger than prior models
(neurons in prior models: [13]:1, [19]:6, [18]:1101, [14]:1500,
[16]:6000, [20]:100,000) Experiments show that larger models
increase fit to observed animal data for certain CS-US intervals
[30], indicating that increasing model complexity pays off in
increased representational power.

All experiments in this article use this cerebellum simulator
with the same number of cells (1,051,308), the same connectivity
(Figure 1), and the same learning rules. The equations and updates
required to simulated learning are given in the Appendices.

3 BACKGROUND: EYELID CONDITIONING

The quality of a neuroscience model is contingent upon its ability
to recreate and ultimately predict experimental data. This section
describes eyelid conditioning, the original task against which this
simulator was tuned and validated. Eyelid conditioning is not a
contribution of this paper but illustrates principles of cerebellar
learning which will be leveraged throughout the article.

Eyelid conditioning is a form of classical conditioning known
to have direct ties with the cerebellum [31]. The procedure in-
volves pairing a sensory stimulus (the conditioned stimulus (CS))
with an eyeblink-eliciting unconditioned stimulus (US), typically
an air puff directed at the eye or peri-orbital electrical stimulation.
Untrained animals initially produce a reflexive, unconditioned
response (UR) (e.g. blink or extension of nictitating membrane)
that follows US onset. After many CS-US pairings, an association
is formed such that a learned eyelid response, or conditioned
response (CR), occurs and precedes US onset. These conditioned
responses are not permanent and in a phenomenon known as
extinction, learned condition responses subsequently subside if a
conditioned animal is presented with the CS unpaired with the US.
When paired presentations are reintroduced following extinction,
CRs reappear far more quickly than they were initially learned, a
phenomenon known as savings.

Eyelid conditioning experiments were used to evaluate and
tune the cerebellum simulation by providing CS-like and US-like
inputs over mossy fibers and climbing fibers respectively while
ensuring that the simulator’s learning of conditioned responses
reflected data collected from test subjects. Thus, the rich repertoire
of well-characterized behavioral properties of eyelid conditioning
were leveraged as a stringent test of the simulation accuracy.

For example, the CS-US interval, or the amount of delay
between the incidence of the CS and the following US, greatly
influences a rabbits ability to learn conditioned responses. CS-
US intervals shorter than 100ms as well as intervals longer than
1500ms were found to preclude learning. Previously, Medina
and Mauk described a cerebellum simulator capable of learning
conditioned responses for a variety of CS-US intervals [27]. In
most cases the cerebellar simulation described in this article
mirrors their results. However, for the 1000ms CS-US interval
case, consistent with rabbit data, the current simulation, unlike the
previous one, successfully learns conditioned responses [30].

Ultimately, the quality of a simulation depends not only on its
ability to recreate experimental data upon which it has been tuned,
but on its ability to handle novel tasks and make biologically rel-
evant predictions. A main contribution of this article is expanding
the validation of the simulator on new control tasks. In the next
section, the simulator is applied, without further tuning of internal
parameters, to the inverted pole balancing task.

4 POLE BALANCING

Pole-balancing experiments extend previous work [30] and present
novel analysis and results. Inverted pendulum balancing is a well-
known control benchmark [32], [33] that involves a pole affixed to
a cart via a joint, forming an inherently unstable system in which
the pole mass is located above the pivot point. Active balance of
the pendulum is achieved by applying force to the cart – resulting
in horizontal movement of the pivot point and angular rotation of
the pole. The objective is to balance the pendulum for as long as
possible. Unlike eyelid conditioning which requires only a single
force (closure of the eyelid) in response to a single input (auditory
tone), inverted pendulum balancing requires the coordination of
multiple forces in response to multiple sensory inputs. Despite
the added complexity, inverted pendulum balancing is particularly
suited for cerebellar learning because it involves reactive balance
and predictive control.

4.1 Cerebellum-Cartpole Interface

Though the cerebellum simulator models in detail what goes on
inside the cerebellum, it does not specify the interfaces between
the cerebellum and the environment and indeed the nature of such
an interface is unknown. This section describes the mechanisms
interfacing the cerebellum simulation to the external world. Spe-
cific focus is placed on conveying state and error information to the
cerebellum simulator and interpreting the cerebellar firing rates as
actions applicable to the inverted pendulum domain. The overall
architecture of this interface is depicted in Figure 2.

Fig. 2: Cerebellum-Cartpole Interface: the environment transmits
state and error signals to the mossy fibers and inferior olivary
nuclei. In return, the cerebellum simulator provides real-valued
output from two microzones which is applied to the cart as force
in opposite directions. Arrows and circles respectively denote
excitatory and inhibitory connections.

In each simulated timestep, the cerebellum simulator receives
a description of the current state of the system, performs an
action, and receives information about the resulting state and
reward. This cycle repeats until the trial has terminated – either
by the pole falling or remaining balanced for 1 million simulated
timesteps (approximately 16 minutes of real time). Architectural
modifications known as microzones were required to achieve
multiple output forces necessary for inverted pendulum balancing.
Anatomically, the cerebellar cortex is believed to be divided into
functionally distinct regions called microzones, each of which
controls a specific muscle group [34]. Because of the regular
patterns of connectivity within each microzone, it is thought
that different microzones exhibit similar learning mechanisms and
differ only in their control of different muscle groups. As Figure 2
indicates, each microzone contains a full set of Purkinje, nucleus,



4

and inferior olive cells, but shares common input cells such as
mossy fibers and granule cells. Multiple microzones are essential
for control tasks with more than one degree of freedom. In pole
balancing the simulator uses two microzones to push the cart in
each of the two possible directions along the track.

State Encoding: As input, mossy fibers process state signals
received from the cartpole domain. State signals were chosen to
include the angle θ and angular velocity θ̇ of the pole as well
as the location x and velocity ẋ of the cart on the track. Of the
1024 mossy fibers (MFs) present in the cerebellum simulation,
30 random non-contiguous mossy fibers were allocated to encode
each of the four state variables. A Gaussian distribution was
created for each of the 30 MFs with means µ distributed evenly
over the range of values associated with the corresponding state
variable. Given the current value of the state variable x, the
boolean firing of each MFi is sampled from 1

σi
√
2π
e
− 1

2 (
x−µi
σi

)2

where µi and σi =
√
.2 · range(x) are the mean and standard

deviation of MFi’s normal distribution.
Error Encoding: Error signals enter the cerebellum simula-

tion through the inferior olivary cells located in each of the two
microzones. Typically in the inverted pendulum domain negative
reinforcement is delivered to the agent only when the pole falls
or the cart leaves the track [32]. However, due to issues with
extinction, error was probabilistically delivered at each timestep
prior to the pole falling or the cart leaving the track. The following
equations specify the probability of the right-pushing microzone
(Fig 2) receiving an error on a given timestep.1 These equations
are symmetric for the left microzone.

p(Errθ) =

{
0 if θ < 0 and θ̇ < 0

min(abs(θ), .01) otherwise
(1)

p(Errx) =

{
0 if θ < 0 and x < 0

min(abs(x), .01) otherwise
(2)

p(Errẋ) =

{
0 if ẋ < 0

min(abs(ẋ), .01) otherwise
(3)

Equations 1-3 are sampled independently and an error is delivered
to the microzone if any of the three triggers. However, Micro-
zones detect only the presence or absence of error and cannot
distinguish between the different underlying causes of the error:
Errθ, Errx, Errẋ (respectively pole angle, cart position, cart
velocity errors). Thus error signals are ambiguous in nature.

Output Encoding: As output, the eight deep nuclei of each
microzone encode forces applied to the cart in opposite directions.
Each force is extracted as the average firing rate of the 8 deep
nuclei, yielding a [0,1] continuous value. The force is then scaled
and applied to the cart.

4.2 Pole Balancing Experiments and Results
Cerebellar pole balancing performance was compared against two
other agents: a naı̈ve agent and a Q-Learning agent. The naı̈ve
agent applies a force to the right when the pole angle is larger
than zero and a force to the left when the pole angle is less
than zero. This controller is sufficient to keep the pole balanced
but eventually fails due to the limited track. Next, Q-Learning

1. θ and θ̇ correspond to the pole angle and velocity (radians) while x and
ẋ are the cart position and velocity. {θ, θ̇, x, ẋ} = 0 corresponds to a cart
centered on the track with pole upright. Negative values indicate the pole
falling left or the cart on the left side of the track.

was chosen as a comparison point because of its popularity and
simplicity, despite the fact that it is by no means a state of the
art reinforcement learning algorithm. The Q-Learning agent used
a state encoding as similar as possible to that of the cerebellum
simulator. Pole angle and velocity as well as cart position and
velocity were each encoded using a 10-tiled CMAC tile coding
scheme, originally proposed by Albus and motivated by the
cerebellum [35]. Additionally, error was delivered to Q-Learning
agent in the same manner following Equations 1-3. Each of the
parameters was experimentally tuned to maximize Q-Learning
performance, however the Q-Learning agent generally required
nearly a thousand trials before it was able to balance the pole for a
million cycles. Figure 3 compares the pole balancing performance
of cerebellar, naı̈ve, and Q-Learning agents. Surprisingly, the
cerebellum is able to learn highly successful policies within the
first five trials. After as few as eight trials, perfect performance is
achieved: the cart can both balance the pole and remain centered
on the track. As the next section discusses, this success results in
part from the regular error signals that are delivered while the pole
is falling or the cart is nearing an edge of the track.

1 2 3 4 5 6 7 8 9 10
Trial

0

200000

400000

600000

800000

1000000

T
im

e
A

lo
ft

(m
s
)

Naive

Cerebellum

Q-Learning

Fig. 3: The cerebellum simulator solves the inverted pendulum
task within eight episodes. Q-Learning eventually converged to
the correct solution after nearly a thousand episodes.

4.3 Necessity of Regular Error Signals

Unlearning occurs in the prolonged absence of regular error
signals and is characterized by diminished responses to previously
trained stimuli. There are two principle causes of unlearning:
forgetting and extinction. Forgetting is caused by the accumulated
synaptic weight drift that occurs continually when an organism is
not learning the task. Extinction is a deliberate type of unlearning
that occurs when a conditioned stimulus is presented but not
paired with an unconditioned stimulus (error signal). Spontaneous
climbing fiber activity allows the cerebellum to retain learned
responses in the absence of error signals. Extinction works by
suppressing this spontaneous climbing fiber activity.

Experiments throughout this article indicate that in order to
avoid unlearning, error signals need to be delivered regularly
throughout the course of a task. An example of this phenomenon
was observed when error was delivered only at the end of a trial.
In such a scenario, the cerebellum learns to balance the pole
after receiving several errors. Good balance is retained for around
15,000 timesteps but slowly, the learned responses diminish in



5

force, until the pole again falls. This cycle of learning and
falling followed by balance and unlearning continues indefinitely.
Unlearning is a fundamental aspect of eyelid conditioning and
cerebellar computation. Equation 9 allows unlearning through
the synaptic plasticity step size δgr− and δgr+ . While there are
currently no methods for performing inverted pendulum balancing
experiments on animals, the simulated results strongly predict that
such experiments would require regular errors signals.

5 PID CONTROL

As a general hypothesis, the cerebellum should be capable of
performing supervised control tasks featuring regular error signals.
The pole-balancing domain can be thought of as a specific instance
of a setpoint control task in which the desired setpoint is a vertical
pole angle. Setpoint control tasks are common in industrial and
robotic settings and are typically solved by proportional-integral-
derivative controllers (PID controllers) [36]. One example PID
control task is controlling the acceleration and deceleration of an
autonomous vehicle in order to reach a desired velocity. This task
is accomplished with two PID controllers - one controlling the
brakes and the other controlling the gas pedal.

The cerebellum was adapted to this task using the equations of
motion derived from a simulation of Austin Robot Technology’s
Autonomous vehicle [37]. The equations capture factors such as
rolling resistance and wind resistance.2

The task was formulated as an episodic Markov Decision
process in which each trial starts with a randomly generated
current and target velocity in the range of (0 − 11) meters-per-
second. Each trial lasts for 10-seconds of simulated time. The
agent’s reward at each simulated time step is −10 times the
absolute value of the difference between the target and current
velocity of the car.

The cerebellum simulator received a state signal indicating
the difference between the current and target velocity and had
to choose to either apply force to the accelerator or the brake.
Two Microzones are used to actuate these controls. Simultaneous
activation of the accelerator and brake was not allowed and if
both Microzones had non-zero output force, the Microzone with
the higher output force would activate the corresponding pedal
with a force equal to the magnitude of the difference between the
two forces. An error signal was given to either the acceleration or
brake Microzone with a probability proportional to the difference
between the current and target velocity.

5.1 PID Control Results

The performance of the cerebellum simulator was compared
against a model-based Reinforcement Learning algorithm called
TEXPLORE [38], [39] as well as two different PD controllers:
Tuned PD, a tuned controller which represents an upper bound
for performance, and Online PD, a controller in which parameters
were optimized using hill climbing.

Figure 4 shows the resulting performance. The cerebellum
simulator learns quickly and shows the best performance in the
first 400 episodes, but is eventually overtaken by the Online
PD controller. TEXPLORE’s performance improves, but is not
competitive within the provided training time.

2. The code for the domain can be viewed at https://code.google.com/
p/rl-texplore-ros-pkg/source/browse/trunk/stacks/reinforcement learning/rl
env/src/Env/RobotCarVel.cc.

0 200 400 600 800 1000 1200 1400
Episode

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

R
ew

ar
d

Tuned PD
Online PD
Cerebellum
TEXPLORE

Fig. 4: Simulated Autonomous Vehicle Control: Average reward,
in order of final performance, of a pre-tuned PD controller, online
PD controller, the cerebellum simulator, and TEXPLORE, on
the simulated autonomous vehicle acceleration and deceleration
control task. PD controller was pre-tuned automatically using hill
climbing. Results are averaged over ten trials and smoothed over
a 50 episode sliding window.

The performance difference between the cerebellum simulator
and the PD controller is largely due to the higher gains achieved
by the PD controller. Both the cerebellum simulator and the PD
controller eventually get close to the desired velocity, however the
PD controller is capable of doing so much faster and with greater
precision than the cerebellum simulator.

To illustrate this difference, a sample 2-target-point task was
created in which the vehicle was asked to accelerate to a velocity
of ten meters per second and after ten seconds, to decelerate
back to the original velocity of five meters per second. Figure
5 shows that both controllers approximately complete the task,
however the PD controller is much more precise in its application
of the accelerator and the brakes. These differences account for
the performance gap shown in Figure 4.

One possible advantage of using cerebellar control is not
having to manually tune parameters for a PID controller, which
could be valuable if the dynamics of the task at hand are unknown.
These experiments give credence to the idea that the cerebellum
is capable of performing PID related tasks to some degree of
precision. Broadly, control tasks featuring regular, supervised error
signals such as inverted pendulum balancing and acceleration
control are well-suited for simulated cerebellar learning.

6 DYNAMIC ROBOT BALANCE

In all of the domains discussed previously, error signals were
delivered at the exact point in time that more output force was
necessary. In pole balancing, error signals were delivered as the
pendulum was falling; in PID control, error signals were delivered
with frequency proportional to the difference between the current
and the target point. From a learning perspective these signals
correspond to supervisory signals as they tell the cerebellum
simulator if it needs to output more force at that moment (and
any future time in which similar state inputs are active).

A more complex form of error signal is found in reinforcement

https://code.google.com/p/rl- texplore- ros-pkg/source/browse/ trunk/stacks/reinforcement_learning/rl_env/src/Env/RobotCarVel.cc
https://code.google.com/p/rl- texplore- ros-pkg/source/browse/ trunk/stacks/reinforcement_learning/rl_env/src/Env/RobotCarVel.cc
https://code.google.com/p/rl- texplore- ros-pkg/source/browse/ trunk/stacks/reinforcement_learning/rl_env/src/Env/RobotCarVel.cc


6

0 5 10 15 20

Time (s)

5

6

7

8

9

10

V
el

oc
it

y
(m

/s
)

PD Controller
Cerebellum

Fig. 5: Sample performance of acceleration and braking: A hill-
climbing tuned PD controller is compared against the cerebellum
simulator in a task designed to test the acceleration and braking
capabilities of each algorithm. At time zero, a target velocity of
10m/s is given with a current velocity of 5m/s. At 10 seconds,
the target velocity 5m/s is given. The cerebellum simulator gently
approaches the target velocity yet still has oscillations. The PD
controller applies the maximum allowed braking and acceleration
to quickly reach the target speed. Small oscillations at the target
velocity can be seen. These oscillations are likely caused by the
lack of an integral term.

learning in which errors3 may occur after the point at which
more output force is required. This delay gives rise to the credit
assignment problem [40] in which a learning algorithm must
propagate the influence of delayed reinforcement back to the states
and actions which were responsible for that reinforcement.

This section presents a simulated dynamic robot balancing
task which uses delayed error signals and necessitates predictive
control. Dynamic robot balancing is an important and largely
unsolved challenge universally encountered by bi-pedal robots.
Since the human cerebellum is known to be involved in fine
motor tasks such as maintaining balance while walking [41], it
is reasonable to hypothesize that the cerebellum simulator should
be capable of performing this task. To foreshadow our results,
it was found that the cerebellum simulator has the ability to
predict delayed error signals but cannot correctly time its force
output to prevent them. These results support prior hypotheses
that the cerebellum specializes in supervised learning rather than
Reinforcement Learning [42].

6.1 Dynamic Balance Setup

The objective of this task is to maintain robot balance after the
application of sudden force. Simulated robots are modeled in
SimSpark4 after the humanoid Aldebaran Nao. Sudden force is
created by shooting a weighted soccer ball at the front of the robot.
In order to maintain balance, a single Microzone controls the
robot’s forward hip pitch - meaning that high cerebellar response
causes the robot to lean forward. Since impact of the ball always
comes from the front, the simulator must lean forward just before
the collision of with the ball, then lower its response to return the
hips to a neutral position. If the robot does not return to neutral

3. In general reinforcement learning features both positive and negative
feedback. In contrast, the cerebellum takes only a single type of feedback.

4. http://simspark.sourceforge.net/

hip angles quickly, the rocking motion resulting from the impact
of the ball causes a forward fall.

The task proceeds in phases: first, the robot is given two
seconds to prepare for the shot. After impact, the robot needs
to remain upright for three seconds to be considered stable. At
the end of the three seconds, the robot and ball are reset to their
original positions. Figure 6 shows the preparation and shot phases.

As input, the cerebellum simulator receives a timer which
counts down until the ball is fired. The timer is encoded using
contiguous mossy fiber input and allows the cerebellum simulator
to exactly predict the moment of impact. It is the only state input
necessary to learn this task.

Three error encodings were explored: Gyro Error is pro-
portional to the magnitude of robot’s internal gyroscope’s devi-
ation from upright. Accelerometer Error is proportional to the
magnitude of the robot’s acceleration in the backwards direction.
Manual Error is an undelayed, supervised error signal based on
the difference between the current hip angle and the hip angle of
a known solution. Gyro and Accelerometer error are delayed error
signals because it takes 250 milliseconds before they first detect
the impact of the ball. Figure 7a plots the probability of error from
each encoding as a function of time to impact.

It should be noted that this task is nearly identical to Eyelid
Conditioning (Section 3) except for one major factor: When using
the Gyro and Acceleromter encodings, cerebellar response must
precede the incidence of error by one second. For reference, in
Eyelid Conditioning, responses co-occur with errors.

6.2 Dynamic Balance Results
The performance of the cerebellum simulator at the dynamic
balancing task is shown in Table 1 and in video at http://youtu.
be/jClYGFzUntM. The manual error encoding yielded the best
cerebellar policy which learned to resist the force of impact 68%
of the time. The delayed error encodings were unable to learn
this task. The next sub-section analyzes why the delayed error
encodings proved incapable of maintaining dynamic balance.

Error Encoding Manual Gyro Accelerometer
Percentage No Fall 68% 0% 0%

Percentage Fallen Backwards 20.4% 94% 99.2%
Percentage Fallen Forwards 11.6% 6% .8%

TABLE 1: Robocup Dynamic Balance Results: Percentage of
outcomes for different error encodings over 250 trials. Each trial
could end with the robot staying balanced, the robot falling
forwards, or the robot falling backwards. The supervised error
encoding (Manual) far outperformed the delayed error encodings.

6.3 Granule Cell Analysis of Robot Balancing
The most prominent site of synaptic plasticity in the cerebellum
is the Granule to Purkinje cell synapses. By tracing the learned
weights of these synapses back to their Mossy Fiber inputs, it is
possible to infer the relationship between a given Mossy Fiber’s
activation and the resulting cerebellar output force. This section
introduces the Granule Weight Measure (GWM), a metric for
predicting cerebellar response to a stimuli. GWM offers insights
into the inability of simulation to maintain dynamic balance.

Each simulated Mossy Fiber connects to roughly two thousand
different granule cells which in turn synapse onto 32 Purkinje
cells. Mossy fibers connected to granule cells with large granule

http://simspark.sourceforge.net/
http://youtu.be/jClYGFzUntM
http://youtu.be/jClYGFzUntM


7

(a) Preparation (b) Shot (c) Impact

Fig. 6: Dynamic Robot Balance: The objective of this task is to maintain stability in the face of sudden impact force. The cerebellum
simulator controls the hip pitch of the robot, leaning forwards in preparation for impact and returning to upright after impact. A failure
to do either of these results in a fall. An augmented soccer ball with increased size and mass is used to impart sudden force.

→ Purkinje weights excite connected Purkinje Cells, which inhibit
nucleus cells, thus inhibiting cerebellar output. Conversely, Mossy
Fibers connected to granule cells with low granule → Purkinje
weights cause little Purkinje activity, little inhibition of Nucleus
Cell activity, and ultimately larger cerebellar output forces. By
tracing granule → Purkinje weights back to their Mossy Fiber
inputs, it is possible to approximately predict the cerebellar output
force resulting from the activation of each Mossy Fiber.

Specifically the Granule Weight Measure is defined for each
Mossy Fiber to be the sum of connected granule → Purkinje
weights minus the expected sum of connected granule→ Purkinje
weights. A positive GWM for a given Mossy Fiber indicates
that any state input which triggers that Mossy Fiber will exhibit
an inhibitory effect on cerebellar output force. Conversely, a
negative GWM shows that a given Mossy Fiber will increase
cerebellar output whenever active. Thus, it is possible to predict
the cerebellum simulator’s force output by examining the GWM
over the Mossy Fibers spanning a state feature.

Figure 7b depicts the GWM of the time to impact state variable
for different Robocup Error encodings. In the dynamic balance
task, 307 Mossy Fibers convey information about the number of
seconds until the impact of the ball (negative values represent
seconds after impact). Each of the 307 Mossy Fibers is maximally
activated at the corresponding value between -1.5 and 1.5 seconds
to impact. The GWM for that Mossy Fiber indicates how much
force the cerebellum simulator will output as a function of seconds
to impact. For example, using the Manual error encoding, the
GWM remains low 500 milliseconds before impact until 250
milliseconds after impact, meaning the cerebellar force output will
peak and the agent will lean forward during this interval.

As can be seen in Figure 7, high error probabilities are highly
correlated with low Granule Weight Measure values. However, the
Granule Weight Measure values are also shifted to the left by 100-
200 milliseconds. Thus whenever error is frequently delivered, the
cerebellum simulator learns to output high forces for the states
immediately preceding the error. This is a consequence of the
plasticity update in Equation 9. In this sense, the cerebellum
simulator has learned to predict the incidence of temporally
delayed error signals.

However, in order to succeed at this task, the cerebellum
simulator needs not only to predict the delayed error signals
but also to output high force at states preceding the error. In
other words, force response must be shifted to the earlier states
responsible for the fall. As Figure 8 shows, the cerebellum
simulator can anticipate future error signals but lacks flexibility
in the timing of its responses in order to prevent them. The dis-

tinction between supervised learning and reinforcement learning
parallels this point. Reinforcement learning tasks feature the credit
assignment problem in which the agent must learn to identify the
past states and actions responsible for delayed rewards. In this task
at least, the cerebellum fails to respond to the states responsible
for eventual error signals. Instead the cerebellum responds to the
same states in which error signals occur. This response is the
correct behavior in a supervised learning setting in which error
signals denote labels, but not in a Reinforcement Learning setting.
In future work, it may be possible to use eligibility traces [17],
[18] to shift force responses to earlier states.

∆T1

∆T2

Fig. 8: The cerebellum simulator has been shown to learn robust
responses over a wide variety of delays ∆T1 ranging from 250
milliseconds to 1.5 seconds, but is inflexible in changing the delay
∆T2 between force output and error signal. This learning window
makes the cerebellum simulator suitable for control tasks featuring
error signals that co-occur with high output forces. Tasks which
require force output more than 100 milliseconds prior to error
signal have proven difficult or impossible to learn, precluding most
typical reinforcement learning tasks.

7 STATIC PATTERN RECOGNITION

Unlike most supervised learners, the cerebellum is inherently
temporal by nature, meaning that rather than treating each example
as an independent problem, the cerebellum takes as input a
sequence of states (conveyed via Mossy Fiber activations) and has
an internal state that reflects more than just the latest state input.
As such it is best considered a Sequential Supervised Learner.
Other Sequential Supervised Learners include Hidden Markov



8

−1.5−1.0−0.50.00.51.01.5
seconds to impact

0.000

0.002

0.004

0.006

0.008

0.010

E
rr
o
r
P
ro
b
a
b
il
it
y

Manual

Gyro

Accel

(a) Error Probabilities

−1.5−1.0−0.50.00.51.01.5
seconds to impact

−400

−300

−200

−100

0

100

200

G
ra
n
u
le

W
e
ig
h
t
M
e
a
su

re

Manual

Gyro

Accel

1 52 103 154 205 256 307
Mossy Fiber

(b) Granule Weight Measure

Fig. 7: Granule Weight Analysis Shows the Effects of Delayed Error Signals: (a) Error probability as a function of time to impact.
The manual encoding delivers errors at and before impact while the gyro and accelerometer encodings deliver delayed errors, after
the impact is perceived. (b) The Granule Weight Measure (GWM) for the different Robocup error encodings. A lower/higher GWM
corresponds to increased/decreased cerebellar output force when the associated Mossy Fiber is active. For example, in all encodings,
Mossy Fiber 205 is active 0.5 seconds after impact (x=-0.5). The Gyro and Accel encodings have a highly negative GWM at this point,
meaning that the robot will lean forward strongly. The Manual encoding has a positive GWM at this point meaning that the robot will
lean backwards. To succeed at this task the cerebellum simulator must output high force at and directly before impact, and low force
at all other times. Of the four error encodings, only the Manual encoding is capable of maintaining dynamic balance. All others output
force too late or without sufficient strength. This failure is due to the delayed nature of Gyroscope, and Accelerometer error signals.
Lines were smoothed using a sliding window of size ten.

Models [43] and Conditional Random Fields [44]. This section
focuses on identifying the types of sequences and patterns the
cerebellum simulator is and is not capable of recognizing.

In general, the cerebellum’s ability to recognize a pattern of
state input is largely governed by the granule cells’ ability to mod-
ulate their firings as a function of temporal Mossy Fiber inputs.
The following experimental setup is used to test recognition of a
given function: the target function to be recognized is first encoded
as Mossy Fiber input and presented for 500 milliseconds. Next a
rest of 500 milliseconds is given, during which Mossy Fibers input
returns to baseline. Finally, a false pattern of input is presented for
500 milliseconds followed by a rest. During training time, the
target pattern is immediately followed by an error signal; the false
pattern is not. During testing time, no error signals are presented
for either the target or false pattern and the cerebellar output force
is recorded. If the simulator has learned to recognized a function,
it will present high output forces only when observing the target
function and low output force otherwise.

Figure 9 shows that the cerebellum simulator is capable of
recognizing all boolean functions over two input variables.5 In
each graph, the dark gray regions indicate high Mossy Fiber
activation as a function of time. Error signals, presented during
training time, are denoted by vertical red dashed lines that follow
the target pattern. Additionally, the average cerebellar output force
at test time is plotted in blue.

8 TEMPORAL PATTERN RECOGNITION

Temporal pattern recognition is the challenge of identifying and
responding to sequences of Mossy Fiber activations. In the pre-
vious section, the cerebellum simulator’s decision to output high

5. Symmetric functions are omitted (e.g. if the cerebellum simulator can
recognize stimulus (A∧!B) it will also recognize (B∧!A).)

force needed to be based only on the Mossy Fiber activations of
the current timestep. In contrast, in this section the cerebellum
simulator must learn to respond to the Mossy Fiber activations in
past timesteps as well as the current timestep. In machine learning
terms, the previous section tested pure supervised learning capa-
bilities while this section tests sequential supervised learning.

The experimental setup mirrors the previous section: at train-
ing time, the target pattern is presented followed by an error signal
and a rest. Next a false pattern is presented without error signal.
At test time, no error signals are presented and cerebellar output
force is recorded. Success is measured by the ability to respond
only to the target pattern and not to the false patterns.

Previously, Kalmbach et al. [45] demonstrated that the cere-
bellum is capable of learning temporal subtraction, a specific
type of temporal pattern. Figure 10 shows that the cerebellum
simulator used in this article successfully replicates the temporal
subtraction experiment. Beyond replicating previous work, two
additional temporal pattern recognition experiments are discussed
in this section.

The first experiment tests the ability of the cerebellum sim-
ulator to recognize the boolean function XOR (exclusive-or 9)
when no simultaneous Mossy Fiber activations are delivered in
the same timestep. (E.g. if Mossy Fiber groups A and B are
currently active, they are delivered in alternating timesteps - A
on even timesteps and B on odd.) Figure 11 shows that the
cerebellum simulator is still capable of learning this modified
XOR function. This result indicates that granule cells can respond
to Mossy Fiber inputs present on different timesteps. While this
success demonstrates that the cerebellum simulator can learn from
more than just the current timestep, it does not test longer-range
temporal dependencies.

The second temporal experiment tests the cerebellum simu-
lator’s ability to discern between two long-ranged temporal se-
quences of Mossy Fiber input. Figure 12 shows that the cerebellum



9

0 500 1000 1500 2000 2500 3000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

A

B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

0 500 1000 1500 2000 2500 3000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

A

B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

A AND B A OR B

0 500 1000 1500 2000 2500 3000 3500 4000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

A

B

0.0

0.2

0.4

0.6

0.8

1.0
A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

0 200 400 600 800 1000 1200 1400
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A not A

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

A NAND B NOT A / NOR

0 500 1000 1500 2000 2500 3000 3500 4000
Time (milliseconds)

0

50

100

150

200

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r A

B

A

B

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

0 500 1000 1500 2000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

A XOR B A

Fig. 9: Successful cerebellar learning of all two-variable Boolean functions. Blocks of contiguous high-frequency Mossy Fiber firing
are shown in gray. The left y-axis of each plot shows which Mossy Fibers are active in each block. The right y-axis shows the average
cerebellar output force in blue (forces were averaged over ten trials). Error signals are denoted by vertical red dashed lines. Learning is
considered successful in each case because highest cerebellar output forces correspond with the incidence of error signals.



10

simulator has trouble identifying the difference between these two
temporal patterns: high force output is manifested in response to
both patterns even though training delivered error signals only
following the first of the two patterns. This result suggests that the
cerebellum simulator may recognize inputs cumulatively through
time but not necessarily discriminatively.

From these results, the cerebellum simulator shows clear
ability to learn functions over inputs spanning more than a single
timestep. However, discriminating between patterns that differ
only in the order in which they are presented, proves more difficult.

0 5000 10000 15000 20000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

Fig. 10: The cerebellum simulator is capable of recreating the
subtraction experiment described by Kalmback et al. [45]. In this
experiment two overlapping tones are played. The shorter tone,
here “B” is played for 3000 milliseconds while the longer one “A”
is played for 3500 milliseconds. Error is delivered after the end
of the longer tone. Output forces show that the simulator outputs
highest force just before the error signal.

0 500 1000 1500 2000 2500 3000 3500 4000
Time (milliseconds)

0

50

100

150

200

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

A

B

A

¬ B

¬ A

¬ B

B

¬ A

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

Fig. 11: The cerebellum simulator learns the exclusive or function
when inputs are not delivered simultaneously. Dashed gray boxes
indicate that Mossy Fiber inputs were delivered in alternating
timesteps (e.g. A on even timesteps ¬B on odd). This result
indicates that granule cells can learn functions over maximally
interspersed, non-overlapping sequences of Mossy Fiber input.

9 MNIST HANDWRITTEN DIGIT RECOGNITION

Since the simulated cerebellum can recognize all two-variable
boolean functions (Section 7), it is natural to attempt a more

0 1000 2000 3000 4000 5000 6000 7000
Time (milliseconds)

0

50

100

150

200

250

M
o
ss
y
F
ib
e
r
N
u
m
b
e
r

B

A

C

A

B

C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra
g
e
C
e
re
b
e
ll
a
r
F
o
rc
e

Fig. 12: Discrimination between different temporal sequences of
state input: Two different sequences of Mossy Fiber activation,
B,A,C and A,B,C were presented during both training and
testing; only the former was followed by an error signal. Cerebel-
lar output shows high force response to both sequences of Mossy
Fiber input with slightly higher response to the correct sequence,
indicating that for at least these patterns of input, the cerebellum
simulator was not able to strongly distinguish the first from the
second.

challenging static pattern recognition task featuring supervised
errors such as handwritten digit recognition. The MNIST database
[46] contains size-normalized, center cropped 28 × 28 images of
handwritten digits ranging from zero to nine. The objective of this
task is to identify the intended digit given the handwritten version.

As input, the cerebellum simulator is given the intensity of
each pixel from the image. Thus 784 Mossy Fibers are allocated to
rate-encode pixel intensities. An additional 200 Mossy Fibers fire
at high frequency regardless of input. As before, all state-encoding
Mossy Fibers are randomized among the 2048 total Mossy Fibers.

Ten separate cerebellum simulators were trained, each with a
single Microzone intended to recognize a single digit. (Memory
limitations prevented a single simulator being trained with ten
Microzones.) During training, the simulator was presented with
an image for 500-milliseconds and allowed to rest for 500-
milliseconds. If the image contained the digit that the simulator
was being trained to identify, a single error was delivered to
the Microzone at the end of the 500-ms viewing period. The
simulator was trained for 1000 images, alternating between images
containing the target digit and images containing a random digit.

At test time, each of the ten trained simulators was sequentially
presented with the first 150 images of the test set, following the
same paradigm of 500-ms viewing followed by 500-ms rest. The
Microzone force 150-ms prior to the end of the viewing period for
each digit was recorded, and the digit associated with the simulator
maximizing force output at this time was taken as the overall
prediction. Figure 13 shows the force output of several Microzones
for the first ten MNIST test digits.

As Figure 14 indicates, the cerebellum achieved a MNIST
precision score of 80%. This accuracy increases to 91% when
considering the network’s top two predictions. The confusion ma-
trix indicates that the errors made by the network are qualitatively
reasonable. For reference, a single layer artificial neural network
achieved 88% precision on the same task [46] and requires
significantly less computation. Nevertheless, cerebellar learning
is evident and far better than random chance. This result adds



11

evidence of the ability of the simulator to perform tasks featuring
static pattern recognition with supervised error signals.

7 2 1 0 4 1 4 9 5 9
True Label

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
er
eb

el
la
r 
F
or
ce

Microzone 0
Microzone 1
Microzone 7
Microzone 9

Fig. 13: Microzone activations for the first ten digits of the MNIST
test set. From left to right, each cluster contains the activations of
the Microzones intended to recognize digits 0, 1, 7, 9. True labels
are given on the x-axis. Microzones forces are generally highest
for the digit they are meant to recognize. However, some confusion
may be seen in the high activations of Microzone 9 when seeing
fours and sevens. Intuitively, these mistakes are reasonable as
fours, nines, and sevens share common structure.

0 1 2 3 4 5 6 7 8 9

Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

0
2
4
6
8
10
12
14
16
18 Accuracy

Hit@1 0.80
Hit@2 0.91
Hit@3 0.95
Hit@4 0.97
Hit@5 0.99

Fig. 14: Left:MNIST confusion matrix indicates that the network
is highly successful at recognizing ones, fours, and sevens. The
largest missed predictions were fives and eights. These incorrect
predictions could result from Microzone-5 being generally less
forceful than Microzone-8. Right: MNIST Hit@k values indicate
if the correct label was predicted within the top-k guesses.

10 DISCUSSION

The previous sections explored two supervised control tasks:
inverted pendulum balancing and autonomous vehicle control,
two static pattern recognition tasks: boolean function and MNIST
digits recognition, one temporal pattern recognition task, and one
Reinforcement Learning task. Across all of these tasks, the same
cerebellum simulator was used with the same number of cells,
the same connectivity, and same learning rules, and the same
parameters. Robust learning was observed in every domain when
the cerebellum was provided with regularly occurring, supervised
error signals. The two notable weak points were 1) weak discrimi-
nation between temporal patterns and 2) the inability to learn from
delayed error signals. The former may highlight a limitation in
the types of information granule cells are capable of recognizing.
The latter stems from an inability of the simulated cerebellum to

modulate the delay between its response to a stimulus and the
incidence of an error signal (Figure 8). Even if the cerebellum
were capable of modulating its force response to solve the credit
assignment problem, any solution would result in it taking actions
to minimize the incidence of future error signals. Doing so would
only result in fewer error signals, which would lead to forgetting of
learned behavior (Section 4.3) and at best, a policy that oscillates
between correct and incorrect actions.

In general, the cerebellum simulator did not outperform tuned
machine learning algorithms such as the PD-controller for au-
tonomous vehicle control or the ANN for digit recognition.
However, it did outperform online learners like Q-Learning and
TEXPLORE. This trend was facilitated by the cerebellum simula-
tor’s ability to very quickly learn each new task - often reaching
competitive performance within a few tens of episodes. Such an
ability is crucial for humans who are faced with a diversity of
tasks and a limited amount of time to collect experience.

11 FUTURE WORK AND CONCLUSIONS

Combining the cerebellum simulator with other simulated brain
regions could yield a more complete and capable model. Of
particular interest is the basal ganglia, which is hypothesized to
perform reinforcement learning [42]. If the combination of these
two brain regions were able to handle delayed error signals, the
set of learnable tasks could be greatly expanded. Additionally,
the cerebral cortex is hypothesized to play a role in unsupervised
learning [47]. The combination of these brain regions would
encompass supervised, unsupervised, and reinforcement learning:
the three known categories of machine learning.

Another question worth exploring is how cerebellar learning
scales as a factor of the number of simulated cells. Eyelid
Conditioning experiments indicated that the million cells used
in this article improved fit with biological data compared to
smaller models [30]. Perhaps even better performance be achieved
by adding more cells. Unfortunately, changing the size of the
simulation requires a labor intensive re-tuning of parameters,
which has precluded exploration of different model sizes.

Can the cerebellum simulator be used as a function approx-
imator? Albus [5] introduced the Cerebellar Model Articulation
Controller (CMAC) function approximator which gave rise to tile
coding, a state discretization method used commonly in reinforce-
ment learning. However, the entire cerebellum could serve as a
function approximator and for a reinforcement learning agent.
Such a combination could ease the problems of temporal credit
assignment inherent in the cerebellum simulator.

This article applies a biologically-plausible bottom-up simula-
tion of the cerebellum to various control tasks. The simulation
itself contains over a million cells and real time performance
is achieved through GPU parallel processing. In previous work,
the simulator has been tested on the eyelid conditioning task and
found to successfully recreate animal data. This work further ex-
plores the learning capabilities and generality of the simulator by
applying to the tasks of inverted pendulum balancing, autonomous
vehicle control, robot balancing, static and sequential pattern
recognition, and MNIST handwritten digit recognition. Overall,
the cerebellum model is a supervised learner capable of handling
a variety of tasks without reconfiguration so long as the error
signals are regular and the state inputs do not require extended
temporal pattern recognition. On the other hand, Reinforcement
Learning proves problematic due to the delayed nature of error and



12

the simulator’s inability to solve the credit assignment problem.
The cause of this problem is the inflexibility of the simulator to
change the time delay between the incidence of the error signal
and its own force response. In order to address the limitations
of cerebellar learning, additional brain regions may need to be
integrated. Nevertheless, the simulation proves to be a general and
quick learner across many tasks explored in this article.

ACKNOWLEDGMENT

Special thanks to Patrick McAlpine for help with the 3D simulator.
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported in part
by grants from the National Science Foundation (CNS-1330072,
CNS-1305287), ONR (21C184-01), AFRL (FA8750-14-1-0070),
AFOSR (FA9550-14-1-0087), and Yujin Robot.

REFERENCES

[1] J. C. Eccles, M. Ito, and J. Szentgothai, “The mossy fiber input into
the cerebellar cortex and its inhibitory control by golgi cells,” in The
Cerebellum as a Neuronal Machine. Springer Berlin Heidelberg, 1967.

[2] W. T. Thach, H. P. Goodkin, and J. G. Keating, “The cerebellum and the
adaptive coordination of movement,” Annual Review of Neuroscience,
vol. 15, no. 1, pp. 403–442, 1992, pMID: 1575449.

[3] G. M. Shepherd, Ed., The Synaptic Organization of the Brain. Oxford:
Oxford University Press, 1990.

[4] D. Marr, “A theory of cerebellar cortex,” The Journal of Physiology, vol.
202, no. 2, pp. 437–470, Jun. 1969.

[5] J. S. Albus, “A theory of cerebellar function,” Mathematical Biosciences,
vol. 10, no. 1-2, pp. 25–61, Feb. 1971.

[6] M. Ito, “Long-term depression,” Annual Review of Neuroscience, vol. 12,
no. 1, pp. 85–102, 1989, pMID: 2648961.

[7] D. M. Wolpert, R. C. Miall, and M. Kawato, “Internal models in the
cerebellum,” Trends in Cognitive Sciences, vol. 2, no. 9, Sep. 1998.

[8] M. Kawato and H. Gomi, “The cerebellum and vor/okr learning models,”
Trends in Neurosciences, vol. 15, no. 11, pp. 445–453, 1992.

[9] J. C. Houk, “Cooperative control of limb movements by the motor cortex,
brainstem and cerebellum,” University of Massachusetts, Amherst, MA,
Tech. Rep. COINS TR 89-118, Dec. 1989.

[10] J. C. Houk, J. T. Buckingham, and A. G. Barto, “Models of the
cerebellum and motor learning,” Behavioral and Brain Sciences, vol. 19,
no. 3, pp. 368–383, 1996.

[11] A. Pellionisz and R. Llins, “Tensorial approach to the geometry of brain
function: Cerebellar coordination via a metric tensor,” Neuroscience,
vol. 5, no. 7, pp. 1125–1136, 1980.

[12] A. Pellionisz and R. Llinas, “Tensor network theory of the metaor-
ganization of functional geometries in the central nervous system,”
Neuroscience, vol. 2, no. 16, pp. 245–273, 1985.

[13] C. Hofstotter, M. Mintz, and P. F. M. J. Verschure, “The cerebellum in
action: A simulation and robotics study,” European Journal of Neuro-
science, vol. 7, pp. 1361–76, 2002.

[14] N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, and E. Ros, “Adaptive
cerebellar spiking model embedded in the control loop: Context switch-
ing and robustness against noise,” Int. J. Neural Syst, vol. 21, no. 5, pp.
385–401, 2011.

[15] C. Assad, S. Dastoor, S. Trujillo, and L. Xu, “Cerebellar dynamic state
estimation for a biomorphic robot arm,” in SMC. IEEE, 2005.

[16] R. E. Kettner, S. Mahamud, and A. G. Barto, “Prediction of complex
two-dimensional trajectories by a cerebellar model of smooth pursuit eye
movement.” Journal of Neurophysiology, vol. 77, p. 2115, 1997.

[17] J. L. McKinstry, G. M. Edelman, and J. L. Krichmar, “A cerebellar model
for predictive motor control tested in a brain-based device.” Proceedings
of the National Academy of Sciences of the United States of America,
vol. 103, no. 9, pp. 3387–3392, Feb. 2006.

[18] J. L. McKinstry, A. K. Seth, G. M. Edelman, and J. L. Krichmar,
“Embodied models of delayed neural responses: Spatiotemporal cate-
gorization and predictive motor control in brain based devices,” Neural
Networks, vol. 21, no. 4, pp. 553 – 561, 2008, robotics and Neuroscience.

[19] X. Ruan and J. Chen, “On-line nnac for a balancing two-wheeled robot
using feedback-error-learning on the neurophysiological mechanism.”
JCP, vol. 6, no. 3, pp. 489–496, 2011.

[20] T. Yamazaki and J. Igarashi, “Realtime cerebellum: A large-scale spiking
network model of the cerebellum that runs in realtime using a graphics
processing unit,” Neural Networks, vol. 47, pp. 103–111, 2013.

[21] J. C. Eccles, Ed., The cerebellum as a neuronal machine. Springer-
Verlag, 1967.

[22] M. Ito, Ed., The Cerebellum and Neural Control. Raven Pr, 1984.
[23] J. Voogd and M. Glickstein, “The anatomy of the cerebellum,” Trends in

Neurosciences, vol. 21, no. 9, pp. 370–375, 1998.
[24] M. D. Mauk and N. H. Donegan, “A model of pavlovian eyelid condi-

tioning based on the synaptic organization of the cerebellum.” Learning
and Memory, vol. 4, pp. 130–158, 1997.

[25] T. Ohyama, W. L. Nores, M. Murphy, and M. D. Mauk, “What the
cerebellum computes,” Trends in Neurosciences, vol. 26, 2003.

[26] J. F. Medina, K. S. Garcia, W. L. Nores, N. M. Taylor, and M. D. Mauk,
“Timing mechanisms in the cerebellum: testing predictions of a large-
scale computer simulation.” The Journal of neuroscience, vol. 20, no. 14,
pp. 5516–25, 2000.

[27] J. F. Medina and M. D. Mauk, “Computer simulation of cerebellar
information processing,” Nature Neuroscience, vol. 3, 2000.

[28] A. Pellionisz, R. Llinas, and D. H. Perkel, “A computer model of the
cerebellar cortex of the frog,” Neuroscience, vol. 2, pp. 19–36, 1977.

[29] D. V. Buonomano and M. D. Mauk, “Neural network model of the
cerebellum: temporal discrimination and the timing of motor responses,”
Neural Comput., vol. 6, pp. 38–55, January 1994.

[30] W.-K. Li, M. J. Hausknecht, P. Stone, and M. D. Mauk, “Using a million
cell simulation of the cerebellum: Network scaling and task generality,”
Neural Networks, vol. 47, pp. 95–102, November 2012.

[31] D. A. Mccormick and R. F. Thompson, “Cerebellum: essential involve-
ment in the classically conditioned eyelid response,” Science, vol. 223,
no. 4633, pp. 296–299, Jan. 1984.

[32] C. Anderson, “Learning to control an inverted pendulum using neural
networks,” Control Systems Magazine, IEEE, vol. 9, no. 3, apr 1989.

[33] A. G. Barto, R. S. Sutton, and C. W. Anderson, Neuronlike adaptive
elements that can solve difficult learning control problems. Piscataway,
NJ, USA: IEEE Press, 1990, pp. 81–93.

[34] G. T. Kenyon, “A model of long-term memory storage in the cerebellar
cortex: A possible role for plasticity at parallel fiber synapses onto
stellate/basket interneurons,” Proceedings of the National Academy of
Sciences USA, vol. 94, p. 1420014205, 1997.

[35] J. S. Albus, Brains, Behavior, and Robotics. Peterborough: BYTE
Books, 1981.

[36] K. H. Ang, G. C. Y. Chong, and Y. Li, “PID control system analysis,
design, and technology,” Control Systems Technology, Jul. 2005.

[37] P. Beeson, J. O’Quin, B. Gillan, T. Nimmagadda, M. Ristroph, D. Li, and
P. Stone, “Multiagent interactions in urban driving,” Journal of Physical
Agents, vol. 2, no. 1, pp. 15–30, March 2008, special issue on Multi-
Robot Systems.

[38] T. Hester and P. Stone, “TEXPLORE: real-time sample-efficient rein-
forcement learning for robots,” Machine Learning, vol. 90, no. 3, pp.
385–429, 2013.

[39] T. Hester, M. Quinlan, and P. Stone, “RTMBA: A real-time model-
based reinforcement learning architecture for robot control,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2012, pp. 85–90.

[40] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[41] C. Ghez and S. Fahn, “The cerebellum,” Principles of Neural Science,
vol. 2, 1985.

[42] K. Doya, “Complementary roles of basal ganglia and cerebellum in
learning and motor control,” Current Opinion in Neurobiology, vol. 10,
no. 6, pp. 732–739, 2000.

[43] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions
of finite state Markov chains,” Annals of Mathematical Statistics, vol. 37,
pp. 1554–1563, 1966.

[44] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proc.
18th International Conf. on Machine Learning. Morgan Kaufmann, San
Francisco, CA, 2001, pp. 282–289.

[45] B. E. Kalmbach, H. Voicu, T. Ohyama, and M. D. Mauk, “A subtraction
mechanism of temporal coding in cerebellum,” Journal of Neuroscience,
vol. 31, pp. 2025–2034, 2011.

[46] Y. L. L. Cun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[47] K. Doya, “What are the computations of the cerebellum the basal ganglia
and the cerebral cortex?” Neural Networks, vol. 12, no. 7-8, 1999.



13

[48] W. Li, “Timing in the Cerebellum: A Matter of Network Inhibition,”
Ph.D. dissertation, University of Texas Austin, May 2015.

APPENDIX A
SIMULATOR EQUATIONS AND PARAMETERS

This appendix highlights selected components of the simulated
cerebellum. A comprehensive treatment is given in [48]. Cellular
regions are abbreviated as follows: Mossy Fibers (MF), Golgi
Cells (GO), Granule Cells (GR), Parallel Fibers (PF), Stellate Cells
(SC), Basket Cells (BF), Purkinje Cells (PC), Inferior Olive (IO),
Nucleus Cells (NC), Climbing Fibers (CF).

A.1 Representation of Neurons
Simulated neurons are implemented using a single compartment
leaky integrate and fire representation [29], [27]. This neu-
ron model has the advantages of simplicity and computational
tractability, allowing over a million interconnected neurons to
be simulated in parallel. The leaky integrate and fire neuron
spikes when the membrane potential Vm exceeds a threshold h.
After firing, neuron’s threshold increases to hmax to emulate the
absolute and relative refractory periods. After these spike-initiated
increases, the threshold decays exponentially (hdecay) back to its
normal level hbase:

Spiking = Vm > ht (4)

ht =

{
hmax if Spiking
ht−1 − (ht−1 − hbase) · hdecay otherwise

(5)

Membrane potential Vm is calculated from synaptic current Isyn,
leak conductances El, and membrane capacitance C as follows:

dVm
dt

=
−gl · (Vm − El)−

∑synapses
n=0 Insyn(Vm, t)

C
(6)

The first term represents the contribution from the leak conduc-
tance to the change in membrane potential and the second term
sums over all different synapses contacting the postsynaptic cell.
These parameters are modeled on known physiological data for
each cell type and are provided in Table 2. After fine-tuning
each neuron type to match published physiological data, the
leaky integrate and fire model yields representations that are both
computationally efficient and accurate.

A.2 Simulation of Synaptic Potentials
Transmission of information between connected neurons is facili-
tated by the movement of charge through the synapse connecting
the neurons. This synaptic current is given by:

Isyn(Vm, t) = ḡsyn · gsyn(t) · (Vm(t)− Esyn) (7)

ḡsyn scales synaptic strength, Esyn is the synaptic reversal
potential, and gsyn(t) gives the time course of the underlying
conductance as expressed by:

dgsyn
dt

=

inputs∑
i=0

Si · wi · (1− gsyn)− gsynτsyn (8)

This summation steps through all presynaptic inputs. Si represents
a spike in the ith presynaptic input, wi is the synaptic weight of
the ith presynaptic input, and τsyn is the decay time constant
for the synaptic potential. Thus, synaptic currents were simulated
with an instantaneous rise and an exponential decay by summing

all inputs of a particular type into a single current that saturates at
1.0 and decays at the rate of τ . Specific values for τ were chosen
on the basis of the wealth of electrophysiological data that exists
for cerebellar synapses and are provided in Table 2.

A.3 Synaptic Plasticity
The cerebellum simulation models two sites of synaptic plasticity,
the synapses between the granule and Purkinje cells (GRi) and
the synapses between the mossy fibers and deep nuclei (MFi).
Plasticity at these two sites is calculated as follows:

∆wgri = δgr− GRiCF(100) + δgr+ GRi(1− CF(100)) (9)

∆wmfi = δmf− MFiΘPKJ
LTD (50) + δmf+ MFiΘPKJ

LTP (50) (10)

δgr− = −0.0027 and δgr+ = 0.0003 represent the magnitude of
the step decreases and increases in the synaptic weight. CF(100)
is 1 for the 100ms after a climbing fiber spike and 0 otherwise.
GRi is 1 whenever the ith granule cell has fired prior to CF(100)
window and 0 otherwise. In Equation 10 δmf− = −0.0000125

and δmf+ = 0.00003 are constants that represent the magnitude of
the step decreases and increases in the synaptic weight. MFi is 1
whenever the ith mossy fiber fires and 0 otherwise. ΘPKJ

LTD (50)
is 1 whenever the average Purkinje cell activity seen in the
preceding 50 msec by the postsynaptic nucleus cell increases over
a threshold value (∼80hz). Similarly, ΘPKJ

LTP (50) equals 0 except
when the average Purkinje cell activity falls below a threshold
value (∼40hz). Synaptic weights were restricted to the interval
[0,1] by preventing further changes in the same direction when
the synaptic weights reached 0 or 1. The parameters δgr− , δgr+ ,
δmf− , and δmf+ were all initially tuned to maximize fit with known
biological data for spontaneous activity of cerebellar neurons and
rate of learning in the eyelid conditioning task. On the inverted
pendulum domain δgr− and δgr+ were increased to −0.045, 0.005
respectively to speed up the learning rate.



14

h GO GR PF SC BC PC IO NC
hmax -10 -20 -48 0 10 -48 -61 5
hbase -33 -40 -60 -50 -50 -60 10 -40
hdecay 20 3 5 22 0 5 122 -72
El -70 -70 - -60 -70 -60 -60 -65
gl .02 .1 - .2 .2 .2 .15 .1
Esyn GR PC BC NC IO
MF 0 - - - -
GO -80 - - - -
PC - - -70 -80 -
SC - -80 - - -
BC - -80 - - -
NC - - - - -80
ḡsyn GO GR SC
MF .0049 .00374 -
GO .00784 .022 -
GR 8.75e-5 - -
PF - - .00132
τsyn GO GR PC SC BC NC
MF 4.5 55 - - - -
GO 25 25 - - - -
GR 4.5 - - - - -
PF - - 4.15 4.15 4.15 -
PC - - - - 5 4.15
SC - - 4.15 - - -
BC - - 5 - - -

TABLE 2: From top to bottom: synaptic threshold h-values, leak
conductances El and conductance scaling gl (Equations 6-5),
synaptic reversal potentials Esyn (Equation 7), synaptic gains
ḡsyn (Equation 7), and synaptic τ -values (Equation 8). Data is
row-major, e.g. τsynMF→GR = 55.


	Introduction
	Related Work
	Main Contributions
	Organization

	Materials and Methods
	Cerebellum Synaptic Organization
	Cerebellum Simulator

	Background: Eyelid Conditioning
	Pole Balancing
	Cerebellum-Cartpole Interface
	Pole Balancing Experiments and Results
	Necessity of Regular Error Signals

	PID Control
	PID Control Results

	Dynamic Robot Balance
	Dynamic Balance Setup
	Dynamic Balance Results
	Granule Cell Analysis of Robot Balancing

	Static Pattern Recognition
	Temporal Pattern Recognition
	MNIST Handwritten Digit Recognition
	Discussion
	Future Work and Conclusions
	References
	Appendix A: Simulator Equations and Parameters
	Representation of Neurons
	Simulation of Synaptic Potentials
	Synaptic Plasticity


