D-Shape combines reinforcement and

imitation learning for sample-efficient

learning from a single demonstration

with optimality guarantees.

D-Shape: Demonstration Shaped Reinforcement Learning via Goal-Conditioning

Caroline Wang¹, Garrett Warnell^{1, 2}, Peter Stone^{1,3}

¹ The University of Texas at Austin; ² Army Research Laboratory; ³ Sony AI Contact information: <u>caroline.l.wang@utexas.edu</u>; <u>garrett.a.warnell.civ@army.mi</u>; <u>pstone@cs.utexas.edu</u>

Overview

- Reinforcement learning (RL) discovers optimal behavior from a reward function but is sample inefficient
- Imitation learning (IL) learns behaviors from demonstration efficiently but usually requires multiple, optimal, state-action demonstrations
- Combining RL and IL is challenging due to conflicting objectives: cumulative task reward vs minimizing divergence from demonstration distribution
- D-Shape...
 - Only requires a single, suboptimal, **state-only** demonstration trajectory **Improves sample efficiency** over RL alone 0

Experimental Setting

- Goal-based *s x s* gridworld, $s \in [10, 20, 30]$, goal G
- Baselines [1, 2, 3] • Q-learning [1] • SBS [2]
 - RIDM [3]
 - \circ RL + Manhattan distance
- Demonstrations: varying degrees of suboptimality

[2] Brys et al., Reinforcement learning from demonstration through shaping, IJCAI 2015. [3] Pavse et al., RIDM: Reinforced inverse dynamics modelling for learning from a single observed demonstration, IROS 2020.

D-Shape Walkthrough

1. Key idea: shape exploration of reinforcement learner towards r_3^{task}, s_3 demonstration trajectory by treating demonstration states as goals. s_0

2. D-Shape learner's state space consists of the current state $-\pi(s_t)$ and next

demonstrator state.

- $\pi([s_t, s_t^e])$
- 3. Goal-reaching potential reward based on distance s_3 between learner's achieved F_2^{goal} r_2^{task}, s_2 s^e_3 state and demonstrator s_2^e π^* goal state. demo — $\tau \sim \pi^t$ $r_t^{goal} = r_t^{task} + F_t^{goal}$ $F_t^{goal}([s_t,g_t,[s_{t+1},g_{t+1}]])$ $\phi([s_t,g_t])=d(s_t,g_t)$ $=\gamma\phi([s_{t+1},g_{t+1}])-\phi([s_t,g_t])$

• Preserves the **optimal policy**

Background

- Potential-based reward shaping (PBRS) • A method to alter the reward function such that the optimal policy is preserved (policy invariance)
- Goal-conditioned RL (GCRL)
 - Given a goal-reaching task, objective is to learn a goal-conditioned policy that can reach any goal g drawn from a goal-set G
 - Reward function is sparse-indicator for goal

Preserving the Optimal Policy

• <u>Theorem</u>: An optimal goal-conditioned policy learned by D-Shape can be $f(\pi)$ optimally executed with

Figure 3. (Left) Optimal demonstration style. (Right) State visitation of D-Shape given optimal demonstration.

Hindsight relabelling: using 4. states along the F^{goal} learner's r_2^{task}, s_2 achieved trajectory as goals.

 s_0

M

demo —

 $au \sim \pi^t$.