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Honolulu, Hawaii, May 2007.Adapting Prie Preditions in TAC SCMDavid Pardoe and Peter StoneDepartment of Computer SienesThe University of Texas at Austin, Austin TX 78712, USAfdpardoe, pstoneg�s.utexas.eduAbstrat. In agent-based markets, adapting to the behavior of otheragents is often neessary for suess. When it is not possible to diretlymodel individual ompetitors, an agent may instead model and adapt tothe market onditions that result from ompetitor behavior. Suh an agentould still bene�t from reasoning about spei� ompetitor strategies byonsidering how various ombinations of these strategies would impat theonditions being modeled. We present an appliation of suh an approahto a spei� predition problem faed by the agent TaTex-06 in the Trad-ing Agent Competition's Supply Chain Management senario (TAC SCM).1 IntrodutionIn this paper, we present an adaptive approah used in the TAC SCM ompetitionthat is based on learning from simulations of various agent ombinations. Wedesribe a spei� predition problem faed by TaTex-06 (winner of the 2006ompetition), present the learning approah taken, and evaluate the e�etivenessof this approah through analysis of the ompetition results. We then exploremethods of improving preditions through ombining multiple soures of datareeting various ompetitor behaviors. Although this paper only desribes theappliation of these methods to the TAC SCM domain, the methods depend onlyon a need for some form of predition and the ability to simulate a variety ofpotential opponent strategies, neither of whih is unommon in the real world.The work desribed here represents the main improvements over our 2005 agent,desribed fully in [6℄.2 Learning and Adaptation in Agent-Based MarketsIn ompetitive multiagent systems, the ability to adapt to the behavior of otheragents an be the di�erene between suess and failure. Often, this adaptationtakes the form of opponent modeling [1℄ [2℄, in whih a model is learned for eahompeting agent that an be used to predit the ation the agent will take inany situation. In some systems, however, modeling agents diretly may not beappropriate, or even possible. Market senarios often �t this desription for anumber of reasons. For instane, an online seller might not interat with the sameustomer repeatedly, removing the inentive to model the individual ustomer'sbehavior. In large systems suh as stok markets, the ations of a single agent maynot be signi�ant enough to have a notieable e�et on the system. Finally, in amarket with limited transpareny, suh as one in whih transations are ondutedthrough sealed-bid autions, it may be impossible to diretly observe the ationsof other agents. In these situations, it may be neessary for an agent to observe



and learn about the aggregate e�et of all agents on the eonomy, rather thanthe behavior of spei� agents. Learning is redued to making preditions aboutproperties of the eonomy, suh as what a partiular prie will be. In e�et, theompeting agents beome part of the agent's environment.An agent using suh an approah may still be able to bene�t from reason-ing about the types of behavior that might be exhibited by ompeting agents.In hoosing an approah to adapting in the marketplae, an agent should takeinto onsideration the range of strategies that other agents might use and howthese strategies might a�et the properties of interest. In general, an agent shouldonsider the following questions:{ For whih properties of the eonomy do preditions need to be made?{ Whih of these properties are dependent on ompetitor strategies, and whihtend to remain the same regardless of ompetitors?{ What preditive models should be used when starting out in a new marketabout whih little information is available (i.e., what preditive models givethe best expeted performane aross a variety of ompetitor behaviors)?{ As more information beomes available, what form of adaptation should beused to improve preditions?One method of answering these questions, and the method that will be em-ployed in this paper, is to implement a number of potential ompetitor strategiesand run simulated markets using various ombinations of these strategies. Usingthe results, it is possible to observe how market onditions vary based on the mixof ompetitors and to identify adaptive strategies that are e�etive aross a rangeof possible senarios. In the next two setions, we introdue the spei� preditionproblem to whih we will apply this method.3 The TAC Supply Chain Management SenarioSupply hains have traditionally been reated through the interations of humanrepresentatives of the various ompanies involved. However, reent advanes inautonomous agent tehnologies have sparked an interest in automating the proessthrough the use of agents [3℄ [4℄. The Trading Agent Competition Supply ChainManagement (TAC SCM) senario provides a unique testbed for studying andprototyping suh agents. Though purely a simulated environment, TAC SCM isdesigned to apture a broad range of issues that ome up in real-world supplyhains, inluding limited supplies and manufaturing resoures, ompetition forprourement leading to ompliated prie strutures, ompetition for ustomerorders, storage osts, et. A partiularly appealing feature of TAC is that, unlikein real supply hains, strategies an be tested without risking large amounts ofmoney, yet unlike in many simulation environments, the other bidders are realpro�t-maximizing agents with inentive to perform well, rather than strawmanbenhmarks.In a TAC SCM game, six agents at as omputer manufaturers in a simulatedeonomy managed by a game server. The length of a game is 220 simulated days,



Fig. 1. The TAC SCM Senario [2℄

with eah day lasting 15seonds of real time. Thegame an be divided intothree parts: i) prouringomponents from suppli-ers, ii) selling omputersto ustomers, and iii) pro-dution and delivery, asillustrated in Figure 1.We desribe here only thesales task that is the fo-us of this paper, but fulldetails are available in theoÆial spei�ation dou-ment [5℄.Customers wishing to buy omputers send the agents requests for quotes(RFQs) onsisting of the type and quantity of omputer desired, the due date,a reserve prie indiating the maximum amount the ustomer is willing to payper omputer, and a penalty that must be paid for eah day the delivery is late.Agents respond to the RFQs by bidding in a �rst-prie prourement aution: theagent o�ering the lowest prie on eah RFQ wins the order. Agents are unableto see the pries o�ered by other agents or even the winning pries, but they doreeive a report eah day indiating the highest and lowest prie at whih eahtype of omputer sold on the previous day.The number of RFQs sent by ustomers eah day depends on the level ofustomer demand, whih utuates throughout the game. Demand is broken intothree segments, eah ontaining about one third of the 16 omputer types: high,mid, and low range. Eah range has its own level of demand. The total number ofRFQs per day ranges between roughly 80 and 320, all of whih an be bid uponby all six agents. It is possible for demand levels to hange rapidly, limiting theability of agents to plan for the future with on�dene.4 TaTex-06 and the Computer Prie Predition ProblemWe now give a brief overview of TaTex-06, and then introdue the problemaddressed in this paper: prediting the prie at whih eah type of omputer willsell in the future. More information on the design of the agent is available in [6℄.4.1 Agent OverviewIn TaTex-06, tasks are divided between a Supply Manager module and a DemandManager module. The Supply Manager handles all planning related to omponentinventories and purhases, and requires no information about omputer produ-tion exept for a projetion of future omponent use, whih is provided by theDemand Manager. The Demand Manager, in turn, handles all planning related toomputer sales and prodution. The only information about omponents required



by the Demand Manager is a projetion of the urrent inventory and future om-ponent deliveries, along with an estimated replaement ost for eah omponentused. This information is provided by the Supply Manager.The goal of the Demand Manager is to maximize the pro�ts from omputersales subjet to the information provided by the Supply Manager. To aomplishthis, the Demand Manager needs to be able to make preditions about the re-sults of its ations and the future of the eonomy. Two preditive models areused to make these preditions: a Demand Model that predits future ustomerdemand levels, and an O�er Aeptane Preditor that predits the probabilityof a partiular o�er winning an order from a ustomer, as desribed below.4.2 O�er Aeptane PreditorIn order to bid on ustomer RFQs, the Demand Manager needs to be able topredit the orders that will result from the o�ers it makes. A simple method ofpredition would be to estimate the winning prie for eah RFQ, and assume thatany bid below this prie would result in an order. Alternatively, for eah RFQ theprobability of winning the order ould be estimated as a funtion of the urrentbid. This latter approah is the one implemented by the O�er Aeptane Predi-tor. For eah ustomer RFQ reeived, the O�er Aeptane Preditor generatesa funtion mapping the possible bid pries to the probability of aeptane. (Thefuntion an thus be viewed as a umulative distribution funtion.) This approahinvolves two main omponents: a partile �lter used to generate initial preditions,and a learned preditor that predits how the pries of omputers will hange inthe future.A visual inspetion of eah day's winning pries for eah type of omputerin a typial ompleted game suggests that these pries tend to follow a normaldistribution. To estimate these distributions during a game, the O�er AeptanePreditor makes use of a separate partile �lter for eah omputer type. Eah ofthe 100 partiles used per �lter represents a normal distribution (indiating theprobability that a given prie will be the winning prie on the omputer) with apartiular mean and variane. The distribution of winning pries predited by thepartile �lter is simply the weighted sum of the individual partiles' distributions,and from this distribution the funtion mapping eah possible bid prie to aprobability of aeptane an be determined. Eah �lter is updated daily basedon the information made available about omputer pries: the high and low priesreported for the previous day and the o�ers reeived from ustomers.In order to maximize revenue from the omputers sold, the Demand Managerneeds to onsider not only the pries it will o�er in response to the urrent day'sRFQs, but also what omputers it will wish to sell on future days. In fat, theDemand Manager plans ahead for several days and onsiders future RFQs (pre-dited by the Demand Model) as well as urrent RFQs when making o�ers. It istherefore important for the O�er Aeptane Preditor to be able to predit futurehanges in omputer pries. To illustrate why this is important, Figure 2 showsthe pries at whih one type of omputer sold during a single game of the 2006ompetition. For eah day, points representing one standard deviation above andbelow the average prie are plotted. On most days, there is learly little variane



between the winning pries, but pries often hange drastially over the ourse ofa few days. This fat suggests that it may be even more valuable to be able topredit future hanges in prie than to predit the distribution of winning prieson a single day. By simply selling a omputer a few days earlier or later, it mightbe possible for the Demand Manager to signi�antly inrease the prie it obtains.In the remainder of this paper, we desribe the use of mahine learning meth-ods to predit the amount by whih the average sales prie of eah type of om-puter will hange in ten days. One the O�er Aeptane Preditor has learned topredit this quantity, it an predit the hange in average prie for any day betweenzero and ten days in the future through linear interpolation. No e�ort is made
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Fig. 2. Average pries at whih one type of omputersold during one game of the 2006 �nals. One standarddeviation above and below the average are shown.

to predit hanges in theshape of the distribution,i.e., the variane. Thus, togenerate an o�er aep-tane funtion for a pre-dited future RFQ, theO�er Aeptane Predi-tor simply shifts the pre-dited distribution overwinning pries up or downdepending on the pre-dited hange in averageprie, and bases the a-eptane funtion on thismodi�ed distribution.4.3 Learning Prie Change PreditionsThe problem explored in this paper is thus that of learning to predit hangesin sales pries of omputers. As disussed in Setion 2, making an aurate pre-dition might depend on adapting to the behavior of the �ve ompeting agents.The struture of the TAC SCM ompetition enourages suh adaptation: aftera seeding round in whih agents play games against random opponents, agentsare divided into brakets of six and play a number of games against the same setof opponents, with the top three agents moving on to the next round. In addi-tion, after eah game a log is provided that details the omplete events of thegame, providing muh information that was not available to the agent during thegame. No human-made hanges are allowed during a round, but agents are freeto automatially adapt based on previous games during a round.Although it is possible in priniple to diretly model the bidding behavior ofspei� opponents using data from games in the urrent round or previous rounds,we use the alternative approah mentioned in Setion 2 of modeling the eonomyitself, treating opponents as part of the environment. We do so for two reasons.First, the information available during a game about opponents is extremely lim-ited. An opponent's behavior is likely to be heavily dependent on information thatannot be observed, suh as the opponent's inventory. Seond, the behavior of an



Rank Agent Average Pro�t1 TaTex-05 $14.89M2 GoBlueOval $12.60M3 FreeAgent $12.06M4 CMieux $10.35M5 Deep Maize $10.23M6 Bottielli $10.11M7 SouthamptonSCM $10.05M8 PhantAgent $9.87M9 MinneTAC $9.86M10 Mertaor $9.30M11 Maxon $8.76M12 CroodileAgent $8.48MTable 1. Top 12 agents in the 2005 seed-ing round. Agents in bold advaned tothe �nal round.Rank Agent Average Pro�t1 TaTex-05 $4.71M2 SouthamptonSCM $1.60M3 Mertaor $0.55M4 Deep Maize -$0.22M5 MinneTAC -$0.31M6 Maxon -$1.99MTable 2. Results of the 2005 �nal round

agent may be dependent on the mix ofopponents in a game and the marketonditions resulting from this mix. Wewere able to observe this fat learlyfrom the results of the 2005 ompeti-tion. Table 1 shows the sores of thetop 12 (out of 25) agents in the seed-ing round. Those agents in bold even-tually advaned to the �nal round, theresults of whih are shown in Table 2.From these tables we an observe thatsores dereased signi�antly from theseeding round to the �nal round asthe ompetition inreased, and in fat,some agents that were pro�table in theseeding round lost money in the �nalround. Also, several of the top agentsin the seeding round failed to advaneto the �nal round. These observationson�rm that, as is ommon in manymarket senarios, TAC agents an be-have and perform di�erently depend-ing on market onditions, and that di-retly prediting an opponent's behavior may be diÆult when the opponent isfaed with unfamiliar market onditions. In fat, it might be better to base pre-ditions on games with similar onditions but di�erent agents than games withthe same agents but di�erent onditions.The O�er Aeptane Preditor therefore attempts to predit hanges in om-puter pries as a funtion of observable market onditions. As desribed in Se-tion 4.2, the spei� predition made is the amount by whih the average salesprie of eah type of omputer will hange in ten days. To make these predi-tions, the O�er Aeptane Preditor performs mahine learning on data frompast games. Eah training instane onsists of 31 features representing data avail-able to the agent during the game, suh as the date, estimated levels of ustomerdemand, and urrent and reent pries of a given type of omputer. The label foreah instane is the amount by whih the average prie of that omputer hangesin ten days. The question addressed in the rest of the paper is how to best makeuse of all available data when generating preditors. In the next setion, we explainhow this question was answered for the 2006 ompetition.5 The 2006 TAC SCM CompetitionWe now address how TaTex-06 performed predition in the 2006 ompetition.First we desribe the hoie of opposing agents used in simulations and of a learn-ing approah, and then we present the results of the �nal round of ompetitionand additional experiments.



5.1 Agent ImplementationsIn order to develop a strategy for learning to make preditions, we ran a number ofgames using a variety of ompeting agents taken from the TAC Agent Repository,1a olletion of agent binaries provided by the teams involved in the ompetition.2At the time we designed our agent, only agents from the 2005 ompetition wereavailable; however, in the experiments of this setion, we make use of additionalagents that have beome available sine then, inluding some of the agents thatpartiipated in the 2006 ompetition, as this allows us to present experimentsinvolving a wider variety of agents.We hose four di�erent agent groupings, and ran 50 games with eah group.The groups are shown in Table 3. The �rst three groups ontain TaTex-06 and �f-teen additional agents. The fourth group inludes what appear to be the strongestagents from the �rst three groups: TaTex-06, the 2005 version of TaTex, andthe four other agents from the 2006 �nal round for whih binaries are available.We inluded TaTex-06 in eah group beause we are only interested in makingpreditions for games in whih our agent plays, and we therefore would like toapture the e�et of TaTex-06 on the eonomy in the preditive models learned.It is important to note that the hoie of preditors an impat the behaviorof TaTex-06 and thus the property of the eonomy (omputer pries) we aretrying to model. For the games played in this setion, TaTex-06 used the samepreditors that it used in the 2006 ompetition, so that the behavior of the agentis the same for all games (in or out of ompetition) disussed in this paper. Weultimately view onsideration of this issue to be the responsibility of the agent,and not the learning proess { an agent should be able to aount for the fat thatby behaving as its preditor suggests it should, it may be a�eting the eonomyin a way that makes its preditions inorret. As the fous of this paper is thelearning proess, we omit further disussion of this issue.Group Agents1 TaTex-06, GeminiJK-05, Mertaor-05, MinneTAC-06, PhantAgent-06, RationalAgent-052 TaTex-06, TaTex-05, Bottielli-05, CroodileAgent-05, DeepMaize-05, GoBlueOval-053 TaTex-06, DeepMaize-06, Foreseer-05, Maxon-06, MinneTAC-05, PhantAgent-05,4 TaTex-06, TaTex-05, DeepMaize-06, Maxon-06, MinneTAC-06, PhantAgent-06Table 3. The agent groups used in the experiments5.2 Learning AlgorithmsWhen determining the learning approah to be used by TaTex-06, the �rst taskwas to identify a suitable mahine learning algorithm. After limited experimenta-tion (using default parameters and a limited amount of data) with the availableregression algorithms from the WEKA mahine learning pakage [7℄, we deter-mined that the most promising andidates were M5 regression trees and additiveregression with deision stumps (an iterative method in whih a deision stump1 http://www.sis.se/ta/showagents.php2 The binaries of ompeting agents would admittedly not be available in a real senario,but the approah desribed here ould still be implemented by replaing these binarieswith our own agents designed to exhibit a variety of behaviors.



is repeatedly �t to the residual from the previous step).3 The results for Group 2are shown in Figure 3, and are representative of the results for the other groupsand in our experiments prior to the 2006 ompetition. For this and all other ex-periments in this paper exept those involving data from the atual ompetition(for whih a limited number of games are available), results are presented for fourruns of �ve-fold ross validation (thus for eah fold, 10 games are held out as thetest set while a ertain sized subset of the remainder is used for training). Rootmean squared error is used as the measure of auray, and the values reportedare frations of the base prie (a referene prie based on maximum omponentosts) for eah omputer. For referene, we also determined the results of usinga heuristi that performs linear regression on what TaTex-06 believes to be theaverage prie of eah omputer over the past 10 days and predits that the ob-served trend will ontinue: an average error of 0.1220 on Group 2, and similarlyhigh error on other groups.From these results, we an see that both learning algorithms greatly outper-formed the heuristi, illustrating the diÆulty of the predition task. Additive re-gression outperformed M5 trees when suÆiently many games were available (andthis result was statistially signi�ant with at least 95% on�dene aording topaired t-tests when eight or more games were used). When only one or two gameswere available, M5 trees produed lower errors, but this result was not statistially
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Fig. 3. Results of the two learning algo-rithms using games from Group 2
signi�ant, suggesting that the op-timal hoie of learning algorithmis unlear in this ase and thatfurther exploration of the issuemay be needed. Nevertheless, ad-ditive regression was the only ma-hine learning algorithm used byTaTex-06 in the 2006 ompeti-tion, and it is the algorithm thatwill be used for the remainder ofthe paper.5.3 Comparing Results for Di�erent Groups of AgentsFrom Figure 3, it appears that about 30 games are needed for training beforepredition error reahes its minimum level, and about eight games before theerror omes somewhat lose to this level. Sine a typial round of the TAC SCMompetition involves 16 games, these results are somewhat onerning, as it mightnot be possible to learn suÆiently aurate preditors in time for them to beuseful if only data from the urrent round is used.We now onsider the possibility of training preditors on games involving adi�erent group (or groups) of agents. For eah of the four groups of agents, wegenerated preditors by training on 40 games from that group and using four runs3 For the parameters of these two algorithms, we determined a minimum leaf size of 10and the hoie of a regression tree (not model tree) to be best for M5 trees, and ashrinkage rate of 0.7 and 200 iterations to best for additive regression.



of �ve-fold ross-validation as before, but eah preditor generated was also evalu-ated on one fold of eah other group, allowing the results to be diretly omparedfor eah fold as part of a paired t-test. In addition, for eah group a preditor wastrained on all games from the other three groups ombined and evaluated for eahfold of that group. Figure 4 shows the average results of evaluating eah modelon eah group.The most important observation from these results is that while the preditivemodels that give the best results for eah group are those trained on that group(and this is statistially signi�ant in eah ase with 99% on�dene aording topaired t-tests), the di�erene is fairly small. It appears that the di�erenes betweenthe agents in eah group do not have a large impat on the nature of omputerprie trajetories. While predition appears to be more diÆult for Group 2, thisdiÆulty seems to a�et all models to a similar degree. Also, generalization fromother groups to Group 4 does not appear to su�er from the fat that this grouprepresents the most ompetitive eonomy. Finally, for eah group the preditortrained on all games from the other three groups does about as well as the bestof the three preditors trained on only one of these groups, if not better, suggest-ing that training a preditor on games from all available groups is an e�etivestrategy when it is not known whih group will give the best results. In fat,Test DataModel 1 2 3 4heuristi 0.1173 0.1220 0.1074 0.11071 0.0606 0.0740 0.0657 0.06472 0.0636 0.0711 0.0676 0.06563 0.0641 0.0763 0.0615 0.06344 0.0640 0.0766 0.0637 0.0597other 3 0.0620 0.0743 0.0641 0.0632Table 4. RMS error when preditivemodels are learned using games from onegroup and tested on games from anothergroup

after making this observation duringour experimentation prior to the om-petition, we hose to use this strat-egy to learn the preditor that TaTex-06 used throughout the ompetition.Beause there appeared to be littlevariation between the results for dif-ferent agents, we learned a single pre-ditor before the start of the ompeti-tion and did not adapt this preditorduring the ompetition. The preditorwas trained on all games that we ranbetween di�erent groups of agent bina-ries available at the start of the 2006ompetition.5.4 Results of the 2006 Final RoundThe results of the 2006 �nal round (onsisting of 16 games) are shown in Table 5.Although it is diÆult to assign redit for an agent's performane to partiularomponents, an analysis of the game logs shows that TaTex-06 generally soldomputers at higher pries than other agents, whih would suggest that the at-tempt to predit hanges in omputer pries paid o�. In fat, during the �rst thirdof eah game, TaTex-06 had a higher average sales prie than any opponent forevery type of omputer.Figure 4 shows a omparison between the results of using a �xed preditivemodel (here we used the model from Setion 5.3 that was trained on all gamesfrom Groups 1, 2, and 3, as Group 4 is very similar to the atual agents ompeting



Rank Agent Average Pro�t1 TaTex-06 $5.85M2 PhantAgent $4.15M3 Deep Maize $3.58M4 Maxon $1.75M5 Bottielli $0.48M6 MinneTAC -$2.70MTable 5. Results of the 2006 �-nal round
in the �nals) and the results that would havebeen obtained by learning only from ompletedgames. To determine the latter for N om-pleted games, we averaged the results of 20runs in whih we randomly hose N games fortraining and used the remaining 16�N gamesas the test set, exept in the ases ofN = 1 andN = 15, for whih we performed 15 runs by us-ing eah game one as the training (N = 1) ortesting (N = 15) set. Although we ould have simply trained on the �rst N gamesto give the atual results that would have been obtained during the ompetition,we felt that this would give results that were too noisy. Generating the results aswe did also requires the assumption that game order is insigni�ant (i.e., no trendof hanges as agents adapt over time), whih appeared to be the ase. The resultsshow that the �xed preditor performed as well as or better than the alternativefor at least the �rst 8 games, and somewhat worse afterwards.5.5 Additional Experiments
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Fig. 4. Comparison between the �xed pre-ditor and learning from games
In order to better measure the ef-fet of learning to predit hangesin omputer pries on the perfor-mane of TaTex-06, we performedtwo additional experiments usingvariations of TaTex-06 in whihthis ability was weakened or re-moved. In eah experiment, 30games were run using the agentsof Group 4 (as this group ontainsthe four opponents from the 2006 �nals for whih binaries are available), exeptthat TaTex-05 was replaed with an altered version of TaTex-06. In Experiment1, the altered version predited no hanges in omputer pries, and in Experiment2, the altered version used the heuristi from Setion 5.2 in plae of the learnedpreditor. Table 6 shows the di�erenes between the sores and revenues of thenormal and altered versions. Di�erenes are statistially signi�ant with 99% on-�dene aording to paired t-tests. The di�erene between sores in eah ase islarger than TaTex-06's margin of vitory, and the di�erene is largely aountedfor by the loss in revenue. From these results we onlude that learning to preditthe hanges in omputer pries had a signi�ant impat on the performane ofTaTex-06 in the 2006 ompetition.6 Additional Learning ApproahesIn the previous setion, we hose between using a �xed preditor trained on a vari-ety of games from our own simulations and the alternative of learning a preditorusing only the games from the urrent round of ompetition. In this setion, weexplore the use of more sophistiated learning approahes that make use of bothsoures of data.



Exp. # Desription Sore Revenue1 no prie hange predition -4.27M -3.05M2 heuristi prie hange predition -1.79M -1.21MTable 6. Experiments omparing the performane of one altered version of TaTex-06 and one unaltered version. Numbers represent the di�erene between the two.One way to make use of all available game data is to train on some ombinationof data from the urrent round (whih we will all \new data") and other soures(whih we will all \old data" and ould inlude games from past rounds orthe simulated ompetition of the previous setion). This type of approah haspreviously been applied to the TAC Travel senario (a separate ompetition) [8℄.The primary diÆulty with this approah is deiding what the ratio of new datato old data should be. When only a few games have been played, it may be betterto plae more weight on old data, but as more games are played, it likely makessense to derease the weight of the old data until at some point only new data isused. This hypothesis is supported by Figure 4.We address this issue by using leave-one-out ross validation to hoose thefration of old data to be added to the omplete set of new data. To test a par-tiular hoie of fration when N games are available from the urrent round, weuse eah game one as the testing set while training a preditor on the ombina-tion of that fration of old data and the remaining N � 1 games. The frationthat produes the highest average auray over all N trials is then hosen, andthe preditor to be used is trained on all N games plus that fration of the olddata. When only one game is available, we simply set the fration to 1 and useall available old data. It is important to note that when taking a fration of theold data, we are taking that fration from all games, and not all data from thatfration of the games. We note that this approah may ause a larger fration ofold data to be used than is optimal beause evaluations are made using preditorstrained on N � 1 games instead of the full N games.In the experiments of this setion, we apply this approah of mixing data tothe 2006 �nal round using all games from Groups 1, 2, and 3 of the previoussetion as the old data. To hoose the fration of old data to use at eah step, wetest eah of 0, 1, 2, 3, 4, and 5 perent as desribed and hoose the best. Frationsover �ve perent do not appear to be needed. As the old data onsists of 150games, eah perent is 1.5 games worth of data. (The use of a more advanedapproah to searhing for the best fration might improve auray somewhat atthe ost of more time spent training preditors.) Results are shown in Figure 5.The fration of old data determined to be best dereased from 5% when two gameswere available to 1% when 15 games were available.Instead of ombining the old and new data, another possible approah is toombine the preditors themselves into an ensemble. We present here a methodthat is somewhat analogous to the data ombination approah { instead of �ndingweights for the old and new data, we �nd weights to be used in ombining an \oldpreditor" and a \new preditor" through weighted averaging of their preditions.Given two preditors and a set of training data, we determine the weights of eahpreditor by evaluating both preditors on eah training instane and performinglinear regression to �nd the weights that best ombine these outputs to math



the orret labels. It is interesting to note that the weights may not sum to 1 { asum below 1 might indiate that the hanges in omputer pries for a partiulargroup of agents are less pronouned than for the groups on whih the preditorswere trained. Negative weights are also possible.As with the experiments on ombining training data, we apply this approahto the 2006 �nal round using preditors trained on games from Groups 1, 2, and 3of the previous setion as the old preditors. To determine the orret weights, weagain use a form of leave-one-out ross validation. As desribed above, we performlinear regression on the outputs of both the old and new preditors on data fromall available games; however, to determine the outputs of the new preditor for aspei� game, we use a preditor trained on all games but that one. This use ofross-validation is needed to prevent over�tting: if the weight of the new preditoris determined by performing the regression step on the full new preditor itself,the new preditor will likely reeive nearly all of the weight beause it was trainedspei�ally on the same data being used to learn the weights. One the weightsare determined, the full new preditor is trained on all available games and usedalong with the old preditor in the ensemble. When only one game is available,the old preditor is used by itself.We are now left with the question of whih preditor to use as the old preditor.Rather than using a single preditor, we will in fat use all of them: the preditorstrained on eah of the three groups alone along with the preditor trained on allthree. The regression step desribed above an be performed using any numberof preditors, and so we hoose to perform linear regression on �ve variables: aweight for eah of the four old preditors and a weight for the new preditor.For omparison, we also present the results of performing regression using onlythe four old preditors without learning a new preditor. The results of bothapproahes are shown in Figure 5.We an see from the results that none of the approahes desribed in thissetion signi�antly outperform the �xed model for the �rst four games, but thatboth the method of ombining data and the method of ombining new and oldpreditors outperform the �xed and learned preditors when six or more games areavailable for training. The method of ombining new and old preditors resultsin the lowest error, and this result is statistially signi�ant with at least 95%on�dene after at least six games have been played.It should be noted that in the atual TAC SCM ompetition, the long trainingtimes of the learning approahes desribed in this setion would be an issue, asthere is only limited time between games in whih to perform learning. Still, theresults of this setion suggest that signi�ant improvement over the methods ofthe previous setion should be possible.7 Related WorkA number of agent desriptions for TAC SCM have been published presenting awide variety of approahes to the tasks faed by an agent.4 For instane, agents4 See http://ta.ees.umih.edu/researhreport.html for a omplete olletion ofpapers on TAC agents.
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Fig. 5. Preditor aurayhave addressed the problem of bidding on ustomer RFQs that is desribed in thispaper by using solutions ranging from game-theoreti analysis of the eonomy [9℄to fuzzy reasoning [10℄.The learning approah in whih we ombine previously trained preditors is anexample of an online learningmethod designed to make use of a number of experts,a lass of methods that has reeived muh attention and inludes the weightedmajority algorithm for binary lassi�ation problems [11℄. Rettinger et al. [12℄take a somewhat similar approah to modeling opponents in a roboti soertask. Given a number of existing opponent models, they quikly learn a model fora new opponent by using an extension of AdaBoost in whih the existing modelsare inluded among the weak learners used in the boosting proess. In general, themethods desribed in Setion 6 an be onsidered instanes of indutive transferor transfer learning, in whih experiene with one task or set of tasks is used toimprove learning on another task [13℄.8 Conlusions and Future WorkIn this paper we desribed a number of approahes to learning to predit omputersales pries in the TAC SCM domain. The use of this predition was shown tobe an important part of the winning performane of TaTex-06 in the 2006 om-petition. One reason this predition problem is diÆult is that while trends inomputer pries depend on opponent behavior, this behavior is diÆult to modeldiretly beause little information is provided about the ations of opponents. Wepresented methods that addressed this diÆulty by modeling the eonomy itselfand by making use of game simulations involving a variety of opponent strategiesto determine how patterns in omputer pries vary for di�erent groups of agents.There are many ways in whih this work ould be extended. The e�ets ofa wider variety of opponent behavior ould be explored by designing our ownagents to behave in partiular ways. Many ensemble methods other than weightedaveraging of preditors ould be tried. It is not lear how adaptation would bea�eted if other agents are themselves adapting in ways that impat the eonomiproperties being modeled.
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