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Abstract

Two desiderata of reinforcement learning (RL) algorithms are
the ability to learn from relatively little experience and the
ability to learn policies that generalize to a range of problem
specifications. In factored state spaces, one approach towards
achieving both goals is to learn state abstractions, which only
keep the necessary variables for learning the tasks at hand.
This paper introduces Causal Bisimulation Modeling (CBM),
a method that learns the causal relationships in the dynamics
and reward functions for each task to derive a minimal, task-
specific abstraction. CBM leverages and improves implicit
modeling to train a high-fidelity causal dynamics model that
can be reused for all tasks in the same environment. Empiri-
cal validation on manipulation environments and Deepmind
Control Suite reveals that CBM’s learned implicit dynamics
models identify the underlying causal relationships and state
abstractions more accurately than explicit ones. Furthermore,
the derived state abstractions allow a task learner to achieve
near-oracle levels of sample efficiency and outperform base-
lines on all tasks.

Introduction

Reinforcement learning (RL) is a general paradigm that
enables autonomous decision-making in unknown environ-
ments. A common deficiency of deep RL algorithms is their
sample inefficiency and lack of generalization to unseen
states, thus limiting their applicability in data-expensive or
safety-critical tasks. One way to improve sample efficiency
and generalization is to learn a state abstraction which re-
duces the task learning space and eliminates unnecessary
information that may lead to spurious correlations. Determin-
ing the optimal abstraction necessitates understanding which
state variables affect the reward and how those variables are
influenced by others during state transitions.

Prior methods obtain the desired abstractions by searching
for the smallest subset of state variables that can predict the re-
ward accurately while ensuring the subset is self-predictable
in dynamics. Yet, their dense dynamics models are specific
to the subset and thus have to be learned from scratch for
each new task (Fu et al. 2021; Wang et al. 2022a; Zhang
et al. 2020b), as shown in Fig. 1. Such approaches overlook
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Figure 1: (a) Two tasks are defined by rewards R*, R, and con-
sist respectively of moving the blue and green blocks to their goal
regions. Task 1 additionally requires moving the block only when
it is sunny. Variables that are ignored by a state abstraction are
semi-transparent. (b) CDL (Wang et al. 2022b) learns causal depen-
dencies in the dynamics, but its derived state abstraction keeps all
controllable state variables and ignores action-irrelevant ones, and
thus the abstraction is non-minimal for task 2 and cannot learn task
1 due to its omission of the sun. (¢) TIA and Denoised MDP (Fu
et al. 2021; Wang et al. 2022a) can learn more concise abstractions
(minimal in this example), but they require training fully-connected
dynamics from scratch for each task. (d) In addition to the implicit

that can be for all tasks, CBM identifies
which variables affect the reward and derives a minimal state ab-
straction from the causal reward models.

a key characteristic of realistic problems: we often wish to
build agents that solve multiple instances of tasks in the same
environment, e.g. different cooking skills in a kitchen. To
learn multi-task dynamics models, recent works seek to learn
causal dynamical dependencies between state variables, from



which they derive a task-independent abstraction (Ding et al.
2022; Wang et al. 2021, 2022b). A notable example is Causal
Dynamics Learning (CDL) (Wang et al. 2022b) which identi-
fies all state variables that can be affected by the action and
retains them in the abstraction.

While dynamics-based state abstractions only need to be
learned once for the environment and can then be applied to
any downstream task, we observe three weaknesses. First,
the abstraction may not be minimal for a significant number
of downstream tasks, since many tasks require manipulating
only a subset of controllable variables. In such cases, CDL’s
abstraction could be further reduced to improve sample ef-
ficiency and generalization, as shown in Fig. 1(b). Second,
ignoring state variables that are action-irrelevant limits CDL’s
application to many tasks. For example, for an autonomous
vehicle, CDL’s abstraction will ignore the traffic light, as the
traffic light cannot be affected by the vehicle. In such cases,
CDLs abstraction will cause the vehicle to be unable to fol-
low traffic rules. Third, CDL employs explicit modeling of dy-
namics, directly predicting the next state as §;11 = f(s¢,a¢)
where f is a generic function parameterized by neural net-
works. However, prior works have shown implicit modeling
(St41 = argmax,,  cg g(st 155, a¢) where g is a critic
function, see Sec. ) generally achieves higher accuracy in
model learning, particularly for non-smooth dynamics in
real-world physical systems (Florence et al. 2022; Song and
Kingma 2021). For instance, in robot manipulation, the ob-
ject cannot be moved by the robot until they are in contact.
In such environments, we show that inaccuracies of explicit
modeling will lead to incorrect dynamical dependencies and
thus non-minimal or incorrect state abstractions.

To address these weaknesses of CDL, we introduce Causal
Bisimulation Modeling (CBM), a method that (1) learns
shared task-agnostic dynamics between tasks while recover-
ing a minimal, task-specific state abstraction, and (2) models
causal dynamics dependencies with implicit models. Regard-
ing the first contribution, in addition to dynamical relation-
ships, CBM further infers which state variables affect the
reward function with a causal reward model. In this way,
CBM identifies state variables relevant to each task to further
refine the state abstractions. The resultant causal abstraction
is equivalent to bisimulation, a minimal abstraction that pre-
serves the optimal value (Ferns, Panangaden, and Precup
2011). Regarding the second contribution, to the best of our
knowledge, CBM is the first work that recovers causal depen-
dencies with implicit models. To this end, CBM identifies
and addresses two key problems of estimating conditional
mutual information (CMI) with implicit models, allowing
them to surpass explicit ones in both predictive accuracy and
the identification of causal dependencies.

We validate CBM in robotic manipulation and Deepmind
Control Suite, showing that (1) implicit models learn dy-
namical relationships and state abstractions more accurately
compared to the explicit ones, and (2) CBM’s task-specific
state abstractions significantly improve sample efficiency and
generalization compared to task-independent ones.

Related Work

Model-based State Abstractions for Decision Making
Learned dynamics and reward models can be used in var-
ious ways for downstream task learning. Some methods di-
rectly use the learned models for planning (Williams et al.
2017; Chua et al. 2018; Nagabandi et al. 2018) or generate
synthetic rollouts for reinforcement learning (Kurutach et al.
2018; Janner et al. 2019). Others use learned models to im-
prove (Q-value estimates (Feinberg et al. 2018; Amos et al.
2021), or generate state abstractions (Li, Walsh, and Littman
2006; Fu et al. 2021; Wang et al. 2022a, 2021; Zhang et al.
2019). This work belongs to the last class of methods.

The work closest to our CBM is Wang et al. (2022b)
(CDL), which also learns a causal dynamics model and then
derives a state abstraction for downstream task learning. As
discussed in the introduction, CDL’s abstraction is not mini-
mal because it does not consider task information. In contrast,
CBM considers causal reward relationships to derive a theo-
retically minimal, task-specific state abstraction.

Among model-based methods that learn task-specific state
abstractions, the most closely related works are TIA (Fu
et al. 2021), denoised MDP (Wang et al. 2022a), and ASR
(Huang et al. 2022). Those methods learn dense, non-causal
dynamics models from scratch for each task, which fails to
take advantage of shared structures between the tasks. In
contrast, CBM learns underlying causal dynamics that are
shared between tasks in the same environment and applies
the same dynamics model to all downstream tasks.

Implicit Models for Dynamics Learning Implicit models
(Teh et al. 2003; Welling and Hinton 2002) have been widely
used in many areas of machine learning, including image gen-
eration (Du and Mordatch 2019), natural language processing
(Bakhtin et al. 2021; He et al. 2021), and density estimation
(Saremi et al. 2018; Song et al. 2019). This is largely due
to its ability to generalize probabilistic and deterministic ap-
proaches to classification, regression, and estimation (LeCun
et al. 2006; Song and Kingma 2021).

Implicit modeling approaches have also been applied to
reinforcement learning and the closely related problem of im-
itation learning, for modeling policies (Florence et al. 2022),
value functions (Haarnoja et al. 2017, 2018), and dynamics
(Pfrommer, Halm, and Posa 2020; Wang, Lu, and Zhao 2020).
Multiple works have noted that implicit approaches are better
able to model discontinuous surfaces, which is particularly
advantageous for modeling the discontinuous contact dynam-
ics common in robotics (Pfrommer, Halm, and Posa 2020;
Florence et al. 2022). For such dynamics, though explicit
models theoretically can capture such discontinuities through
activation functions, empirically, they linearly interpolate be-
tween discontinuity boundaries when training data are finite,
as found by Florence et al. (2022).

Background
We formulate our problem with Markov Decision Processes
and adopt key concepts from CDL (Wang et al. 2022b).

Factored Markov Decision Processes We model K tasks
in the same environment as a set of factored Markov decision
processes (MDPs), M* = (S, A, T, R¥). These MDPs have



the same (1) finite (bounded) state space, consisting of dg
state variables (factors) denoted as S = S x --- x S9s,
where each variable S is a scalar, (2) d_4-dimensional action
space, denoted as A C R%4, and (3) transition probability
T (st4+1]|5t, at) (i-e., dynamics). However, each MDP has its
own reward function R* : S x 4 — R.

Similar to prior model-based state abstraction learning
methods, the goal of CBM is to learn the dynamics and
reward functions from data, and to derive a task-specific
abstraction for task learning. Following CDL, CBM as-
sumes that the transitions of each state variable S are in-
dependent, i.e., 7 can be decomposed as T (s¢41]|s¢, at) =
Hf‘il p(si,1]st, ar). Though the assumption does not hold
for all variables—for instance, quaternion variables repre-
senting object rotations in the manipulation environments—
in practice, we find that our method can still learn dynam-
ics accurately in such environments. For simplicity, we use
x; to denote all state variables and the action at ¢, i.e.,
x, = {s},--+, 55, a;} and z;" to denote all those vari-
ables except for s, i.e., z; = @ \ {si}.

Causal Dynamics Learning (CDL) Instead of using a
dense model, CDL models the dynamics as a causal graph-
ical model (Pearl 2009) and recovers the necessary depen-

dencies between each state variable pair (S}, S}, ;) as well

as (A, S/, ) using causal discovery methods (Mastakouri,
Scholkopf, and Janzing 2021). Then, aiming at improving
sample efficiency during task learning, CDL derives a task-
independent state abstraction by keeping (1) controllable
state variables, i.e., those that can be changed by the action
directly or indirectly, and (2) action-relevant state variables,
i.e., those that cannot be changed by the action but can affect
the action’s influence on controllable variables. However, this
abstraction keeps all controllable variables, while many tasks
only need the agent to control one or a few of them, suggest-
ing some variables in CDL’s abstraction may be redundant.

Causal Bisimulation Modeling (CBM)

This section describes two main contributions of CBM: ob-
taining a task-specific state abstraction by augmenting causal
dynamics models with causal reward modeling, and recover-
ing accurate causal dynamics when using implicit models.

Causal Reward Model for Task-Specific Abstraction

Though CDL recovers the causal relationships in dynamics,
it still uses a dense model for reward learning. Consequently,
without knowing which state variables are causal parents of
the reward (i.e., reward-relevant), there is no direct way to
remove irrelevant variables to improve sample efficiency.
To resolve these issues, CBM learns a causal reward model
following a similar strategy to what CDL uses to learn dy-
namics. Assuming that all state variables affect the reward
for task R¥ independently (for notational simplicity, we omit
the environment index k for the reminder of the paper) and
there are no dependencies between state variables at the same
timestep, CBM examines the causal relationship between

the state variable Stj and the reward R by learning two pre-
dictive models for the reward: (1) p(r¢|z:), which uses all

p(rF|as, M © s;) conditioning any subsets of inputs by setting the
binary mask M. (b) After CBM identifies the causal dependencies
in dynamics and reward, its minimal state abstraction (marked by
the red box) consists of (1) green variables that affect the reward,
and (2) variables that influence green ones via dynamics.
The semi-transparent state variables are ignored by the abstraction.

variables for prediction, and (2) p(r¢|x;7), which ignores s?
when predicting. Intuitively, if the prediction performance
when ignoring s} is significantly lower than when includ-

ing it, then the causal dependency S; — R exists. More

precisely, CBM evaluates whether the Conditional Mutual

Information (CMI) is larger than a predefined threshold, i.e.,
gk . p(re|es)

CMPP" = s,,,zIE,n [log p(mm;j)} > €.

As shown in Fig. 2 (a), to make the method scalable, rather
than training p(r¢|z,”) foreach j € {1,...,ds}, CBM com-
bines all predictive models into one network pg,_, (r:| M ©x¢);
where 0., is the network parameters and M is a manually
defined binary mask used to ignore some input variables
when predicting ;. During training, CBM maximizes the
prediction likelihood of both py_, (¢|z;) where M uses all

inputs (i.e., all entries are set to 1), and pg,_ (r¢|z,”) where

the entry for s is set to zero in M.

After recovering causal parents of R, CBM derives a bisim-

ulation by combining the causal reward model with the causal
dynamics model, following the theorem below (see the Ap-
pendix for an explanation of how our setting satisfies the
theorem’s assumptions):
Theorem 1 (Connecting Bisimulation to Causal Feature Set
(Thm 1 in Zhang et al. (2020a))). Consider an MDP M
that satisfies Assumptions 1-3 in Zhang et al. (2020a). Let
Pr C 1,...,ds be the set of variables such that the reward
R(s,a) is a function only of sP® (s restricted to the indices
in Pr). Let Az denote the ancestors of P in the causal
graph corresponding to the transition dynamics of M. Then
the state abstraction ¢(s) = sA® is a bisimulation abstraction
for reward R.

As illustrated in Fig. 2 (b), CBM’s abstraction is selected
as the union of (1) all S7 that R depends on, i.e., SP®=  and
(2) all other state variables that can affect S¥® via dynamics
and not already included in S*=. In other words, this union
corresponds to R’s causal ancestors (i.e., SA%) in the learned
causal dynamics and reward graph, and thus being equiv-
alent to bisimulation — the minimal state abstraction that
preserves the optimal values (Dean and Givan 1997; Ferns,
Panangaden, and Precup 2011).



Causal Discovery with Implicit Dynamics Models

Implicit models have been shown to learn dynamics more
accurately than explicit models (Florence et al. 2022). Moti-
vated by this finding, the goal of CBM’s dynamics learning
module is to recover causal relationships between states and
action variables via an implicit modeling approach. As in
CBM'’s reward-learning approach, causal dependencies will
also be detected by measuring the conditional mutual in-
formation CMI¥ between s] and s} for each i, j pair. In
this section, first, we introduce the implicit dynamics model.
Second, we describe how CBM estimates CMI from the im-
plicit dynamics with a prior method by Sordoni et al. (2021).
Third, we discuss two CMI overestimation issues of the prior
method and how CBM solves them.

Implicit Dynamics Models For the transition of each state
variable in S*, we would like an implicit model ¢* (s} ;)
such that g* : 8 x & x A — R to assign a high score to
the label s} ; from the ground truth distribution, and low
values to other labels. During dynamics prediction, the model
selects the sy that maximizes the total score over all state
variables: 8}, = arg max, csi 95, (st q;@1). For
notational simplicity, in the remainder of Sec. , we omit
the state variable index ¢ on g as it is clear from the input
variable s} ;. An implicit dynamics model can be trained by
minimizing the contrastive InfoNCE loss,

Lxeel(g) = 1 kst
NCE(g) = — log — - (D
eI(siyrime) 4 25:1 P

Minimizing the InfoNCE loss requires the ground truth
label s{,,, as well as N negative examples {5, }2_; ~
p(st 1) sampled the value range Si 11~ This loss encourages
g to distinguish the label s 11 from negative samples, i.e.,
extract information about s} ; from z. The remainder of the
paper uses Lnce(F(z;y)) to denote the InfoNCE loss that
encourages a generic model F' to extract information about x
from y.

CMI Estimation with Implicit Dynamics Models

Observation 1 Oord, Li, and Vinyals (2018) show that, for
a generic model F'(z, y) that minimizes Lncg, the minimized
Lnce approximates the mutual information between = and

y, i.e., Ellog(N 4+ 1) — Lnce(F(z;y))] = E {%} =

I(x;y). Inspired by this, Sordoni et al. (2021) propose to
estimate CMI* using a conditional implicit model:

(N + 1) (')(si+1;sj\;l;:7)
e’ o(s t+1’5t|11 )+Z t+1’st‘1 7) ’

where 51];1 ~ (st lar?). 2)

cmi? = |log

Since CMI¥ measures how using si could additionally con-
tribute to predicting s}, ; given the other state and action

variables, x," J , ¢ is a conditioned model trained to capture
the additional information about s} ; in s} that is not present
in x,”. However, training ¢ and estimating cCM1* with Eq.
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Figure 3: Two sources of inaccurate CMI estimation: (top) Overfit-
ted conditional model: learned ¢ overestimate conditional informa-
tion while the g — +/ approximation is closer to the ground truth (0
for all sy, values), especially when close to the ground truth label
5§+1 = 0. (bottom) Inaccurate Importance Sampling: without regu-
larization, the likelihood ratio of p(si,;|x;”)/p(si,1) computed
by ¢/ can be peaked at the label sﬁH = 0 and is therefore chal-
lenging to approximate by self-normalized importance sampling. In
comparison, regularized 1) has a flatter likelihood ratio landscape
and is easier to approximate with samples.

(2) both require negative samples from p(s;_ |z’ 7Y, which
are not readily accessible, as the data can only be collected
from the full state transition distribution 7 (s¢.41|x¢).

Observation 2 To tackle this issue, CBM uses the impor-
tance sampling approximation proposed by Sordoni et al.

(2021) to compute p(si ,|z;”) with samples from the
marginal distribution p(s; ;). Thus, CMI”/ may be approxi-
mated as,

(N + 1)e¢(5i+1?51|9ﬁ;j)
e¢(5i+1?5{‘1;j) + N Z::;l
G (st

= = = . 3)

SN e Gl T p(siy)

where 5{1" ~ p(sj;,), and

¢(51+1’St |z, )

E [log

is trained to extract informa-

tion about s} ; from z,’ 7 by minimizing Lxcg (¢ (s! 115 x7))
and is used to compute importance weights w,, in a self-
normalized manner.

After learning ¢/", one only needs ¢ to estimate CMI with
Eq. (3). To this end, Sordoni et al. (2021) train ¢ by minimiz-
ing Lnce(0(si4q; 81|y 7Y+ (Sty13 @y 7)) while keeping
¢* frozen, so ¢ learns to capture the additional information
about s} ; from s/ that is not present in z, 7 (i.e., absent in

). See pseudo-code in the Appendix for details.



Inaccurate CMI Estimation and Solutions In practice,
the method proposed by Sordoni et al. (2021) often yields
inaccurate CMI estimations and thus leads to incorrect causal
dependencies. We discovered two reasons for the inaccuracy
and proposed corresponding solutions.

Reason 1 - Overfitted Conditional Models In theory,
when ¢ is trained as described above, it should condition on

and capture the additional information only. However, in
practice, such trained ¢ still uses z;” to predict s 11 directly
rather than conditioning on it to estimate the additional con-
tribution of s?. Fig. 3 top shows an example where knowing

s; does not provide any additional information about s_ ;.
In such a case, the ground truth conditional model should
output the same score for all s, values. In contrast, the
scores output by ¢ are still peaked at the label of si 41, and
using such an overfitted model in Eq. (3) would overestimate
CML

To solve this issue, rather than using a learned ¢, we use
the approximation ¢ = g — /. The motivation is as follows:
as g is trained to use z to estimate the score of s} ; and ¢ es-

timates with all variables except for s7, the difference of their
estimated scores should reflect the additional information
from s7. In practice, as shown in Fig. 3 top, the conditional
score estimated by this approximation is closer to the ground
truth than the score of ¢ learned by Sordoni et al. (2021),
especially in the neighbor of the ground truth label where the
accuracy of conditional scores significantly influences CMI.

Reason 2 — Inaccurate Importance Sampling Meanwhile,
when s/, has an almost deterministic transition (which is
common in many environments, e.g., objects will not move
unless manipulated by the robot), the importance sampling
approximation in Eq. (3) could be inaccurate.

In detail, as shown in Fig. 3 bottom, for such transitions,
the score estimated by ¢ tends to have extremely sharp max-
ima — it is high only when s’ 11 1s very close to the ground
truth labels. As a result, even with many negative samples
from p(s;, ), it is likely that none of them are similar enough

to samples from p(s,|z;"”). Then, since the importance
weight w,, in Eq. (3) is self-normalized among all negative
samples, samples that are not from p(s} |z;”) still have
large weights (rather than near-zero weights), thus leading to
inaccurate CMI estimation.

To mitigate this issue, when training g and ¢/ for the dy-
namics of Sti 11, beyond the InfoNCE loss, we regularize
them to have flatter score landscapes with L2 penalty on
their computed scores and the partial derivative of scores as
follows,

Layn =Lreg(g) + Lreg (1) where for generic f, 4)
Lreg(f) =Lnce(F(st41:))+
2)
2

~i 2
3 (sl 2
The regularization is applied to both the label and all neg-
ative samples (i.e., 5j; € {si 1,51}, and Ay, Ay are

3f(§i+1; )

i
05} 4

St

the weights of the regularization terms. As shown in Fig. 3
bottom, with regularization, ¢/ is flatter. As a result, with
the same number of samples, the importance weights w,,
approximate the likelihood ratio computed by ¥ much better,
compared to approximating sharp v without regularization.
To make the dynamics model scalable, we use the same
masking technique as in Sec. to combine g and 1) for each j
into one network. We use 04y, to denote the parameters of ds
such networks, each modeling the dynamics of state variable

1A
t+1-

CBM for Task Learning

Algorithm 1 Causal Bisimulation Modeling (CBM)

1: Initialize the dynamics model &gy,

2: (Optional) Pretrain 4y, (Eq. 4) with offline data.

3: for K tasks do

4 Initialize the reward model 6., and the policy 7.

5.  for T training steps do

6: Collect (St7 g, T, St+1) with Qg ~ .

7: Update 04y, (Eq. 4, optional) and 6., (Sec. ).

8 Evaluate dynamical and reward dependencies (Eq.
3); Update the state abstraction for 7 (Fig. 2 (b)).

9: Update m SAC losses.

As shown in Alg. 1, for tasks with the same dynamics,
CBM'’s dynamics model is shared across tasks. The dynamics
model can either learn from offline data (line 2), or from
transitions collected during task learning (line 7), or both.

When solving each task, CBM interweaves reward learn-
ing (line 7) with policy learning. The policy is trained via Soft
Actor Critic (SAC, Haarnoja et al. (2018)), an off-policy rein-
forcement learning algorithm. The reward model is combined
with the pre-trained dynamics to generate the task-specific
abstraction (line 8). CBM applies the state abstraction to the
policy 7 as a binary mask that zeros out ignored variables.
During task learning, as the policy explores and learns, we
expect it to gradually expose causal relationships that are
necessary to solve the task, and, in return, the updated state
abstractions reduce the learning space of the policy, making
its learning sample efficient.

Experiments

We examine the following hypotheses. First, implicit mod-
els recover dynamical dependencies more accurately than
explicit models (Sec. ). Second, compared to CDL’s task-
independent state abstraction and prior task-specific abstrac-
tion works, CBM learns a more concise abstraction and im-
proves sample efficiency and generalization of task learning
over baselines (Sec. ).

Environments To test CBM, we use two manipulation en-
vironments implemented with Robosuite (Zhu et al. 2020),
shown in Fig. 5 left, and two tasks from the DeepMind Con-
trol Suite (DMC, Tunyasuvunakool et al. (2020)). In the block
environment (b), there are multiple movable and unmovable
blocks. The tasks in this environment include Pick and Stack.
In the tool-use environment, we consider a challenging long-
horizon task Series: the agent needs to use an L-shaped tool



block tool-use
causal graph pick stack causal graph series
explicit 87.5£0.1 532+46 59.6+4.6 826+02 80.0+£15
implicit (ours) 90.5+04 957+60 957 +6.0 855+0.1 988+13

Table 1: Mean =+ std. error of accuracy (1) for learned dynamics causal graphs and task abstractions.

to move a faraway block within reach, pick it up, and place
it within the box. In the DMC, we consider the Cheetah and
Walker tasks, two high-dimensional continuous control tasks.
In all environments, as controllable distractors (cd), 20 vari-
ables whose values are random projections of the action (i.e.,
WTa, where W C R%A are randomly sampled) are added
to the state space. We also add 20 uncontrollable distractors
(ud) whose values are uniformly sampled from [—1, 1]. The
distractors have no interaction with other state variables.

Baselines For the dynamics learning experiments, we com-
pare the implicit dynamics model against the explicit model.
All methods are trained and evaluated with 3 random seeds.
For the state abstraction and task learning experiments, we
compare CBM against the closely related methods of CDL,
which uses a task-independent abstraction; TIA (Fu et al.
2021) and Denoised MDP (Wang et al. 2022a), which both
learn task-specific state abstractions. To contextualize these
methods, we also compare against an Oracle that learns with
the ground-truth minimal abstractions, and reinforcement
learning over the Full state space (no state abstraction). All
methods are trained and evaluated with 5 random seeds. Fur-
ther details are in the Appendix.

State Abstractions for Task Learning To fairly compare
the effects of the various state abstractions for task learning,
all methods use implicit dynamics models, including CDL,
which originally used the inferior explicit models. All meth-
ods learn tasks via Soft Actor Critic (Haarnoja et al. 2018).
The dynamics model is pretrained in Pick and Stack tasks,
and it is learned jointly with the policy from scratch in all
other tasks. Further details are in the Appendix.

Dynamics and Causal Graph Learning

This section compares implicit and explicit dynamics models,
learned from the same offline data, in terms of how accurately
they recover dynamics causal graphs and task abstractions.
Experiments are conducted on the Robosuite environments!,
and results are shown in Table 1. For causal graphs, we com-
pare the learned dynamics dependencies with the ground
truth and measure the causal graph accuracy as the # cor-
rectly learned edges / total edges in the graph. The accuracy
of implicit models is 3% higher than that of explicit ones,
which corresponds to causal relationships between 67 pairs
of state variables in the block environment, and 48 pairs in
tool-use. As a result, when being used to derive a task-specific
abstraction (we use the ground truth reward dependencies
in this experiment only to avoid the interference from re-
ward learning), implicit models derive more accurate state
abstractions (> 20% difference in accuracy on all tasks) than

'DMLC tasks are not suitable for these experiments, as the ground
truth causal graphs are not clear.
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Figure 4: Object-level state abstractions for Stack learned by each
method; semitransparent variables are excluded. (a) Though mov?,
mov®, and controllable distractos cd are unnecessary, CDL still
keeps them as they are . (b) Compared to CDL, CBM
(ours) successfully learns the minimal abstraction by further rea-
soning which state variables influence the reward. (c¢) TIA and (d)
Denoised MDP fail to learn meaningful abstractions when their
assumptions on the dynamics do not hold.

explicit models. Note that the state abstraction accuracy is
measured as the # of correctly classified state variables / total
state variables. Implicit models also learn more generalizable
dynamics (see Appendix).

Task Learning with State Abstractions

This section compares policy learning with different state
abstractions on various tasks in the DMC, the block environ-
ment (b), and the tool-use environment (t).

State Abstraction Accuracy Fig. 4 shows the abstraction
learned by each method for the Stack task. For simplicity,
abstractions are shown on the object level; state variable-
level abstractions are in the Appendix. Among all meth-
ods, only CBM learns minimal abstraction. CDL keeps all
controllable variables and thus uses a non-minimal abstrac-
tion. Meanwhile, TTA and Denoised MDP assume that state
variables can be segregated into several dynamically inde-
pendent components, and their abstractions keep only the
task-relevant component. However, though mov? and mov?®
are task-irrelevant, their dynamics still depend on the task-
relevant part (the end-effector and gripper). As a result, when
their assumptions do not hold, TIA and Denoised MDP learn
that (almost) all variables belong to the same component.
Then, depending on their definitions of task relevance, all
such variables are either included (TIA) or ignored (Denoised
MDP) by the abstractions.

CBM is Sample-Efficient The performance metric for Pick
and Stack tasks is the mean success rate at accomplishing
the task, and the metric for Series and DMC tasks is the
mean episode reward, evaluated over 50 test episodes and
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Figure 5: (left) top: Block environment with three movable blocks (mov*™?), and an unmovable (unm) block fixed on the table. bottom:
Tool-Use environment with the block, the L-shaped tool, and the box. (right) Learning curves of CBM (ours) compared to baseline methods
and RL with the Oracle abstraction in five tasks. Each learning curve is generated from independent runs using 5 different random seeds, with
mean and std. error computed across 50 test episodes per point on the learning curve. CBM is among the most sample-efficient methods, even
approaching the efficiency of the Oracle on Pick, Cheetah, and Walker.

plotted with respect to the number of episodes.? The learning
curves for all tasks are shown in Fig. 5 right. Recall that
Oracle learns with the ground-truth state abstraction, whereas
Full learns with no state abstraction. For all tasks, Oracle
learns the fastest, demonstrating the possible gain in sample
efficiency with an ideal state abstraction.

Overall, we find that CBM matches or improves in sample
efficiency over the CDL, TIA, and Denoised MDP baselines
in all settings. In all tasks, CBM is among the closest to
the Oracle in sample efficiency, showing the benefit of the
learned, near-minimal state abstraction. We observe that the
higher the difficulty level of the task, the greater the benefit
of learning a small task abstraction. For instance, Walker is a
simple task, where almost all methods converge rapidly to an
episode reward of 1000 by 20k episodes. The only exception
is Denoised MDP, where the learned abstraction masks out
some key variables among robot joint angles and angular
velocities. On the other hand, the Series task is much more
challenging, requiring a sequence of successful behaviors
(reach tool, use tool to move block closer, pick and place
block). Learning without any abstraction (Full) only learns
to grasp the tool and achieves an episode reward of 200
over 40k training episodes, while CBM learns with much
greater sample efficiency. We observe a similarly large gap
between CBM and other methods on Stack (B), another com-
plex manipulation task. An ablation of CBM with explicit
dynamics models can be found in the Appendix; we find that
the ablation has much worse sample efficiency than CBM,
demonstrating the benefit of using implicit dynamics models.

CBM is Generalizable As shown in Fig. 6, we further
measure each method’s generalizability to unseen states
on Pick and Stack (TIA and Denoised MDP fail to learn
the tasks and thus are not evaluated). In addition to in-
distribution (ID) states, we also evaluate the learned policies

2As each episode is a fixed number of steps, episodes have a
linear relationship with training steps.
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Figure 6: Performance of policies with different state abstractions

on both ID and OOD states, in terms of mean and std. error of
success rates (1) in the block environment.

on out-of-distribution (OOD) states where the values of all
task-irrelevant state variables are set to noise sampled from
N(0,1). For both tasks, only Oracle and CBM keep similar
performance across ID and OOD states, as their minimal
task-specific abstractions eliminate the influence of OOD
variables. In contrast, though CDL can be robust against vari-
ables ignored by its abstraction, it still fails to generalize
when redundant variables in its non-minimal abstractions
have unseen values.

Conclusion

This paper studies how to generate task-specific minimal state
abstractions for task learning. It introduces Causal Bisimu-
lation Modeling (CBM), an algorithm that (1) learns a min-
imal state abstraction via causal reward learning, and (2)
learns an implicit causal dynamics model. The experiments
demonstrate that CBM learns more accurate and concise state
abstractions, which lead to improved sample efficiency on
downstream tasks compared to related methods. Further, the
implicit dynamics model introduced by CBM improves over
explicit dynamics models in terms of prediction error and
causal graph accuracy. Promising directions for future work
include relaxing the assumption of having a pre-defined fac-
tored state space to extend CBM to high-dimensional state
spaces, such as images.
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Appendix

Pseudo-code for Sec
In this section, we provide pseudo-code for how Sordoni et al. (2021) and CBM learn the conditional implicit model ¢,
respectively, in Alg 2 and Alg 3. For easier reference, first, we reproduce key equations and notations as follows:
InfoNCE Loss For a generic model f : ) x Z — R that tries to extract information about a generic variable y € ) from
another variable z € Z. The corresponding InfoNCE loss of f is
fy;2)
e

S {8 i)

Involved Implicit Models In Sec , when Sordoni et al. (2021) and CBM estimate conditional mutual information cMI1Y
between s and s! 1 Tespectively, the following three implicit models are involved:

Lnce(f(y;2)) = —1lo

where negative samples are drawn from §" ~ ).

* g(sip1;2¢) : 8" X X — R, extracting information about s}, from z; = (s, a;), where ¥ = S x A.

7 (gl J=1 g+1 ds
(Sg,-.-,81 ,81 " ,...,8;°, as), where

. (sH_l,xt ) S x X7 — R, extracting information about 5f+1 from z,
X =8 x o x ST xS x xS x AL
J

o« O(siyg;silag?) 8 x 87 x X7 — R, extracting the additional information about s}, in s that is not present in .

Algorithm 2 ¢ learned by Sordoni et al. (2021)
1: Initialize the ¢/ and ¢.
2: repeat
3:  Sample s}, | and z;’ 7 from data; Sample {Stfl}nzl from S°.

Optimize > with Lncg (1/(shy1; 2, ).

until ¢/ converges to

repeat
Sample s}, s7, z,;” from data; Sample {5;}", }2_, from S°.
Optimize ¢ with the following loss while keeping ¢/ frozen

A A

eg»(s§+1;si\m;1)+ (5§+1?m;])

ENCE(O + ) = —log - — - 5 —. (@)
eG5(S;+1?5i|517f,])+ (S;+1;xf + Z “ f+17st‘wf (3 f+17mf1)

9: until ¢ converges

Algorithm 3 ¢ learned by CBM

1: Initialize the g and

2: repeat

3:  Sample s}, and z, from data; Sample {5, }2_, from S°.
4:  Optimize g with

i ~ 2 89 <§7I L
Layn(9(si11:7¢)) = Lncelg) + Z <>\1 Hg(5t+1§ xt)HQ + A2 H(atjlt)

Sit1
t+16{5t+1}U{91:1 e

)

5: until g converges
6: repeat ‘ .
7. Sample s}, and z,;” from data; Sample {5;}"; }2_, from S*.
8:  Optimize ¢ with
2 9 (~i ﬁj> 2
. » g i s
Layn(V(s11152:7)) = Lnce() + Z A1 H (5;+1§$t])H2+)‘2 #
Sit1 )

§§+1 6{5§+1}U{§1f1}5:1

9: until > converges ‘
10: return o(s}, ;5 s7|@,”) = g(siii;ae) — U(shi )

After learning ¢, CBM computes CMI*/ as in Alg. 4, following Sordoni et al. (2021).



Algorithm 4 cMI%/ computation using learned <’ and ¢

1: Sample {57, }N_, from S'.
2: forn € N do )
3:  Compute the self-normalized importance weight for each negative sample 57", as
nglm:])

e ) p(siy o)

SN e G T plsha)

4: Compute the conditional mutual information as

(N + 1)eﬂ7(51+1?51‘1;j)

ec)(siJrl;sﬂw?J) + Nzg=1 GC)(ngl;si‘w;J)

cm1? = E |log

Additional Comparison with Related Works

Regarding the assumptions of the method and the quality of learned abstractions, below we provide a table comparing CBM
against ICP (Zhang et al. 2020a), CDL, TIA, and denoised MDPs in the following aspects:

» whether the method can learn in a single environment (SE)
¢ whether the method can learn minimal state abstractions (MSA)
» whether the learned dynamics can be shared across multiple tasks in the same environment (GD)

» whether the method can learn from high-dimensional image observations (I0), instead of assuming that the state space is
factored

SE MSA GD IO

CBM (ours) v v v X
ICP X X X v
CDL v X v X
TIA and denoised MDP v X X v

Overall, as described above, our method can learn minimal state abstractions, does not require multiple environments for
training, and can share the dynamics across different tasks, but at the cost of assuming a factored state space.

Theorem 1 Assumptions

Our MDP also follows the three assumptions of Theorem 1 in Zhang et al., (2020a). Specifically, (1) For Assumption 1 that each
observation corresponds to a unique state, we assume the observation space is the state space and is fully observable. (2) For
Assumption 2 that each observation component (i.e., each state variable in our setting) at ¢ + 1 is independent given observation
at t, we have the same assumption in Sec 3.1. (3) For Assumption 3 about the difference between environments in the same
family, we only focus on a single environment and thus there is no need for this assumption.

Dynamics Learning Implementation and Further Results
Implicit Dynamics Modelling Details

We compute the energy E/v¢(s}, 1; M ® sy, a,]) as g(M ® sy, ai])T h(si, 1), where both g and h are multilayer perceptrons with
three hidden layers of 128 units and outputs a size 128 vector. During training, we use regularization coefficients \; = A\, = 1076,
A1 and )\, are decided using grid search among {1073,107%, ... /10~ "}, by trading off prediction accuracy and causal graph
accuracy. The cMI threshold used to infer causal relationships is € = 0.02. During inference, to predict the next step value of
each state variable 8¢ +18SArgmax,; f(se,az, st +1)» we uniformly sample 8,192 samples from S and select the one with the
lowest energy. We test the effector of the sample number in Table. 3.

The architecture and hyperparameters of the implicit dynamics model are listed in Table 2. We tested networks with 64/128/256
neurons in each layer and chose 128 as it achieves the same prediction performance as 256 with a shorter computation time.
Similarly, we choose the number of negative samples as 512 from {256, 512, 1024 }. Other hyperparameters are not tuned. In our
experiments, instead of predicting the energy based on (M ® [s¢, a;]) and s} 1, we use (M © [sy, a;]) and As} where As} is the
change of the variable at t. Then, for negative samples, we sample them from [As? . , As®

max]
min? maxl*



Table 2: Hyperparameters for the implicit dynamics model.

Name Value
feature architecture [128, 128]
energy architecture [128]
activation functions ReLU
number of training transitions M
training step 3M
number of negative samples 512
learning rate 3e-4
batch size 32
prediction step during training, H 3

Dynamics Data Collection

CBM proposes a novel method to evaluate the causal dependencies with implicit models, recovering more accurate dependencies
than explicit models. However, in addition to the causal discovery method, the quality of the recovered causal relationship also
depends on the collected data. In this section, we explain how we ensure the data is collected by diverse policies to enable correct
inference of causal dependencies.

If the dynamics model is trained on offline data only, the data should be collected by a diverse set of policies to break the
spurious correlations. We may not have such offline data. For example, offline data are collected by a single policy only. In this
case, we can augment the data with online data collected by the set {71'7]2}]6:1’.“’ Kit=1,...,7>» wWhere k in the task index and ¢ is the
training step. This set of policies will naturally be diverse, because:

* Considering k, each 7} learns from a different reward and behaves uniquely.

» Considering ¢, as 7F explores and gets updated, its behavior also changes and thus the data is being collected by different
policies.

e Though Alg. 1 shows that we learn tasks sequentially for simplicity of presentation, in practice, we can learn all tasks
simultaneously so that the dynamics model can use data collected by all policies for learning.

Learned Dynamics Causal Graph

In addition to the causal graph accuracy discussed in Table. 1. We also show the dynamics causal graphs learned by implicit
and explicit dynamics for the block environment, in Fig. 7 and Fig. 8, respectively. The strength of the causal dependencies are
measured in CMI and numbered in each cell. Meanwhile, the missing dependencies are marked in red while spurious ones are
marked in green. We notice that implicit dynamics models tend to miss dependencies that are necessary but happen infrequently,
while explicit models tend to depend on more spurious correlations and thus generalize badly in out-of-distribution states.

Dynamics Prediction

We also evaluate CBM using implicit dynamics and CDL in terms of prediction accuracy. Specifically, given s; and a;.¢+19, we
use them to generate 20-step predictions, i.e., s¢1:¢4+20, on both in-distribution (ID) and out-of-distribution (OOD) s, for the
block and tool-use environments. For OOD states, distractor values are replaced with random values sampled from N (0, 100).
The results are again measured on 10K transitions for each method.

As shown in Fig. 9, when measuring the prediction error of all state variables, CBM has lower prediction error than CDL
on both ID and OOD states. Especially on OOD states, as CBM learns fewer spurious correlations than CDL, it keeps similar
performance while CDL’s errors increase significantly compared to ID states.

Dynamics Computation Cost

When predicting each single state variable, though our method draw 8192 samples and compute their energies, we want to point
out that the computation cost is still comparable to explicit dynamics models and does not prevent the implicit dynamics from
scaling to environments with large state spaces.

Requiring a large number of samples is an inherent weakness of implicit models. Nevertheless, this weakness has not prevented
applying a similar model to robotic tasks (Florence et al., 2022) and to higher-dimensional states such as images (Chen et al.,
2020b).

Meanwhile, the computational complexity is O(d%) for explicit dynamics and O(ds x (ds + N)) for implicit dynamics
(where dg is the number of state variables and N is the number of samples). So for higher dg, the complexity ratio of implicit
over explicit dynamics (= 1 + %) is actually lower.

Moreover, for small dg where the complexity ratio is high, one can trade off between computation and prediction accuracy.
We show the mean and standard deviation of prediction performance (measured as one-step prediction error on all state variables)



Environment: block, CBM (implicit dynamics)

ground truth causal graph
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Figure 9: Dynamics prediction error in the block and tool-use environments.

Table 3: Prediction error and wall time for explicit dynamics and implicit dynamics with different number of samples.

implcit (ours)

explicit 256 512 10 2048 4096 8192

prediction error  0.09 £0.05  0.17 £ 0.01 0.10 + 0.01 0.07+£0.00  0.06 £0.00  0.05 =+ 0.00 0.05 + 0.00
wall time (s) 579 £021 11.33+£0.06 1647 £040 25.69+037 47.86+0.19 8347+£244 163.35+5.35

and wall time (in seconds) when choosing different numbers of samples and compare them with explicit models in the block
environment (dg = 47) on 25K transitions.

As shown in Table 3, one can use fewer samples (e.g. 1024 or 2048) to achieve a prediction error similar to using 8192 samples.
Notice that implicit dynamics with those smaller sample sizes take only about 5x or 8x of the computation time for explicit
dynamics, much lower than the theoretical ratios (i.e., 1 + % which are around 23x or 45x respectively), as we use a smaller

N

network to extract feature from samples s ’; than from the current state variable sl

Task Learning Implementation and Further Results

In this section, we give more details on the RoboSuite environments (block and tool-use) used in the main paper, and methods
for the sample efficiency experiments.

Task Rewards

For DMC tasks, we use the reward function in the official implementation code. For Robosuite tasks, let ee f; € R? be the current

end-effector position and g € R? is the target position in this episode. The reward functions for the tasks used in the experiments
of Sec. , are defined as follows:

Pick (B): raise the block mov to the target position g,

ry = 0.2(1 — tanh (2.0||eef; — mov|2))
+1 [mov is grasped] (0.4 + 0.5(1 — tanh (5.0||mov, — gl|2))
+1 [||movy — gl|2 < 0.05].

Stack (B): stack the movable object mov on the top of the unmovable object unm.

ry = 0.2-(1 — tanh (2.0||eef; — mov||2))
+0.4 - 1 [mov is grasped]
+0.5(1 — tanh (5||movy , — unmg,
+2.0 - 1 [success] ,

[1)) - 1 [mov0 is lifted]

where the notation mov, , refers to the x and y coordinates of mov, and similarly for unm.



Table 4: Parameters of the reward predictor and SAC. Parameters shared if not specified.

Method Name Tasks
Pick (B) Stack (B) Series (T) Cheetah (T) Walker (DMC)
feature architecture [128, 128]
predictor architecture [128, 128]
Reward activation functions ReLU
Predictor training step 50K
learning rate 3e-4
batch size 64
horizon 250 400 1000
actor architecture [256, 256]
critic architecture [256, 256]
actor activation functions [Relu, Relu]
critic activation functions [Relu, Relu]
TD steps 1
batch size 256
grad clip norm 10
SAC actor/critic learning rate le-4
tau 5e-3
gamma 0.99
buffer size 5e6
alpha start 0.9 0.9 0.9 0.5
alpha finish 0.1 0.05 0.1 0.1
alpha decay 0.666 3.333 5 1

Series (T): use the L-shaped tool to move the faraway block closer to the robot, then pick up the block and place it in the pot.

ry = 0.2+ (1 — tanh (2.0]|ee f; — toolt||2))
+0.2 - 1 [tool is grasped|
+0.2 - (1 — tanh (5]|tool; — blocky||2)) - 1 [tool is grasped]
+0.2 - (1 — tanh (5 max(—>block,,0)) - 1 [tool is grasped]
+0.4 - 1 [tool is not grasped] - 1 [block, < 0]
+0.4 - (1 — tanh (5|leef; — tools||2) - 1 [block, < 0]
+0.6 - 1 [block is grasped]
+0.5 - (1 — tanh (5||blocky,, — pots y||2)) - 1 [block is grasped]
+2.0 - 1 [success] .

State Abstraction Learning Methods

For Pick and Stack, the dynamics model is pretrained for all methods and frozen during task learning, and only the reward
predictor is learned. For Series and DMC tasks, the dynamics model is learned from scratch during task learning, jointly with the
policy and the reward predictor.

CDL For CDL’s task-independent abstraction, the dynamics model is trained offline on 2M pre-collected transitions using
scripted policies and then used to derive the abstraction, which remains fixed during task learning.

TIA and Denoised MDP They are originally implemented for representation learning of image state spaces. To adapt to
factored state spaces, we replace their encoders and decoders with a binary mask that partitions state variables into task-relevant
or irrelevant parts. The mask is jointly optimized with the dynamics and reward models using the Gumbel reparameterization
trick (Jang, Gu, and Poole 2016). While the original implementations of TIA and Denoised MDP both learn dynamics from
scratch during task learning, in Pick and Stack tasks, CDL and CBM use a task-independent dynamics model that is already
trained by the task-learning phase. Thus, for a fair comparison, TIA and Denoised MDP are also initialized with pretrained
dynamics models, where only the final layer of the model is allowed to vary during task learning. We also tried training the
dynamics model from scratch, but this led to worse performance. For TIA and Denoised MDP, we conducted a search on the
following hyperparameters:

* Gumbel temperature scheduling, among the final temperature of {0.05,0.1,0.2,0.5, 1.0, 2.0, 5.0, 10.0}.



* Regularization coefficient on size of the abstraction, i.e., the number of the reward-relevant state variables for TIA, and the
number of controllable and reward-relevant variables for Denoised MDP, among {102,104, .-+ ;107 7}.

We hypothesize that the reason why TIA and Denoised MDP perform worse compared to CBM (Sec ) is that both methods
rely on assumptions that do not hold in general MDPs, leading to inaccurately learned abstractions and inefficient task learning.
Specifically, TIA assumes there is no dynamical dependency between two segments in the representation space (i.e., state variable
space in our setting) — reward-relevant one and reward-irrelevant one. Meanwhile, Denoised MDP makes a similar assumption
about dynamical independence between different segments. However, in general MDPs, reward-irrelevant state variables could
be dynamically dependent on reward-relevant variables. For example, when the task is to pick block A with the robot arm,
though block B is reward-irrelevant, block B still can be manipulated by the arm. As a result, block B will also be included in
the same segment to minimize its prediction error. Hence, TIA and Denoised MDP often include all controllable variables in
their abstractions. In contrast, CBM doesn’t have this “dynamic independence” assumption and identifies dynamical causal
relationships between state variables, thus it can remove controllable variables that are task-irrelevant from its abstraction.

SAC Policy We adopt the implementation of SAC by Tianshou (Weng et al. 2022). For most SAC parameters, tuned
hyperparameter values published by prior literature worked well across all tasks. The exception is «, the entropy regularization
coefficient, which controls the relative weights of the return and entropy terms in SAC. We found that automatic entropy
scheduling often led to early convergence and task failure, so for each task, we defined a manual entropy decay schedule, which
we tuned separately for each task. The entropy schedule is a function of both the current and total training steps (a constant). It is
defined below and has the following parameters: vssart; O finish, Qdecay-

—Qdecay " T
—y + X finish-

The architecture and hyperparameters of SAC are listed in Table 4. SAC hyperparameters are shared across all methods for
each task. We select between [0.5, 1.0] for avs44.¢, [0.0, 0.2] for v ¢ipnisn, and [0.5, 5] for agecqy for best SAC performance.

() t,0001 = (Ustart — Qfinish) €XP <
ttotal

CBM For CBM, the reward predictor is jointly trained with the policy, the learned reward causal graph may change during
training and thus change the derived bisimulation abstraction. When the abstraction changes, CBM resets 7 and relearns the
policy from existing data in the replay buffer. Policy resetting is a technique proposed by Nikishin et al. (2022), who showed
that periodically resetting the policy and retraining from the replay buffer may improve both sample efficiency and asymptotic
performance for deep RL agents. For a fair comparison, policy resetting is applied to TIA and Denoised MDP as well. The
architecture and hyperparameters of the reward predictor are listed in Table 4.

Learned Task-Specific Abstraction

For the Stack task, the learned state abstraction by each method is shown in Fig. 10. Again, CBM keeps all reward-influencing
variables and their causal ancestors. Despite our efforts to hyperparameter tune, TIA and Denoised fail to learn meaningful
abstractions. We found that both methods were highly sensitive to their regularization coefficients. Note that the Stack task
also violates their assumptions of each component having independent dynamics, which may explain their failure to learn good
abstractions.

Task Learning Ablation

CBM learns implicit dynamics and a causal reward function. In Sec. , we show that implicit dynamics models surpass explicit
models in terms of causal graph accuracy and state abstraction accuracy. Fig. 11 shows an ablation of CBM which instead uses
explicit dynamics. We observe that on the Pick task, the difference from CBM is not significant as Pick is relatively easy. On the
more challenging Stack task where accurate abstraction plays a more important role, the performance of explicit dynamics is
much worse than CBM which uses implicit dynamics.

Compute Architecture

The code is implemented with pyTorch. The 5 seeds selected are O - 4, and the seed can be specified in the configuration file. The
experiments were conducted on machines of the following configurations:

* Nvidia Titan V GPU; Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz

* Nvidia V100-SXM2 GPU; Intel(R) Xeon(R) CPU E5-2698 v4 @2.20GHz
* Nvidia A40 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

* Nvidia A100 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz
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Figure 10: State abstractions learned by CBM, TIA, and Denoised MDP for the Stack task.
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