UT Austin Computer Sciences Technical Report UT-AI-08-1,

April 2008.

A General Purpose Task Specification Language for Bootstrap Learning
Technical Report UT-AI-08-1

Ian Fasel, Michael Quinlan, Peter Stone
Department of Computer Sciences
The University of Texas at Austin
{ianfasel,mquinlan,pstone} @cs.utexas.edu

Abstract

Reinforcement learning (RL) is an effective framework for
online learning by autonomous agents. Most RL research fo-
cuses on domain-independent learning algorithms, requiring
an expert human to define the environment (state and action
representation) and fask to be performed (e.g. start state and
reward function) on a case-by-case basis. In this paper, we
describe a general language for a teacher to specify sequen-
tial decision making tasks to RL agents. The teacher may
communicate properties such as start states, reward functions,
termination conditions, successful execution traces, task de-
compositions, and other advice. The learner may then prac-
tice and learn the task on its own using any RL algorithm.
We demonstrate our language in a simple GridWorld example
and on the RoboCup soccer keepaway benchmark problem.
The language forms the basis of a larger “Bootstrap Learn-
ing” model for machine learning, a paradigm for incremental
development of complete systems through integration of mul-
tiple machine learning techniques.

Introduction

Traditionally, research in the reinforcement learning (RL)
community has been devoted to developing domain-
independent algorithms such as SARSA (Sutton & Barto,
1998), Q-learning (Watkins} [1989)), prioritized sweeping
(Moore & Atkeson| [1993), or LSPI (Lagoudakis & Parr,
2003), that are designed to work for any given state space
and action space. However, the modus operandi in RL re-
search has been for a human expert to re-code each learning
environment, including defining the actions and state fea-
tures, as well as specifying the algorithm to be used. Typ-
ically each new RL experiment is run by explicitly calling
a new program (even when learning can be biased by pre-
vious learning experiences, as in transfer learning (Soni &
Singhl [2006; [Torrey et al., 2005} Taylor & Stone, 2005)).
Thus, while standards have developed for describing and
testing individual RL algorithms (e.g., RL-Glue, White et
al.|2007)), no such standards have developed for the problem
of describing complete tasks to a preexisting agent.

In this paper we present a new language for specifying
complete tasks, and a framework for agents to learn a new
policy for solving these tasks. The language allows a user
(or “Teacher”) to provide information such as start states,
reward functions, termination conditions, task decomposi-
tions, successful execution traces, or relevant previously

learned tasks. An agent can then practice the task to learn
a policy on its own using any RL algorithm.

The language and framework are targeted at enabling
users to develop complete systems that may need to learn
multiple different tasks using different learning techniques
or sources of training data. Moreover, a teacher can use
policies for tasks that were previously learned to “Bootstrap”
learning for more complex tasks, either by suggesting earlier
policies to be used as abstract actions (i.e., “options” |Sutton,
Precup, & Singh||1999), or by specifying that an earlier pol-
icy can serve as a source of prior experience to be transferred
to learning the new task.

Why an RL Task Language?

We are motivated by the recently proposed ‘“Bootstrap
Learning” (BL) paradigm for machine learningﬂ whose am-
bition is to integrate all forms of machine learning into a
single agent with a natural human-instruction interface. In
the BL setting, a human teacher provides structured, step-
by-step lessons involving multiple instruction methods to a
learning agent, in order to gradually build its ability to per-
form a variety of complex tasks. For example, rather than
starting “fabula rasa” as in traditional machine learning, a
BL agent might first be given lessons teaching it to perform
various types of statistical pattern recognition or logical in-
ference, the results of which can be used in later lessons as
primitive state variables in more complex sequential deci-
sion making tasks. The final aim of the BL project is to cre-
ate autonomous agents which can be taught by end users in
the field to solve multiple, complex problems by combining
many different teaching and learning methods.

The overall goal of BL represents a multi-year, multi-
institution project. In this paper, we present a key initial
component to accomplish this goal: a formal language that
allows a human teacher to specify tasks to a learning agent,
so that it may set up and initiate learning of new policies
autonomously. We refer to our proposed language as the
“Bootstrap Learning Task Learning” language, or simply the
BLTL language, and likewise refer to the framework for us-
ing the BLTL language as the BLTL framework.

A key goal of the BLTL language is to enable multi-
ple methods for instruction of processes, and multiple RL

"Bootstrapped learning proposer information pamphlet,
http://www.darpa.mil/IPTO/solicit/closed/
BAA-07-04_P1P.pdf

http://www.darpa.mil/IPTO/solicit/closed/BAA-07-04_PIP.pdf
http://www.darpa.mil/IPTO/solicit/closed/BAA-07-04_PIP.pdf

algorithms, to be used in the same agent. Previous work
on human-to-agent instruction has included task demonstra-
tions (Schaal, [1997)), task decompositions (Dayan & Hin-
tonl |1993; Dietterichl |1998); [Sutton, Precup, & Singhl|{1999)),
general advice about actions and states which the learner can
incorporate into the value function (Maclin & Shavlik,|1996;
Kuhlmann et al. [2004), and identification of previously ac-
quired policies that can be used for initializing the policy
to be learned for the new task (Soni & Singh| [2006; [Tor-
rey et al., 2005; [Taylor & Stone} [2005). Typically, research
on these types of instruction has required that a human set
up each individual learning task from scratch and manually
invoke each one. In this paper, we allow the teacher to pro-
vide advice, indicate relevant previous experience (enabling
transfer learning), and use previously taught tasks as primi-
tive actions in new tasks (enabling task decomposition). Be-
cause sub-tasks can each be learned using a different tech-
nique, we enable multiple learning methods to be synergisti-
cally integrated in a single RL agent that is far more capable
than an agent using any one RL algorithm.

The BL Task Learning Framework

Traditional RL research focuses on algorithms for a learn-
ing agent, behaving in a single environment, to update a pol-
icy by which it chooses actions given fixed state variables.
In the BL paradigm, the automated student is responsible
not just for learning a specific policy, but also for the larger
problem of knowing how to engage in learning, provided a
task specification. Thus the BL student must also be able
to identify the task, and initialize, terminate, and evaluate
episodes during practice. By analogy, a human student who
has been given a set of practice problems, say to learn long-
division, must not only learn the procedure for division, but
also must know which problems to work on, how to evaluate
her performance (for instance by checking the answers and
noticing how long it takes to solve each problem), and that
she should continue to work through the entire set of home-
work problems—or at least as many as it takes to master the
concept and get a good grade. To enable a teacher to pro-
vide instructions to a BL student, the BLTL language must
be able to address all of these elements of learning.

The standard RL definitions of agents and environments,
as described in (Sutton & Bartol |1998)), are as follows:

Environment: stores all the relevant details of the world,
such as the current state representation, the transition
probabilities, and transition rewards.

Learning Agent: both the learning algorithm and the pol-
icy maker for acting in the environment. The agent needs
to decide which action to take at every step, and may up-
date its policy as it receives experience in the world.

Experiment Program: this is the control loop, which steps
the agent through the environment in multiple episodes,
and collects information about performance.

A popular, freely available implementation of these compo-
nents in code is the RL-Glue framework (White et al.,[2007)),
which has formed the basis of several “bakeoffs” and con-
tests for comparing RL algorithms.

The BLTL framework encompasses the Environment and
Learning Agent components identically to the traditional RL

framework (indeed we implement and connect these com-
ponents using a subset of the RL-Glue package). However
in the BLTL framework, the Experiment Program is incor-
porated into an internal component called the Trainer. The
Trainer component monitors the environment and decides
when to initiate and terminate learning of a particular policy
for a particular task. It makes these choices autonomously
and is not under direct external control. During a learning
episode for a task, the Trainer monitors the environment and
checks for the termination conditions (as specified in the
task specification), combines rewards from the environment
with any additional rewards specified in the task specifica-
tion, and directs the Learning Agent and the Environment
to the initial conditions as specified by the teacher (to the
extent possible given the implementation — in a simulation
environment it may be able to “teleport” to an initial condi-
tion, however in a physical implementation it may have to
e.g., walk a robot to a starting position).

The BLTL framework therefore encompasses all of the
concepts in traditional RL, but additionally makes the con-
trol and monitoring of the Learning Agent and Environment
an integral part of the complete autonomous system, not a
separate component that must be supplied by an external hu-
man user. In order to allow an external teacher to specify a
task, the BLTL framework defines a common name space
in which the state variables and functions (such as numeri-
cal functions or sorting routines) required to define the state
and action spaces are accessible to the Teacher, Trainer, and
Learning Agent.

In order to use the BLTL framework, an end user (i.e.,
the programmer wishing to write lessons for RL tasks) must
first implement the necessary functions for the Trainer and
Learning Agent to monitor and take actions in the Envi-
ronment, and supply any additional learning algorithms he
wishes to test if not already available. The BLTL language
can then be used to set up and teach any number of lessons in
the environment while the BL agent runs continually, sens-
ing and acting in the world. While the initial setup may be
no less work than in the standard approach to RL research
for a single task, the BLTL framework makes it simple for
a teacher to supply lessons for multiple tasks, and to reuse
previously learned policies as abstract actions in new tasks.

Language Primitives

We can now specify the primitive functions needed for a
teacher to describe to a BL agent how to practice a task.
The specification of these functions is a main contribution
of this paper. In aggregate, these functions enable a teacher
to specify a completely new RL task to a BL agent for the
purpose of learning. These functions involve initialization,
describing the rules for termination conditions, the reward,
and the state and action spaces.

When deciding how to act in the world, the Learning
Agent takes as input a state vector at each time step. This
state vector may be the result of complex operations on the
raw world state (which may have been learned in previous
lessons), therefore the language includes commands for con-
structing a list of functions whose outputs are concatenated
into the state vector presented to the agent. Similarly, in or-
der to allow learned actions, as well as “primitive” actions,

to be used in a policy, the language also includes commands
for constructing a list of behavior functions that serve as the
action space for the current RL task.

The following list of functions with informal descriptions
represents our full proposed language for teacher-student
interaction regarding sequential decision making problems.
Though fully implemented, a complete and formal specifi-
cation of the functions is beyond the scope of this paper.

BeginTaskDescription(“method”) Prepare to start learn-
ing a task, using method in the underlying reinforcement
learning algorithm. This could for instance indicate that
SARSA should be used. The specific learning algorithm
must be provided by the user.

TransitionFunction(“‘simulator’ or ‘“function’’)
Transitions to new states are either due to acting in
the given simulator, or by directly invoking a known
transition function.

BeginEpisode(‘“world state’’) Specifies that a learning
episode is to begin by initializing to the given world
state, which must be available in the simulator.

OnEpisodeEnd(“option””) What to do when a learning
episode ends. The choice of options depends on the abil-
ities of the simulator, and might include e.g. Restart,
RestartFromPointX etc. By default, the trainer will al-
ways issue the reward specified in EpisodeReward.

NewPolicy(“policyname”) Creates a new policy object,
identified by policyname.

LearnedPolicy(“policyname”) Identifies which policy is
to be updated through reinforcement learning. This can
either be a new policy created with NewPolicy or a pol-
icy which already has some parameters.

SourcePolicy(‘“‘policyname”,*‘sourcepolicy”,*iscopy’’)
Creates a new policy object, policyname, based on
sourcepolicy, for transfer learning. If the boolean
value iscopy is TRUE, an exact copy is made. Otherwise
it is the source for a more complex transfer method.

AttachPolicy(‘“agent”, “policy”’) Attach a policy to an
agent, €.g2., AttachPolicy ("agentl", "policyl").

EpisodeReward(‘““numeric function”) Attach a numeric
function (binary or real valued) to the reward. For ex-
ample NumSteps (Episodestart). This will be called
whenever an episode ends.

AddToStateSpace(“policy”’, “function’”) Add a function
to the list of state space variables, which will be concate-
nated into the state vector. These functions generally take
as input the raw sensory variables, and may have either
real valued or binary output.

AddToActionSpace(“policy”, “function”) Add a function
to the list of possible actions. For example in GridWorld
this could be MoveUp () etc. These could also be com-
plex options like MoveUpUntilReachedWall (), which
might have been taught in earlier lessons.

AdviseAction(‘“policy”, ‘“state”, “vals”, “function’)
Recommend to policy that when state equals vals,
it should take the action represented by the function
function. vals could be a boolean function, such as

—

*

Figure 1: There are many possible tasks in this gridworld. For instance, one task may
be for an agent to reach the starred location from any starting point in the shaded area.

Between (2, 4). It is the responsibility of the learning
algorithm to handle the advice (Maclin & Shavlik| [1996;
Kuhlmann et al., [2004]).

SetPolicy(“policy”, ‘“‘state”, “vals”,“fpolicy”, “¢”’)
Used for task decomposition, this tells the agent to switch
to a different policy (using its own state and action space),
specified in fpolicy, when state equals vals. It re-
turns to the current policy when state no longer equals
vals. If € > 0, switching is e-random. fpolicy could
be a previously learned policy from a prior lesson.

AddStopCondition(‘“function”) Add a boolean function
to be evaluated at each timestep, which if it evaluates to
true, will end the episode and issue reward. It is possible
to specify multiple stopping conditions.

StateSpaceDefine(“policy”, “function”, “name”) A

function that takes the raw state space as input, and places
the output into a variable with name, to be used by state
space functions. This function will be executed before
calls to the state space functions.

StartLearning(‘“parameters”) Starts learning, and
may take parameters such as number_of_episodes,
wait_for_stop_.message, €etc.

As we show in the following sections, these functions are
sufficient for specifying tasks in widely varying domains,
including GridWorld and RoboCup Soccer Keepaway.

Teaching a lesson in GridWorld

As a simple example, we will teach a GridWorld lesson, in
which the goal is to learn to get to the location marked with a
star in Figure[|from any starting point in the shaded region.

Once the Environment (call it Example1GW) and a Learn-
ing Agent (e.g., SARSA) have been implemented, the first
step in teaching is to initialize learning and the environment:

BeginTaskDescription ("SARSA");
TransitionFunction ("ExamplelGW");

The trainer now has a reference to the agent in the common
name space, which we refer to as Agent 1. The Teacher now
specifies how to start an episode, using a function provided
by the simulator for starting a player at a random location
within a region:

BeginEpisode ("RandomWithinRegion(6,5,6,2)");

In this particular world, we only allow the actions to be
moving one step in the cardinal directions. The state is the
current location. The teacher commands are:

LearnedPolicy (NewPolicy ("P1"))
AttachPolicy ("P1", "Agentl")
AddToActionSpace ("P1" ,"Upl()")
AddToActionSpace ("P1" ,"Rightl()")
AddToActionSpace ("P1" ,"Downl () ")
AddToActionSpace ("P1" ,"Leftl1 () ")
AddToStateSpace ("P1" ,"PositionX () ")
AddToStateSpace ("P1" ,"PositionY () ")

An episode concludes when the agent reaches the starred
location, and the reward is simply the time elapsed. The
function NumSteps () and identifier EpisodeStart must
be provided to indicate the number of steps since the be-
ginning of an episode. It also must provide a function for
checking the location of the agent:

AddStopCondition ("AtLocation (theAgent, 6,5)");
EpisodeReward ("NumSteps (EpisodeStart)");
OnEpisodeEnd ("Restart");

Finally the agent is told it may start practicing by calling
StartLearning.

Once the agent has learned and mastered this task, we can
use the learned policy P1 as an abstract action in a future
lesson, for instance to reach the upper left corner, using P1 as
an argument to either AddToActionSpace or SetPolicy.

Complex Example: The RoboCup Domain

The purpose of the BLTL framework is to be able to teach
agents complex tasks by building from simpler previous
tasks. Here we consider a complex domain, RoboCup soc-
cer, and show how to describe a subtask within RoboCup to
learning agents.

Robocup is a fully distributed, multiagent domain with
both teammates and adversaries. There is hidden state,
meaning that each agent has only a partial world view at any
given moment. The agents have noisy sensors and actuators,
meaning that they do not perceive the world exactly as it is,
nor can they affect the world exactly as intended. Perception
and action are asynchronous, prohibiting the traditional Al
paradigm of using perceptual input to trigger actions.

RoboCup is a good example for the BLTL framework be-
cause mapping from the low-level state description to the
low-level action language requires several levels of interme-
diate concepts. The primitive percepts indicate perceived
distance and angle to objects in the environment, such as:
(see ((goal r) 15.3 27) ((ball) 8.2 0) which indicates that the
right goal is 15.3 m away and 27 degrees to the right and the
ball is 8.2 m straight ahead. Meanwhile, the actions are para-
metric, enabling agents to dash forward with a power rang-
ing from [0,100], turn a specified angle from [-180,180], or,
when the ball is nearby, kick in a specified direction with a
power ranging from [0,100].

Keepaway Soccer

Keepaway is a subtask of RoboCup soccer, in which one
team, the keepers, tries to maintain possession of the ball
within a limited region, while the opposing team, the zakers,
attempts to gain possession. Whenever the takers take pos-
session or the ball leaves the region, the episode ends and
the players are reset for another episode (with the keepers
being given possession of the ball again).

Figure 2: Left: A screen shot from the middle of a 3v2 keepaway game in a 20m X
20m region. Right: A starting configuration for 4v3 keepaway in a 30m X 30m region.

Parameters of the task include the size of the region, the
number of keepers, and the number of takers. Figure |Z|
shows screen shots of episodes with 3 keepers and 2 tak-
ers (called 3 vs. 2, or 3v2 for short) playing in a 20m x 20m
region and 4 vs. 3 in a 30m x 30m regionﬁ

For the keepaway task, an episode ends when a taker gains
possession of the ball for a set period of time or when the
ball goes outside of the region. At the beginning of each
episode, the location of the ball and the players are reset
semi-randomly within the region of play. A sample starting
configuration is shown in Figure [2|

Keepaway has received considerable attention as a testbed
for RL algorithms (Pietro, While, & Barone| 2002} Torrey
let al, 2005} [Stone, Sutton, & Kuhlmann|, 2005).However, to
the best of our knowledge, in all cases the task has been fully
specified manually. We now focus on how the keepaway task
can be taught to an agent using the BLTL framework.

In this example, our goal is for each keeper to learn a pol-
icy for what to do when it possesses the ball. When a keeper
does not have the ball, it automatically follows policies
that have already been specified (i.e Receive (GetOpen)
or Recieve (GoToBall)), which are described in
[Sutton, & KuhImann), [2005). Note that these policies could
be taught to the agent in prior lessons.

Required Actions, Predicates Before beginning the les-
son, the student must be capable of several skills, many of
which are composed of multiple primitive actions and per-
ceptions. These skills must either be previously learned via
other lessons, or be “innate” (i.e., programmed in).

Actions Predicates

HoldBall() CanGetToBallFaster()

PassBall(k) HaveBall()

GetOpen() TakerHoldsBall()

GoToBall() BallOutOfBounds()

Receive() dist(a, b)

PassToKThenReceive(k) ang(a, b, c)

InitializeKeepaway(nK, nT, h, w) | min(a, b)
SortKeeperDistances()
SortTakerDistances()

Table 1: Actions and Predicates required for Keepaway

Table [I] summarizes the required actions and predicates
for the keepaway task. The actions are implemented as their

’Flash files illustrating the task and are available at http://
www.cs.utexas.edu/~AustinVilla/ sim/keepaway

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway

names suggest, but for clarity we provide expanded descrip-
tons for InitializeKeepaway (nkeepers, ntakers,
h, w). This initializies the playing field as in Figure 2 with
the specified height and width and number of keepers and
takers.

Each of the actions requires several predicates, some of
which define abstract mathematical relationships while other
are domain related, such as BalloutOfBounds () which
evaluates to TRUE if the ball is out of bounds.

To simplify matters, the decision for what to do when a
taker does not have the ball is specified in a predefined
policy, DontHaveBallPolicy (). In this policy the agent
will calculate if it can get to the ball faster than another
keeper. If so, then it calls Receive (), otherwise it calls
GetOpen () . Finally, the policy for the takers will be a sim-
ple one, ChaseBallPolicy (), in which the player always
calls GoToBall ().

Following the bootstrap learning philosophy, each of the
above skills and primitives should have been taught to the
student by the teacher previously. Those that are sequential
decision making tasks, such as GetOpen() may be taught
using the language we propose in this paper. Others, such
as BallOutOfBounds() may be more suited to other learn-
ing approaches such as supervised learning. As such, they
must be specified to the player using different communica-
tion primitives. Because this paper focuses on task specifi-
cation for RL tasks, those primitives are beyond the scope
of this paper. Assuming that the above skills and primitives
have already been taught to the student, the teacher can use
them to specify the keepaway task using the BLTL language.

The Keepaway lesson For the agent to learn an effective
policy for keepaway, the teacher must first specify the rules
of the game, then tell the student what the state and action
spaces are, then allow the student to practice the game. In
this case, the teacher only wants the student to learn the best
policy for what to do when in possession of the ball.

Teaching three versus two Keepaway

Figure [3| shows the series of instructions needed to specify
the keepaway task. Most lines are self-explainatory and are
similar to those used in the GridWorld example. The 13
state variables when the keeper has the ball, defined by the
series of AddToStateSpace() functions, are the same as the
ones commonly used for learning this task (Stone, Sutton, &
Kuhlmann, 2005)), and consist of several distances and an-
gles among the keepers and takers. The StateSpaceDefs
are needed to create intermediate variables needed to define
those 13 state variables.

Note that the functions are chosen so as to map relatively
easily from natural language to the formal specification. For
example, “learn a new soccer-related task™ is represented in
lines 1 and 2; “decide when to hold the ball and when to
pass” is represented in lines 10 and 11; and “base your de-
cision in part on the distances of the players to the center
of the field” is represented in lines 14—18. Such NLP in a
constrained domain is currently possible (Kuhlmann et al.|
2004) and would enable a domain expert with no special RL
knowledge to express the learning task to the BL student.

SO0 W —

O T T S S N Sl N N S N N S N N N el il el
GREOR S CRXRITNEDN—~O ORI A W —

BeginTaskDescription ("SARSA");
TransitionFunction("SoccerSimulator");

BeginEpisode ("InitializeKeepaway (3, 2, 25, 25)");
LearnedPolicy (NewPolicy ("KeeperPolicy"));
AttachPolicy ("Keepers", "KeeperPolicy"):
EpisodeReward ("NumSteps (kEpisodeStart)");
AddToStateSpace("KeeperPolicy", "HaveBall()");
SetPolicy ("KeeperPolicy", "HaveBall()", "IsFalse()",
"DontHaveBallPolicy ()", 0);

AddToActionSpace ("KeeperPolicy", "HoldBall()");
AddToActionSpace("KeeperPolicy", "PassKThenReceive ()");
StateSpaceDefs ("KeeperPolicy", "SortKeeperDistances", "K");
StateSpaceDefs ("KeeperPolicy", "SortTakerDistances", "T");
AddToStateSpace("KeeperPolicy", "dist(K[1], C)");
AddToStateSpace("KeeperPolicy", "dist(K[2], C)");
AddToStateSpace("KeeperPolicy", "dist (K[3], C)");
AddToStateSpace("KeeperPolicy", "dist(T[1], C)"):
AddToStateSpace("KeeperPolicy", "dist(T[2], C)");
AddToStateSpace("KeeperPolicy", "dist (K[1], K[2])")
AddToStateSpace("KeeperPolicy", "dist (K[1], K[3])")
AddToStateSpace("KeeperPolicy", "dist (K[1], T[1])")
AddToStateSpace("KeeperPolicy", "dist (K[1], T[2])")
AddToStateSpace("KeeperPolicy",

"Min(dist (K[2], TI[1]), dist(K[2], T[2]))")
AddToStateSpace("KeeperPolicy",

"Min(dist (K[3], TI[1]), dist(K[3], T[2]))");

AddToStateSpace("KeeperPolicy",

"Min(ang(K[2], K[1], T[1]), ang(K[2], K[1], T[2]))");
AddToStateSpace("KeeperPolicy",

"Min(ang (K[3], K[1], T[1]), ang(K[3],
AddStopCondition("TakerHoldsBall");
AddStopCondition("BallOutOfBounds");
AttachPolicy ("Takers", "ChaseBallPolicy");
OnEpisodeEnd("RestartFromBeginning");
StartLearning ();

Figure 3: BLTL instructions for the Keepaway task.

Giving Advice At any stage during learning, the teacher

may wish to give advice to influence policy learning, as

in (Kuhlmann et all 2004). For example, the teacher may

advise that if taker 1 is more than 50m away, the student

should consider holding the ball. The command would be:

AdviseAction ("KeeperPolicy" ,"dist (K[1],T[1])",
"GreaterThan (50)", "HoldBall()");

Because the underlying RL algorithm is responsible for
dealing with advice, algorithms such as standard SARSA
will not be impacted by the above statement, so it is up to
the teacher (or in the future, an automatic system) to choose
an appropriate learning algorithm.

Transfer Learning If we have already trained the 3v2 ex-
ample shown above, we could use it to initialize a new pol-
icy that learns 3v2 on a larger field, as in (Taylor & Stone,
2005). Lines 3, 4, and 5 in Fig. 3 would be changed to:

BeginEpisode ("InitializeKeepaway (3,2,50,50)");
LearnedPolicy (SourcePolicy ("BigKP" ,"KeeperPolicy",true));
AttachPolicy ("Keepers" ,"BigKP");

Verification

We have implemented the keepaway lesson using this proto-
col in the Java language, primarily using it to interface with
the benchmark Keepaway code available at http://www.
cs.utexas.edu/~AustinVilla/sim/keepaway|. The
soccer server remains in the C++ language, while the Trainer
and Learning Agents are implemented in Java.

Since the focus of this paper is on the language for a
teacher to communicate an RL task to a student, the main
mark of success is whether a BL student can, with no prior
knowledge of the properties of the desired task, begin learn-
ing the desired task as specified by a teacher. Indeed, using
this protocol, we were able to initiate learning for keepaway

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway

identically to the description described in |Stone, Sutton, &
Kuhlmann| (2005). Furthermore, after having received the
above instructions, the BL student is able to replicate the
successful SARSA learning reported in the same paper.

After demonstrating successful learning in three versus
two keepaway, Stone et al. then proceed to experiment with
several task variations, including:

e Changing the the playing field to a larger or smaller size;

o Changing the state representation to a subset or a superset
of the state variable specified in Figure 3} and

e Scaling up to more players (both keepers and takers).

In that previous work, each of these tasks had to be manu-
ally specified, including restarting the simulator and recom-
piling the players after changing their code. Using the BLTL
framework, the agent can flexibly take instruction from the
teacher to execute learning (and thus replicate the results re-
ported by Stone et al.) on all of these task variations without
any special-purpose preparation, on a single instance of the
BL agent.

Conclusions and Future Work

The main contribution of this paper is the introduction of
an architecture and interface language for teaching sequen-
tial decision making tasks to reinforcement learning agents.
The BLTL language allows tasks to be specified concretely
in terms of starting states, reward functions, and termination
conditions. In addition, the teacher may provide advice and
suggest sources for transfer learning, and may decompose
complex tasks into multiple smaller lessons, allowing differ-
ent policies learned with different methods to be combined
synergistically. The BLTL language forms the cornerstone
for the larger Bootstrap Learning project, which integrates
even more machine learning methods for teaching agents to
solve many different types of problems, not just sequential
decision making tasks.

We have illustrated our language on a GridWorld task, and
have implemented and tested the first BL agent on a specific
RL task in the RoboCup soccer domain. An important next
step is to test the BLTL language for other RoboCup tasks,
as well as completely different domains such as flying an
unmanned aerial vehicle (UAV). Future work for expanding
the BLTL framework to the full Bootstrap Learning frame-
work will include natural language mapping to the BLTL
language, and adding more machine learning methods.

The BLTL language also lays the groundwork for fu-
ture development of agents which can decide for themselves
what tasks to learn and how to learn them, rather than wait-
ing for task specifications and advice from a teacher. Cur-
rent and future work on agents that discover new learning
tasks (for example automatic subgoal discovery (McGovern
& Barto| 2001))) will benefit from the ability to formulate
new tasks using the BLTL language. Similarly, the introduc-
tion of BLTL exposes the important future goal of enabling
an agent to automatically select, based on task character-
istics, from among the large (and still growing) number of
domain-independent RL algorithms and possible parameter-
izations thereof.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0237699 and the
DARPA Bootstrap Learning program.

References

Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement learning.
In Hanson, S. J.; Cowan, J. D.; and Giles, C. L., eds., NIPS 2005.
San Mateo, CA: Morgan Kaufmann.

Dietterich, T. G. 1998. The MAXQ method for hierarchical rein-
forcement learning. In /ICML. Madison, WI.

Kuhlmann, G.; Stone, P.; Mooney, R.; and Shavlik, J. 2004. Guid-
ing a reinforcement learner with natural language advice: Initial
results in RoboCup soccer. In The AAAI-2004 Workshop on Su-
pervisory Control of Learning and Adaptive Systems.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy itera-
tion. Journal of Machine Learning Research 4:1107-1149.

Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking rein-
forcement learners. Machine Learning 22:251-282.

McGovern, A., and Barto, A. G. 2001. Automatic discovery of sub-
goals in reinforcement learning using diverse density. In /ICML,
361-368. Williamstown, MA.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping:
Reinforcement learning with less data and less time. Machine
Learning 13:103-130.

Pietro, A. D.; While, L.; and Barone, L. 2002. Learning in
RoboCup keepaway using evolutionary algorithms. In et al., W.
B.L., ed., GECCO 2002, 1065-1072. New York.

Schaal, S. 1997. Learning from demonstration. In Mozer, M.; Jor-
dan, M.; and Petsche, T., eds., Advances in Neural Information
Processing Systems 9. Cambridge, MA: MIT Press.

Soni, V., and Singh, S. 2006. Using homomorphisms to transfer
options across continuous reinforcement learning domains. In
Proceedings of the Twenty First National Conference on Artifi-
cial Intelligence.

Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforce-

ment learning for RoboCup-soccer keepaway. Adaptive Behav-
ior 13(3):165-188.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

Sutton, R.; Precup, D.; and Singh, S. 1999. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112:181-211.

Taylor, M. E., and Stone, P. 2005. Behavior transfer for value-
function-based reinforcement learning. In AAMAS 2005, 53-59.

Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005. Us-
ing advice to transfer knowledge acquired in one reinforcement
learning task to another. In ECML 2005. Porto, Portugal.

Watkins, C.J. C. H. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, King’s College, Cambridge, UK.

White, A.; Lee, M.; Butcher, A.; Tanner, B.; Hack-
man, L.; and Sutton, R. 2007. Rl-glue distribution,
http://rlai.cs.ualberta.ca/rlbb/top.html.

	Introduction
	Why an RL Task Language?

	The BL Task Learning Framework
	Language Primitives
	Teaching a lesson in GridWorld

	Complex Example: The RoboCup Domain
	Keepaway Soccer
	Teaching three versus two Keepaway
	Verification

	Conclusions and Future Work

