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Agile Robot Navigation through Hallucinated Learning and Sober Deployment

Xuesu Xiao1, Bo Liu1, and Peter Stone1,2

Abstract— Learning from Hallucination (LfH) is a recent
machine learning paradigm for autonomous navigation, which
uses training data collected in completely safe environments and
adds numerous imaginary obstacles to make the environment
densely constrained, to learn navigation planners that produce
feasible navigation even in highly constrained (more danger-
ous) spaces. However, LfH requires hallucinating the robot
perception during deployment to match with the hallucinated
training data, which creates a need for sometimes-infeasible
prior knowledge and tends to generate very conservative
planning. In this work, we propose a new LfH paradigm
that does not require runtime hallucination—a feature we call
“sober deployment”—and can therefore adapt to more realistic
navigation scenarios. This novel Hallucinated Learning and
Sober Deployment (HLSD) paradigm is tested in a benchmark
testbed of 300 simulated navigation environments with a wide
range of difficulty levels, and in the real-world. In most
cases, HLSD outperforms both the original LfH method and a
classical navigation planner.

I. INTRODUCTION

Machine learning techniques have been recently applied
to mobile robot navigation to develop robots that are capa-
ble of moving from one point to another within obstacle-
occupied environments in a collision-free manner [1]–[7].
Besides classical planning methods [8], [9], machine learning
approaches can produce effective planners from data instead
of hand-crafted rules and heuristics.

Among the thrust of learning to navigate, Imitation Learn-
ing (IL) [1] and Reinforcement Learning (RL) [3] are the
two main streams. While the former requires expert demon-
stration, the latter learns from trial-and-error. Their initial
successes indicate a promising potential future for these
data-driven approaches, which do not require sophisticated
engineering and in-situ adjustment [5], [10]. However, most
learning approaches require a large amount of training data
in order to produce good navigation behaviors, especially in
challenging unseen environments.

Learning from Hallucination (LfH) [6] is a recently pro-
posed paradigm to address the difficulty of obtaining high-
quality training data. Using LfH, the robot collects training
data in an obstacle-free, and thus completely safe, envi-
ronment with a random exploration policy. During training,
the most constrained surrounding obstacle configuration is
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synthetically projected onto the robot’s perception, which
allows the effective action taken by the robot in the open
space to be the only feasible, and therefore optimal, action.
A control policy is learned with training data as if the robot
had been moving in those constrained spaces. Thanks to the
inherent safety of navigating in a completely open training
environment, the robot can autonomously generate a large
amount of training data with no human supervision or any
costly failure during trial-and-error learning.

However, one major drawback of LfH [6] is that the
perception also needs to be hallucinated during deployment,
with the help of a fine-resolution reference path (prior
knowledge that is sometimes infeasible to obtain), and it
requires other modules to address out-of-distribution scenar-
ios. This runtime hallucination adds extra computation to
the perception and becomes ineffective when only sparse
future waypoints are available. Furthermore, hallucinating
to be always in the most constrained environment during
deployment causes the planner to become unnecessarily
conservative and fail to adapt to some realistic situations,
e.g., an actual open space.

The Hallucinated Learning and Sober Deployment
(HLSD) approach proposed in this work eliminates the
necessity of hallucination during deployment and allows
the robot to perceive its actual surroundings. This “sober
deployment” relaxes the requirement for a high-resolution
reference path and enables the robot to adapt to the real
deployment environment. Through a novel hallucination
strategy during training, the robot is able to learn from
many obstacle configurations as augmentations sampled in
addition to the minimal unreachable set, which is the smallest
set of obstacles required to cause the actions performed
in the obstacle-free training environment to be optimal,
given a specific goal. Our simulated experiment on 300
benchmark testbeds [11] and our real-world experiment using
a physical robot show that after seeing an extensive amount
of carefully designed hallucinated training data, the robot is
able to efficiently produce agile maneuvers without runtime
hallucination. Superior navigation performance is achieved
compared to the original LfH approach with extra access to
a high-resolution global path and runtime hallucination, and
also to a classical navigation planner.

II. RELATED WORK
This section presents related work in mobile robot navi-

gation, using classical motion planning and recent machine
learning techniques.

A. Classical Motion Planning
In terms of classical motion planning, mobile robot nav-

igation is the problem of moving a robot from one point



to another within an obstacle-occupied space in a collision-
free manner. Such planning usually happens in the robot
Configuration Space (C-Space) [12] and produces (asymp-
totically) optimal motion plans based on a predefined metric,
such as maximum clearance, shortest path, or a combination
thereof [13]. These metrics are optimized in terms of C-space
representation (e.g. cellular decomposition [13]), global plan-
ning (e.g. Dijkstra’s), and local planning. For example, the
optimization-based Elastic Bands (E-Band) planner [8] uses
repulsive forces generated from obstacles to deform and
optimize an initial trajectory, primarily to achieve maximum
clearance. The Dynamic Window Approach (DWA) [9] sam-
ples feasible actions and scores them based on a weighted
score of distance to obstacles, closeness to a global path,
and progress toward the goal. The new hallucination strategy
proposed in this paper assumes the planner learned from
hallucinated training data primarily seeks the shortest path.
We leave hallucination strategies that optimize for maximum
clearance for future work.

B. Machine Learning for Navigation

Despite decades of effort to develop classical autonomous
navigation systems [8], [9], machine learning has recently
shown promise for creating competitive end-to-end planners
with obstacle avoidance [1], enabling terrain-based naviga-
tion [4], [14], allowing robots to move around humans [2],
and tuning parameters for classical navigation systems [5],
[15], [16]. All these learning methods require either extensive
or high-quality training data, such as that derived from trial-
and-error exploration or from human demonstrations [17].

To address the difficulty in obtaining extensive or high-
quality training data, self-supervised LfH [6] collects train-
ing data in an obstacle-free environment with complete
safety, and then learns a local navigation policy through
synthetically projecting the most constrained C-space (C∗obst)
onto the robot perception. The most constrained C-space
corresponds to the obstacle configuration with as many
obstacles as possible such that the executed motion is the
only feasible and therefore optimal motion plan: if any more
obstacles were to be added, then the motion plan would no
longer be feasible. However, LfH also requires hallucination
of C∗obst during deployment. This hallucination “on-the-fly”
requirement assumes prior knowledge such as a relatively
high-resolution global path is available. Furthermore, this
previous work [6] only works well when the linear velocity
in the training set is mostly constant, due to the fact that the
robot always hallucinates navigating in the most constrained
scenarios and the trained local planner is therefore relatively
conservative. Varying speeds in the same most constrained
space will lead to ambiguity, as shown in our experiments
(Section IV). In this work, we eliminate the necessity of
hallucination “on-the-fly”, and therefore the requirement
of an available high-resolution global path. During sober
deployment, the local planner only needs a single local
goal point, along with the real, rather than hallucinated,
perception. In addition, the novel hallucination technique
also teaches the robot to vary its speed in response to the real

environment, instead of the hallucinated most constrained
spaces.

III. APPROACH
In this section, we present our Hallucinated Learning

and Sober Deployment (HLSD) technique for mobile robot
navigation. In Sec. III-A, we start with a simplified example,
which assumes the robot to be a point mass that follows a
relatively simple path, to introduce the idea of a minimal
unreachable set, Cminobst , for a given optimal plan. We provide
necessary conditions for being a minimal unreachable set, as
the basis for many unreachable sets for the optimal plan. In
Sec. III-B, we show how we use one special case, Cminobst , to
represent all other minimal unreachable sets. We also present
how we adapt the point mass example to deal with real-
world robots. In Sec. III-C, we introduce a sampling method
to generate augmentations to the representative minimal
unreachable set (Cminobst ) to generalize for sober deployment.

A. Point Robot Example
We first present a simplified example, which assumes a

point mass robot going through three non-colinear config-
urations. In this case, the robot’s workspace is exactly the
C-space. We use the same notation used by Xiao et al. to
formalize LfH [6]: given a robot’s C-space partitioned by
unreachable (obstacle) and reachable (free) configurations,
C = Cobst∪Cfree, the classical motion planning problem is
to find a function f(·) that can be used to produce optimal
plans p = f(Cobst | cc, cg) that result in the robot moving
from the robot’s current configuration cc to a specified goal
configuration cg without intersecting (the interior of) Cobst.
Here, a plan p ∈ P is a sequence of low-level actions
{ui}ti=1 (ui ∈ U, P and U are the robot’s plan and
action space, respectively). Considering the “dual” problem
of finding f(·), LfH [6] includes a method to find the
(unique) most constrained unreachable set corresponding to
p, C∗obst. In this work, however, we introduce the definition of
a (not unique) minimal unreachable set, Cminobst , corresponding
to p:

Definition 3.1: Cmin
obst

.
= {Cminobst | ∀c ∈ Cminobst , f(C

min
obst \

{c} | cc, cg) 6= f(Cminobst | cc, cg)}
In other words, every member, Cminobst ∈ Cmin

obst , is a minimal
set of obstacles that lead to p being an optimal plan.1 Any
path that arises from an optimal plan can be approximated
by connected line segments. The simplest case of a robot
path following an optimal plan p to move from cc to cg
(except a straight line) is composed of configurations on two
straight line segments, cc−cm and cm−cg . The intermediate
turning point is defined as cm. Since cm is one configuration
on the robot’s path, we say p goes through cm (Fig. 1). In
the following, given a point-mass robot moving from cc to
cg according to some optimal plan p computed by f(·), we
show two necessary conditions (=⇒) for an unreachable set
(Cobst) to be a minimal unreachable set (Cminobst ), to aid in
identifying the representative unreachable set (Cminobst ) used
in Sec. III-B.

1Cmin
obst is minimal in the sense that no subset of it also leads to the same

optimal plan, i.e. nothing can be removed such that p remains optimal.



Proposition 3.1: If c ∈ Cminobst , then the optimal plan for
the unreachable set Cminobst \ {c}, p̂ = f(Cminobst \ {c} | cc, cg),
must go through c.

Proof: Assume otherwise. Since p̂ = f(Cminobst \
{c} | cc, cg) 6= f(Cminobst | cc, cg) = p (Definition 3.1), for
Cminobst \ {c}, the path arising from p̂ is shorter than the one
arising from p. Since we assume p̂ does not go through c,
adding c back to Cminobst \{c} does not affect the feasibility of
p̂ for Cminobst and does not change the path length. The path
arising from p̂ is still shorter than the one arises from p in
Cminobst , thus contradicting the optimality of p for Cminobst .

Proposition 3.2: (=⇒ 1) ∀Cobst ∈ Cmin
obst , cm ∈ Cobst.2

Proof: Consider any circle B(cm, ε) that centers at cm
with radius ε. B intersects cc − cm at c1 and cm − cg at
c2 (Fig. 1 a). Assume there exists no configuration c ∈ B

such that ∃Cobst ∈ Cmin
obst and c ∈ Cobst. Consider the path

cc− c1− c2− cg: since cc− cm− cg is feasible, then cc− c1
and c2− cg are feasible. Moreover, by assumption c1− c2 is
also feasible. But cc−c1−c2−cg is shorter than cc−cm−cg
since c1 − c2 is shorter than c1 − cm − c2 due to triangle
inequality. This contradicts the optimality of cc − cm − cg .
Therefore, ∃c ∈ B that belongs to some Cobst ∈ Cmin

obst .
Since this is true for limε→0 B(cm, ε), and Cobst is a closed
set [13], the limit point B(cm, 0) = cm ∈ Cobst.

We name the union of all robot configurations in the
triangle defined by cc, cm, and cg as G1. On the other side of
line segment cc−cg , we name the union of all configurations
in the half ellipse, whose focal points locate at cc and cg ,
and whose major axis length is |cccm|+ |cmcg|, as G2. We
define G = G1 ∪G2 (the grey area in Fig. 1).

Proposition 3.3: (=⇒ 2) ∀Cobst ∈ Cmin
obst , ∀c ∈ G,

{cp | cp on line segments cc − c− cg} ∩ Cobst 6= ∅
Proof: Assume ∃c ∈ G, {cp | cp on line segments cc−

c− cg}∩Cobst = ∅. Then cc− c− cg is a feasible path. The
length of cc − c− cg is the sum of distances from c (inside
ellipse) to the two ellipse focal points cc and cg , which is,
per definition of an ellipse, shorter than its major axis length
|cccm|+ |cmcg|. This contradicts the optimality of p.

Based on the two necessary conditions of Cobst ∈ Cmin
obst

(Proposition 3.2 and 3.3), one class of minimal unreachable
sets could be simply constructed by connecting cm with some
point ce on the left boundary of the ellipse with a straight line
cm−ce (Cmin1

obst in Fig. 1 a), or two line segments cm−cg(cc)
and cg(cc)− ce (Cmin2

obst in Fig. 1 b), if not all configurations
on cm − ce are in G. In particular, for efficiency, we simply
represent all minimal unreachable sets with a special case,
Cminobst (Fig. 1 d), which is all configurations along the straight
line cm and c′m (the reflective symmetry point of cm with
respect to cc−cg). Empirical evidence of this approximation’s
sufficiency for the purpose of learning will be provided in
Sec. IV. Here, we further provide one more observation to
help develop intuition regarding how to identify a Cminobst .

Proposition 3.4: ∀Cminobst , ∀c ∈ Cminobst , c ∈ G.

2C is a topological space, Cobst is a closed set, and Cfree = C \Cobst

is an open set. cm is a boundary point of both Cobst and Cfree. The robot
can come arbitrarily close to the obstacles while remaining in Cfree [13].

Fig. 1: Cmin1

obst , C
min2

obst , ... , C
mini

obst , C
min
obst ∈ Cmin

obst .

Proof: Assume c ∈ Cminobst and c /∈ G, only two
possibilities exist:

(1) c is outside the entire (left and right half) ellipse whose
focal points locate at cc and cg , and whose major axis length
is |cccm|+|cmcg|: based on Proposition 3.1, the optimal plan
p̂ = f(Cminobst \ {c} | cc, cg) must go through c. The shortest
possible path, which goes through c, is cc−c−cg , if it exists.
However, based on the definition of ellipse, for any c outside
the ellipse, |ccc|+ |ccg| > |cccm|+ |cmcg|. This contradicts
the optimality of p̂.

(2) c is inside the entire ellipse, but outside G: c must
be in the right half of the ellipse but outside G1 (Fig. 1
e). Again, p̂ must go through c. The shortest possible path
which goes through c is cc − c− cg , if it exists, which must
intersect either cc − cm or cm − cg at some point ci. Due
to substructure optimality (i.e. a sub-path of a shortest path
is still a shortest path), the shortest path between any points
on cc − cm − cg must be its sub-path. If ci is on cc − cm,
then the shortest path from ci to cg must be ci − cm − cg .
cc−c−ci−cm−cg is longer than cc−cm−cg , and therefore
not optimal. If ci is on cm − cg , the shortest path between
cc and ci must be cc − cm − ci. cc − cm − ci − c − cg is
longer than cc− cm− cg , and therefore not optimal. In both
cases, the shortest possible path going through c is longer
than cc − cm − cg . This contradicts the optimality of p̂.

Therefore, ∀Cminobst , ∀c ∈ Cminobst , c ∈ G.

B. Realistic Nonholonomic Robot
Based on the propositions discussed in Sec. III-A, we

present the hallucination technique for a realistic robot. In
realistic scenarios, we approximate all Cminobst in Cmin

obst with
Cminobst . We hypothesize that all Cminobst are sufficiently similar
that using just one leads to learning that is just as good
as if we used them all, especially when (1) cc, cm, and
cg extracted from realistic trajectories are close to each
other, and (2) Cobst is instantiated in terms of discrete
LiDAR beams. Empirical evidence of this sufficiency will
be provided in Sec. IV. However, a realistic robot cannot be
modeled as a simple point mass because: (1) the size is not
negligible and we need a path for the center of the robot
that causes no part of the robot to collide with an obstacle;
(2) nonholonomic robots cannot change motion direction
instantly, so we need to generalize to a continuously turning
path from the piece-wise point mass example. In Sec. III-B,
we aim to adapt the point mass example (Sec. III-A) to real-
world robots, and therefore need to address these differences.

To address (1), we define one point to the left and another



Fig. 2: Applying the point robot example to realistic robot
case: Cminobst is instantiated as LiDAR beams whose maximum
range is determined by ray casting.

to the right of the centroid of the robot, offset by the
robot width, as footprint points, as shown in Fig. 2. The
instantaneous linear velocity along the line between these
two footprint points is zero for nonholonomic vehicles. The
polygon defined by a sequence of footprint points must
belong to free space. The actual path executed by the optimal
plan p follows the middle of this area. To address (2), we
define cω as configurations between the current and goal
configurations with a non-zero angular velocity (ω 6= 0).
Given the current configuration, each cω , and each cω’s next
configuration, their left or right footprint points are treated as
cc, cm, and cg in the point robot case: based on the sign of
ω, the robot turns left or right, and the left or right footprint
points are chosen. For each triple of point robot cc, cm, and
cg , for efficiency, we approximate all different Cminobst with
Cminobst (Fig. 1 d). For a realistic optimal plan p with actual cc
(current) and cg (goal) and multiple point robot cc−cm−cg
triples in between, we define the union of all Cminobst as Cmin

obst .
In particular, we define an “opposite” function of f(·):

Cmin
obst = o(p | cc, cg) as the minimal hallucination function.3

This function finds Cmin
obst based on the fact that p is an

optimal plan. As visualized in Fig. 2, Cobst is instantiated in
terms of discrete LiDAR range readings. For each LiDAR
beam, we define a minimum and a maximum range, which
limit the possible range readings of this particular beam
based on the optimal plan p. The minimum range of all
beams is determined by the left and right boundary, as
configurations within the boundary must be in Cfree. We
project all Cminobst onto the corresponding LiDAR beams and
for the beams directly intersect any Cminobst , the maximum
range is set as the distance from the robot to the intersection
point. For other beams, the maximum range is simply the
LiDAR’s physical limit, or manually pre-processed to a
certain threshold.

C. Sampling between Min and Max Range
Given the representative minimal unreachable set, we want

to find all possible unreachable sets, or their sensor readings,
that could lead to p being the optimal plan. Based on the
LiDAR scan with a minimum and maximum range for each

3Note the inverse function f−1(·) does not exist. Technically, cg can be
uniquely determined by p and cc, but we include it as an input to o(·) for
notational symmetry with f(·).

beam (end of Sec. III-B), a sampling strategy is devised to
create many obstacle sets, Cobst, in which p is optimal.

Our sampling strategy aims at creating different range
readings that (1) resemble real-world obstacles, and (2)
respect uncertainty/safety. For (1), most real-world obstacles
have a certain footprint, and their surface contribute to
continuity among neighboring beams. Starting from the first
beam, a random range is sampled between min and max with
a uniform distribution. Moving on to the neighboring beam,
with a probability α, we increase, or decrease, the previous
range by a small random amount, and assign the value to
the current beam. This practice is to simulate the continuity
in neighboring beams. We make sure this value is within the
min and max range of that beam. With probability 1−2α, we
start from scratch and randomly sample between this beam’s
min and max values. This practice is to simulate the scenarios
where the next beam misses the current obstacle, and reaches
another one or does not reach any obstacle at all. For (2),
we add an offset value as a function of the optimal plan p to
the ranges. For example, given a faster speed of p, a larger
positive offset is added to the range reading (obstacles are
farther away), because faster motion is correlated with more
uncertainty or less safety (details can be found in Sec. IV-A).
One example scan sample is shown in Fig. 2 as blue ×’s.

The entire HLSD pipeline is described in Alg. 1. The
inputs to the algorithm are a random exploration policy πrand
in open space; the minimal hallucination function o(·); a
sampling count of hallucinated Cobst to be generated per
data point; the offset(·) function; the probability α; and a
parameterized planner fθ(·). For every data point (p, cc, cg)
in Draw collected using πrand in open space (line 2), we hal-
lucinate Cmin

obst (line 5) and generate the min and max values
for every LiDAR beam (line 6). Lines 8–15 correspond to
the sampling technique to generate random laser scans. We
instantiate Cobst as LiDAR readings L and add it to Dtrain

(line 16). This process is repeated sampling count times for
every data in Draw. Finally, we train fθ(·) with supervised
learning (line 19). This hallucinated learning enables sober
deployment with perception of the real configuration Crealobst

without runtime hallucination (Lines 21–22).

IV. EXPERIMENTS
Simulated and physical experiments are conducted to

validate our hypothesis that HLSD can achieve better perfor-
mance (faster, smoother, safer) than a classical method and
LfH with runtime hallucination. In our experiments, we use
a Clearpath Jackal robot, a four-wheeled, differential-drive,
nonholonomic, Unmanned Ground Vehicle (UGV), running
the Robot Operating System (ROS) move base navigation
stack. Its DWA local planner is replaced with HLSD. The
robot navigates without a map. The global planner (Dijkstra’s
algorithm) assumes unknown regions are free and replans
when obstacles are perceived. The local environment is
known to the local planner.

A. Implementation
In order to instantiate Alg. 1, with o(·)o(·)o(·) described in detail

in Sec. III-B, one still needs to define fθ(·)fθ(·)fθ(·), πrandπrandπrand, sampling



count, ααα, and offset(·)(·)(·):
fθ(·)fθ(·)fθ(·): For p = {ui}ti=1 = fθ(C

real
obst | cc, cg), instead

of requiring a high-resolution global path from the global
planner (Dijkstra’s) to construct C∗obst in LfH [6], we only
query a single local goal cg on the global path 1m away
from the robot at each time step, and cc is the origin in
the robot frame (orientation is ignored for simplicity). The
UGV is equipped with a 720-dimensional 2D LiDAR with
a 270◦ field of view, and we clip the maximum range to 1m
to reduce the input space (Crealobst ). The planning horizon t of
p is set to 1, i.e. only a single action p = {u1} = {(v1, ω1)}
(linear and angular velocity) is produced. We use the same
three-layer neural network, with 256 hidden neurons and
ReLU activation for each layer as in LfH [6].
πrandπrandπrand: πrand randomly picks a target (v̂, ω̂) pair and

commands the robot to reach that speed with constant
increments/decrements considering acceleration limit. After
reaching (v̂, ω̂), πrand keeps that command with some proba-
bility (0.9) or otherwise generates a new target command. We
limit the output v ∈ [0, 1.0]m/s and ω ∈ [−1.57, 1.57]rad/s.
During training in a simulated open space, control inputs (v
and ω) and robot configurations (x, y, and ψ) are recorded.
Unlike the dataset collected by LfH [6], which mostly

Algorithm 1 Hallucinated Learning and Sober Deployment

Input: πrand, o(·), sampling count, offset(·), α, fθ(·)

1: // Hallucinated Learning
2: collect motion plans (p, cc, cg) from πrand in free space

and form raw data set Draw

3: Dtrain ← ∅
4: for every (p, cc, cg) in Draw do
5: hallucinate Cmin

obst = o(p | cc, cg)
6: generate LiDAR range Lmin and Lmax with Cmin

obst

7: for iter = 1 : sampling count do
8: L← ∅
9: l1 ∼ [l1min, l

1
max], l

1 ← l1 + offset(p)
10: add l1 to L, llast ← l1

11: for i = 2 : |L| do
12: increase, decrease llast by a randomly selected

small amount, or li ∼ [limin, l
i
max], l

i ← li +
offset(p), with probability α, α, and 1 − 2α,
respectively, and assign to li

13: make sure li ∈ [limin, l
i
max]

14: add li to L, llast ← li

15: end for
16: Cobst ← L, Dtrain = Dtrain ∪ (Cobst, p, cc, cg)
17: end for
18: end for
19: train fθ(·) with Dtrain by minimizing the error

E(Cobst,p,cc,cg)∼Dtrain

[
`(p, fθ(Cobst | cc, cg))

]
20: // Sober Deployment (each time step)
21: receive Crealobst , cc, cg
22: plan p = {ui}ti=1 = fθ(C

real
obst | cc, cg)

23: return p

contains v = 0.4m/s, our dataset contains a variety of v
values. 12585 data points are collected in a 505s real-time
simulation, including a variety of motions in an open space.

sampling count, ααα, and offset(·)(·)(·): We set sampling count
to 10 and α to 0.48. The offset(·) function linearly maps
current v in the range [0.3, 1.0]m/s to an offset value
between [0, 1]m. Considering the fact that a real robot
also needs to turn even in open space due to nonholonomic
constraints, as opposed to an ideal point mass robot which
does not, we also hallucinate Cobst = ∅ for configurations
where v > 0.8m/s. Considering highly constrained spaces,
we additionally hallucinate the most constrained C∗obst for
configurations where v < 0.3m/s. So |Dtrain| = 12∗|Draw|.
Training takes less than three minutes on a NVIDIA GeForce
GTX 1650 laptop GPU.

After computing p with Alg. 1, we use the same Model
Predictive Control model as in LfH [6] to check for col-
lisions. When a collision is detected, the robot enters a
two-phase recovery behavior: it first queries the global path
immediately in front of the robot, and rotates to align the
robot heading with the tangential direction of the global path.
If this recovery behavior is still not safe as determined by
the collision checking, the robot backs up at v = −0.2m/s.
Since LfH learns only from the most constrained C-space,
it requires runtime hallucination to match with training data,
and a Turn in Place module to drive the robot out of out-
of-distribution scenarios. Neither of those components are
required by HLSD. Because our dataset contains varying
v ∈ [0, 1.0]m/s, the LfH speed modulation module to adapt
mostly constant v to real environments is not necessary
either. The robot is able to react to the real obstacle config-
uration by using fθ(·) alone because Dtrain covers a wide
range of distributions.

B. Simulated Experiments
We first use the Benchmark Autonomous Robot Navi-

gation (BARN) dataset with 300 navigation environments
and quantified difficulty levels [11] (example environments
shown in Fig. 3) to compare (1) DWA, (2) original LfH
trained on the mostly constant 0.4m/s dataset with halluci-
nated C∗obst (LfH 0.4), (3) LfH trained on our varying speed
1.0m/s dataset with C∗obst (LfH 1.0), (4) HLSD trained on the
0.4m/s dataset with augmentations to Cminobst (HLSD 0.4), and
(5) HLSD trained on the 1.0m/s dataset with Cminobst (HLSD
1.0). The baselines are chosen for the following reasons:
DWA is a widely used local planner and its implementation is
available through the ROS move base navigation stack. We
only consider similar self-supervised approaches and exclude
methods that require expert supervision [1], [18], because
HLSD does not require any expert motion trajectories. Al-
though DWA’s default max linear velocity is 0.5m/s, for a
fair comparison, we set DWA’s max linear velocity to the
same as HLSD’s (1.0m/s). We find that by also doubling
DWA’s default sampling rate for linear and angular velocity
(12 and 40), the robot’s performance is roughly the same as
when using the default parameters (but at double the speed).
Simulated results are shown in Fig. 4.



Fig. 3: Simulated Environments of Different Difficulties in the BARN Dataset [11]

Fig. 4: Simulation Results
In each of the 300 navigation environments generated by

Cellular Automaton, the robot navigates between a specified
start and goal location without a map. We record the traversal
time for each trial, with a maximum of 50s. Three trials are
conducted for each planner in each environment, resulting in
a total of 4500 trials. The difficulty of the 300 environments
are ordered from left to right based on the DWA performance
(blue line). The performances of other planners are plotted
as dots, for which a line is fit using linear regression. LfH
1.0 (red) fails many trials. The reason is that learning from
a dataset with varying speed and always hallucinating the
most constrained spaces causes ambiguity: the same most
constrained C-space can map to different plans, which con-
fuses the learner. LfH 0.4 (magenta) and HLSD 0.4 (cyan),
both trained on the mostly constant 0.4m/s dataset without
ambiguity, achieve similar performance and are less sensitive
to navigational difficulty, especially LfH 0.4, but LfH 0.4
requires runtime hallucination and other components. Note
that DWA has max speed of 1.0m/s, while LfH 0.4 and HLSD
0.4 have up to 0.6m/s max speed, modulated from mostly
0.4m/s learned from the dataset. DWA has an advantage in
easy environments (left) due to its fast speed, but in difficult
ones (right), LfH 0.4 and HLSD 0.4 are more stable. Also
having 1.0m/s max speed, HLSD 1.0 considers the varying
linear velocity in the 1.0m/s dataset with the offset(·) function
(line 9 in Alg. 1), and achieves the best result, outperforming
all alternatives across the entire range of difficulties. The
means and standard deviations of all five planners calculated
from all trials are shown in Tab. I. LfH 1.0 has the largest
average time and variance, because the learner is confused
by the varying training labels in the same most constrained
spaces. DWA has large time and also high variance due to
its sampling nature. Again, HLSD 0.4 performs similarly as
LfH 0.4 does. HLSD 1.0 still outperforms all other planners.

C. Physical Experiments
We also deploy the same set of local planners in a physical

test course, five trials each (Fig. 5 top). The results are shown

TABLE I: Simulated and Physical Traversal Time in Seconds
DWA LfH 0.4 LfH 1.0 HLSD 0.4 HLSD 1.0

Sim. 17.0±12.6 13.5±6.4 26.7±15.0 13.4±9.8 8.5±6.3
Phy. 78.8±10.0 67.0±4.4 ∞ 66.3±0.7 45.4±0.4

Fig. 5: Physical Experiments (https://www.youtube.
com/watch?v=LZcBN9zgtXg&t=11s)

in Tab. I. The complicated obstacle course causes DWA to
execute many recovery behaviors, and the robot takes a long
average time with large variance to finish the traversal. LfH
0.4 and HLSD 0.4 are both able to successfully navigate the
robot through, with similar traversal times. But note that LfH
0.4 requires a fine-resolution global path for hallucination
during deployment and the Turn in Place module, while
HLSD does not and only reacts to the real obstacles without
any other extra components. In this physical obstacle course,
LfH 1.0 fails every trial due to multiple collisions. Our HLSD
1.0 achieves the best performance both in terms of average
time and standard deviation. HLSD deployment in a natural
cluttered environment is shown in Fig. 5 bottom.

V. CONCLUSIONS
We introduce HLSD, a self-supervised machine learning

technique for mobile robot navigation with safety guarantee
during training. Similar to LfH [6], the robot safely learns in
a completely obstacle-free environment and its perception is
hallucinated with obstacle configurations where the actions
taken in the free space remain optimal. Instead of overfitting
to the most constrained spaces during training and requiring
runtime hallucination and other modules to adapt to actual
environments, the new HLSD pipeline allows the robot
to navigate with the learned planner alone in response to
realistic perception. By leveraging a large body of carefully
designed hallucinations used for training, the learned planner
does not need to deal with many out-of-distribution scenarios
and has its own capability to address uncertainty/safety in the
real-world during deployment.

https://www.youtube.com/watch?v=LZcBN9zgtXg&t=11s
https://www.youtube.com/watch?v=LZcBN9zgtXg&t=11s
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