In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA 2021) (icra 2021),

Xi’an China June 2021

APPLR: Adaptive Planner Parameter Learning from Reinforcement

Zifan Xu!, Gauraang Dhamankar2, Anirudh Nair®, Xuesu Xiao?2,
Garrett Warnell>4, Bo Liu?, Zizhao Wang®, and Peter Stone®¢

Abstract— Classical navigation systems typically operate us-
ing a fixed set of hand-picked parameters (e.g. maximum
speed, sampling rate, inflation radius, etc.) and require heavy
expert re-tuning in order to work in new environments. To
mitigate this requirement, it has been proposed to learn
parameters for different contexts in a new environment using
human demonstrations collected via teleoperation. However,
learning from human demonstration limits deployment to the
training environment, and limits overall performance to that
of a potentially-suboptimal demonstrator. In this paper, we
introduce APPLR, Adaptive Planner Parameter Learning from
Reinforcement, which allows existing navigation systems to
adapt to new scenarios by using a parameter selection scheme
discovered via reinforcement learning (RL) in a wide variety
of simulation environments. We evaluate APPLR on a robot
in both simulated and physical experiments, and show that it
can outperform both a fixed set of hand-tuned parameters and
also a dynamic parameter tuning scheme learned from human
demonstration.

[. INTRODUCTION

Most classical autonomous navigation systems are capable
of moving robots from one point to another, often with
verifiable collision-free guarantees, under a set of parameters
(e.g. maximum speed, sampling rate, inflation radius, etc.)
that have been fine-tuned for the deployment environment.
However, these parameters need to be re-tuned to adapt to
different environments, which requires extra time and en-
ergy spent onsite during deployment, and more importantly,
expert knowledge of the inner workings of the underlying
navigation system [1], [2].

A recent thrust to alleviate the costs associated with
expert re-tuning in new environments is to learn an adaptive
parameter tuning scheme from demonstration [3]. Although
this approach removes the requirement of expert tuning,
it still depends on access to a human demonstration, and
the learned parameters are typically only applicable to the
training environment. Moreover, the performance of the

Department of 'Physics zfxu@utexas.edu, 2Computer Science
{dgauraang, xiao, bliu, pstone}@cs.utexas.edu,
SMathematics ani.nair@utexas.edu, SElectrical and Computer
Engineering zizhao.wang@utexas.edu, University of Texas
at Austin, Austin, Texas 78712. 4Computational and Information
Sciences Directorate, Army Research Laboratory, Austin, Texas 78712
garrett.a.warnell.civ@mail.mil. %Sony AL This work
has taken place in the Learning Agents Research Group (LARG) at UT
Austin. LARG research is supported in part by NSF (CPS-1739964, IIS-
1724157, NRI-1925082), ONR (N00014-18-2243), FLI (RFP2-000), ARO
(W911NF-19-2-0333), DARPA, Lockheed Martin, GM, and Bosch. Peter
Stone serves as the Executive Director of Sony Al America and receives
financial compensation for this work. The terms of this arrangement have
been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

system is limited by the quality of the human demonstration,
which may be suboptimal.

In this paper, we seek a new method for adaptive au-
tonomous navigation which does not need access to expert
tuning or human demonstration, and is generalizable to many
deployment environments. We hypothesize that a method
based on reinforcement learning in simulation could achieve
these goals, and we verify this hypothesis by proposing
and studying Adaptive Planner Parameter Learning from
Reinforcement (APPLR). By using reinforcement learning,
APPLR introduces the concept of a parameter policy (Fig.
1), which is trained to make planner parameter decisions
in such a way that allows the system to take suboptimal
actions at one state in order to perhaps perform even better
in the future. For example, while it may be suboptimal in
the moment to slow down or alter the platform’s trajectory
before a turn, doing so may allow the system to carefully
position itself so that it can go much faster in the future
than if it had not. Additionally, as opposed to an end-to-
end motion policy (i.e., a mapping from states to low-level
motion commands), APPLR’s parameter policy interacts with
an underlying classical motion planner, and therefore the
overall system inherits all the benefits enjoyed by classical
approaches (e.g., safety and explainability). We posit that
learning policies that act in the parameter space of an existing
motion planner instead of in the velocity control space
can increase exploration safety, improve learning efficiency,
generalize well to unseen environments, and allow effective
sim-to-real transfer.

II. RELATED WORK

In this section, we summarize related work on existing
parameter tuning approaches for classical navigation and on
learning-based navigation systems.

A. Parameter Tuning

Classical navigation systems usually operate under a static
set of parameters. Those parameters are manually adjusted
to near-optimal values based on the specific deployment
environment, such as high sampling rate for cluttered en-
vironments or high maximum speed for open space. This
process is commonly known as parameter tuning, which
requires robotics experts’ intuition, experience, or trial-and-
error [1], [2]. To alleviate the burden of expert tuning,
automatic tuning systems have been proposed, such as those
using fuzzy logic [4] or gradient descent [5], to find one
set of parameters tailored to the specific navigation scenario.

Classical RL APPLR
State i
S Action
Parameters:
State] |Reward Action Reward Max Speed,
S R A R Sampling Rate,
. Inflation Radius, etc.
Raw Actions:
(v, w)

Fig. 1: Instead of learning an end-to-end motion policy 7,
which takes state S and reward R from the world W and
produces raw actions A, e.g. linear and angular velocity
(v,w) (left), APPLR treats an underlying classical motion
planner f as part of the meta-environment £ (along with
the world W) and the learned parameter policy m, interacts
with it through actions in the parameter space (right). In
this way, the RL agent selects its action in the form of a
set of navigation parameters at each time step and reasons
about potential future consequences of those parameters,
rather than funing a single set of parameters for the entire
environment only considering the current situation.

Recently, Xiao et al. introduced Adaptive Planner Parame-
ter Learning from Demonstration (APPLD), which learns a
library of parameter sets for different navigation contexts
from teleoperated demonstration, and dynamically tunes the
underlying navigation system during deployment. APPLD’S
parameter-tuning “on-the-fly” opens up a new possibility
for improving classical navigation systems. However, APPLD
makes decisions about which parameters to use based exclu-
sively on the current context in a manner that disregards the
potential future consequences of those decisions.

In contrast, APPLR goes beyond this myopic parameter
tuning scheme and introduces the concept of a parameter
policy, where we use the term policy to explicitly denote
state-action mappings found through reinforcement learning
to solve long-horizon sequential decision making problems.
By using such a policy, APPLR is able to make parameter-
selection decisions that take into account the possible future
consequences of those decisions.

B. Learning-based Navigation

A plethora of recent works have applied machine learn-
ing techniques to the classical mobile robot navigation
problem [6]-[11]. By directly leveraging experiential data,
these learning approaches can not only enable point-to-point
collision-free navigation without sophisticated engineering,
but also enable capabilities such as terrain-aware naviga-
tion [12], [13] and social navigation [14], [15]. However,
most end-to-end learning approaches are data-hungry, requir-
ing hours of training time and millions of training data/steps,
either from expert demonstration (as in imitation learning)
or trial-and-error exploration (RL). Moreover, when an end-
to-end policy is trained in simulation using RL, the sim-
to-real gap may cause problems in the real-world. Most
importantly, learning-based methods typically lack safety and

explainability, both of which are important properties for
mobile robots interacting with the real-world.

APPLR aims to address the aforementioned shortcomings:
as a RL approach, learning in parameter space (instead of
in velocity control space) effectively eliminates catastrophic
failures (e.g. collisions) and largely reduces costly random
exploration, with the help of the underlying navigation sys-
tem. This change in action space can also help to generalize
well to unseen environments and to mitigate the difference
between simulation and the real-world (e.g. physics).

III. APPROACH

We now introduce the proposed approach, APPLR, which
aims to apply RL to identify an optimal parameter selection
policy for a classical motion planner. By doing so, APPLR
naturally inherits from the classical planner its safety guar-
antees and ability to generalize to unseen environments. In
addition, through RL, APPLR learns to autonomously and
adaptively switch planner parameters ‘“on-the-fly” and in
a manner that considers future consequences without any
expert tuning or human demonstration. In the rest of this
section, we first introduce the background of classical motion
planning. Then, we provide the problem definition of APPLR
under the standard Markov Decision Process framework.
Finally, we discuss the designed reward functions and the
chosen reinforcement learning algorithm.

A. Background on Motion Planning

In this work, we assume the robot employs a classical
motion planner, f, that can be tuned through a set of planner
parameters § € ©. While navigating in a physical world W,'
f tries to move the platform to a global navigation goal,
e.g., 3 = (Bs,By) € R% At each time step ¢, f receives
sensor observations oy (e.g. lidar scans), and then computes
a local goal g = (g,9y) € R? which the robot attempts
to reach quickly. Then, f is responsible for computing the
motion commands u; = f(o¢, 8 | 0) (e.g. u; can be the
angular/linear velocity). Most prior work in the learning
community attempts to replace f entirely by a learnable
function m,, that directly outputs the motion commands.
However, the performance of these end-to-end planners is
usually limited due to insufficient training data and poor
generalization to unseen environments. In contrast, we focus
here on a scheme for adjusting the planner parameters 6
“on-the-fly”. We expect learning in the planner parameter
space to increase the overall system’s adaptability while still
benefiting from the verifiable safety assurance provided by
the classical system.

B. Problem Definition

We formulate the navigation problem as a Markov Deci-
sion Process (MDP), i.e., a tuple (S, A, T,~, R). Assume an
agent is located at the state s; € S at time step ¢. If the agent
executes an action a; € A, the environment will transition
the agent to s;y1 ~ T (|st,a:) and the agent will receive

'In classical RL approaches for navigation, W is usually defined as an
MDP itself with the conventional state and action space (Fig. 1).

a reward r; = R(st,a;). The overall objective of RL is to
learn a policy 7 : & — A that can be used to select actions
that maximize the expected cumulative reward over time, i.e.
J = E(Smllf,)Nﬂ'[Zin ’ytrt]'

In APPLR, we seek a policy in the context of an MDP &£
that denotes a meta-environment composed of both the under-
lying navigation world W (the physical, obstacle-occupied
world) and a given motion planner f with adjustable param-
eters 6 € © and sensory inputs o € O. Additionally, we
assume going forward that a local goal g is always available
(as a waypoint along a coarse global path in most classical
navigation systems), and we use its angle relative to the
orientation of the agent, i.e., ¢ = arctan2(gy, g») € [—m, 7],
to inject the local goal information to the agent. We assume
the agent interacts with the environment at regular time
intervals of fixed length. Within &, at each time step ¢,
st = (ot,dt,0i—1), where o, € O is the current sensory
inputs, ¢; € G is the angle towards the local goal, and
f:—1 € © is the previous planner parameter that f was using.
That is, for our MDP £, S = O x G x © and A = ©. In this
context, APPLR aims to learn a policy m, : O x G x © —
O that selects a planner parameter ¢, that enables f to
achieve optimal navigation performance over time. The agent
then transitions to the next state si;11 = (0t41, Pri1,0t)s
where 0¢41, pr41 ~ T (*|s+,0;) are given by E. The overall
objective is therefore

mf?x JT = ESo79t~7f(5t),8t+1~7’(8t~,9t) |:nytrt:| - M
t=0

After training with a reward function (Sec. III-C and
III-D), the learned parameter policy m, is deployed with
the underlying navigation system f in the world W, as
summarized in Alg. 1.

Algorithm 1 Navigation with APPLR

Require: the physical world W, the underlying motion
planner f, the global goal 3, the initial parameter 6,
and the parameter policy).

t=1

2: while 3 is not reached do

receive sensor readings o, from W and local goal ¢,
from a coarse global plan
0, = 7rp(0t7¢t79t—1)

uy = f(ot, B | 0r)
execute u; in W
t=t+1

end while

(95}

{parameter policy}
{f parameterized by 6;}

® >Nk

C. Reward Function

We now describe our design of the reward function for
APPLR. In general, we encourage three types of behaviors:
(1) behaviors that lead to the global goal faster; (2) behaviors
that make more local progress; and (3) behaviors that avoid
collisions and danger. Correspondingly, the designed reward

function can be summarized as
Ri(s¢,a4,8¢41) = cp Ry + cp Ry + ceRe.)

Here, cy,cp,c. are coefficients for the three types of re-
ward functions Ry, R,, R, : S x A — R. Specifically,
Ry(s¢,ar) = 1(s; is terminal) — 1 applies a —1 penalty to
every step before reaching the global goal. To encourage the
local progress of the robot, we add a dense shaping reward
R,. Assume at time ¢, the absolute coordinates of the robot
are p; = (pf,p}), then we define

(pt+1 *Pt) ’ (5 *Pt)
W _pt|

In other words, R,, denotes the robot’s local progress (p;+1—
p¢) projected on the direction toward the global goal (5 —p).
Finally, a penalty for the robot colliding with or coming too
close to obstacles is defined as R. = —1/d(0:4+1), where
d(o¢+1) is a distance function measuring how close the robot
is to obstacles based on sensor observations.

R, =

3)

D. Reinforcement Learning Algorithm

We consider two major factors for choosing the RL algo-
rithm for APPLR: (1) the algorithm should allow selection
of continuous actions since the parameter space of most
planners is continuous; (2) the algorithm should be highly
sample efficient for physical simulation of navigation. Based
on these two criteria, we use the Twin Delayed Deep Deter-
ministic policy gradient algorithm (TD3) [16] for APPLR.
As one of the state-of-the-art off-policy algorithms, TD3
is very sample efficient and handles continuous actions by
design. Specifically, TD3 is an actor-critic algorithm that
keeps an estimate for both the policy 7r§ and the state-action
value function Qg, parameterized by ¢ and (separately. For
the policy, it uses the usual deterministic policy gradient
update [17]

Ve = E, | VaQ5(5,0)] e VTE(s)|. (@)

To address the maximization bias on the estimation of
Qg, which can influence the gradient in equation (4),
TD3 borrows the idea from double () learning [18]
of keeping two separate () estimators QS' and Q52
each updated using the conventional Bellman residual ob-
jective E(s,u,r,s’)wg [||Q§;($, a) —r—ymaxe Qg(slv a,)H?]'
TD3 further stabilizes training by using the clipped value
min(QS! (s,a), Q$?(s,a)) in the place of the target in the
Bellman residual objective during the critic update to reduce
overestimation of the true value. Then, le is used in equa-
tion (4) to update the actor policy. Additionally, a delayed
updating strategy that updates the policy less frequently
than the value function is employed to further stabilize the
training. As physical simulations suffer from high variance
and are generally slow, TD3 is a good fit for APPLR.

To further address the sample inefficiency issue, a dis-
tributed general reinforcement learning architecture (Gorila)
[19] is employed, which enables parallelized acting processes
on a computing cluster. Our implementation of Gorila is a

simpler version with only one serial learner and a large num-
ber of actors running individually in simulation environments
to generate large quantities of data for a global replay buffer.

IV. EXPERIMENTS

In this section, we experimentally validate that APPLR
can enable adaptive autonomous navigation without access to
expert tuning or human demonstration and is generalizable
to many deployment environments, both in simulation and
in the real-world. To perform this validation, APPLR is
implemented and applied on a Clearpath Jackal ground robot.
The results of APPLR are compared with those obtained by
the underlying navigation system using its default parameters
from the robot platform manufacturer. For the physical
experiments, we also compare to parameters learned from
human demonstration using APPLD [3].

A. Implementation

We implement APPLR on a ClearPath Jackal differential-
drive ground robot. The robot is equipped with a 720-
dimensional planar laser scan with a 270° field of view,
which is used as our sensory input o; in Alg. 1. We prepro-
cess the LiDAR scans by capping the maximum range to 2m.
The onboard Robot Operating System (ROS) move_base
navigation stack (our underlying classical motion planner f)
uses Dijkstra’s algorithm to plan a global path and runs
DWA [20] as the local planner. Our w; is the linear and
angular velocity (v,w). We query a local goal from the
global path 1m away from the robot and compute the relative
angle ¢,. APPLR learns a parameter policy to select DWA pa-
rameters 6, including max_vel x, max_vel_theta, vx_samples,
vtheta_samples, occdist_scale, pdist_scale, gdist_scale, and
inflation_radius. We use the ROS dynamic_reconfigure
client to dynamically change planner parameters. The global
goal 3 is assigned manually, while 6, is the default set of
parameters provided by the robot manufacturer.

mp 1s trained in simulation using the Benchmark for
Autonomous Robot Navigation (BARN) dataset [21] with
300 simulated navigation environments generated by cellular
automata. Those environments cover different navigation dif-
ficulty levels, ranging from relatively open environments to
highly-constrained spaces where the robot needs to squeeze
through tight obstacles (three example environments with
different difficulties are shown in Fig. 2). We randomly pick
250 environments for training and use the remaining 50 as
the test set. In each of the environments, the robot aims to
navigate from a fixed start to a fixed goal location in a safe
and fast manner. For the reward function, while R penalizes
each time step before reaching the global goal, we simplified
R, by replacing it with its projection along the y-axis (Fig.
2). The distance function in d(o:41) in R, is the minimal
value among the 720 laser beams. m,, produces a new set of
planner parameters every two seconds.

This simulated navigation task is implemented in a Singu-
larity container, which enables easy parallelization on a com-
puter cluster. TD3 [16] is implemented to learn the parameter
policy 7, in simulation. The policy network and the two

Fig. 2: Indexed Example Navigation Environments in Bench-
mark for Autonomous Robot Navigation (BARN) [21]

=
o

—
IS

Episode Length
=
N

=
o

1 4 5 0 1

2 3 4 5
Million Time Steps

2 3
Million Time Steps
Fig. 3: Learning Curves of Episode Length and Episode
Return Averaged over 100 Episodes: The values are moving
averaged over 40k steps. The red dashed lines mark the
average performance of DWA planner with a static set of
default parameters.

target Q-networks are represented as multilayer perceptrons
with three 512-unit hidden layers. The policy is learned under
the distributed architecture Gorila [19]. The acting processes
are distributed over 500 CPUs with each CPU running one
individual navigation task. On average, two actors work on
a given navigation task. A single central learner periodically
collects samples from the actors’ local buffers and supplies
the updated policy to each actor. Gaussian exploration noise
with 0.5 standard deviation is applied to the actions at the
beginning of the training. Afterward the standard deviation
linearly decays at a rate of 0.125 per million steps and stays
at 0.02 after 4 million steps. The entire training process takes
about 6 hours and requires 5 million transition samples in
total. Fig. 3 shows episode length and return averaged over
100 episodes and compares with DWA motion planner with
default parameters. The episode return continually increases
and episode length drops by around 40% by the end of the
training. As shown in Fig. 3, APPLR surpasses DWA at an
early stage of the training process in terms of both episode
length and return. After training, we deploy the learned
parameter policy m, in an example environment and plot
four example parameter profiles produced by 7, in Fig. 4.
Dashed lines separate different parts of the profile, which
correspond to different regions in the example environment.

B. Simulated Experiments

After training, we deploy the learned parameter policy
mp on both the training and test environments. We use the
metrics of traversal time to evaluate the performance of the
policy. A maximum traversal time of 50s is used, and the
failing trials are set to be 50s plus a 20s penalty. We average
over the traversal time of 40 trials for DWA and APPLR in

max_vel_x

3
max_vel_theta

vx_samples 10
5

vtheta_samples
20

Fig. 4: Example Parameter Profiles Selected by APPLR: Labels of qualitatively similar regions are in the same color.

20
0

|
-
o

Traversal Time Difference
L
o

i
. {ITRTTTITI)

I APPLR better
-10 Statistically Insignificant
BN DWA better
0

Fig. 5: Traversal time difference between APPLR and DWA
for the training environments (top) and the test environments
(bottom). The bars represent the environments ordered by
traversal time difference. The colored bars indicate the envi-
ronments that show statistically significant difference.

TABLE I: Average Traversal Time of APPLR and DWA

APPLR DWA Improvement
Training 2336 2649 3.13 (11.8%)
Test 23.69 26.70 3.01 (11.2%)

each environment. We also perform the t-test for each pair
of APPLR and DWA performance check the statistical signif-
icance. The results over the 250 training environments and
50 test environments are shown in Fig. 5. For the majority
of the environments (green bars), APPLR shows statistically
significantly better navigation performance. Tab. I shows
the average traversal time of APPLR and DWA, and relative
improvement. APPLR yields an improvement of 11.8% in the
training environments, and 11.2% in the test environments.
In addition, Tab. II compares the number of environments
that show significant improvement and deterioration. In both
training and test set, the results show that APPLR achieves
statistically significantly better navigation performance in
over 40% of environments than DWA does, while DWA is
only better in 4.8% and 8% of environments in the training
and test set, respectively.

Furthermore, we analyze the relationship between perfor-

TABLE II: Number and Percentage of All Environments in
which One Method is Better Compared to the Other

APPLR better ~ DWA better
Training 106 (42.4%) 12 (4.8%)
Test 20 (40%) 4 (8%)

TABLE III: Percentage of Environments (in which one
method is better compared to the other) under Different
Difficulty Levels

APPLR better DWA better
Easy Train 59% 5%
Easy Test 53% 5%
Easy All 58% 5%
Medium Train 36% 6%
Medium Test 43% 14%
Medium All 37% 7%
Difficult Train 33% 4%
Difficult Test 24% 6%
Difficult All 31% 4%

mance improvement and difficulty level of a particular envi-
ronment. We classify the first one third of environments (100)
where DWA achieves the fastest traversal times as Easy, the
one third of environments (100) with slowest traversal times
as Difficult, and the remaining one third of environments
(100) as Medium (Tab. IIT). While the advantage of APPLR
over DWA is evident for the Easy environments (58% vs. 5%),
it diminishes with increased environment difficulty (Medium:
37% vs. 7% and Difficult: 31% vs. 4%). We conjecture that
this relationship may be due to a potential performance upper
bound of the DWA planner due to its underlying structure.
That is, while selecting the right planner parameters at each
time step in easy environments can significantly improve its
performance, in difficult environments, DWA’s performance
has saturated such that selecting the right parameters can
only lead to marginal improvement. In those environments,
it is likely that a completely different planner is required to
achieve better performance, e.g. an end-to-end planner [9].

C. Physical Experiments

To validate the sim-to-real transfer of APPLR, we also test
the learned parameter policy m, on a physical Jackal robot.

2 e —

Fig. 6: Physical Experiments: While the DWA planner with
a static set of default parameters (red) fails to find feasible
motions and executes recovery behaviors in many places,
APPLD (yellow) and APPLR (red) can both successfully and
smoothly navigate through the entire obstacle course. Using
RL, APPLR can achieve faster traversal than APPLD learned
from (most likely suboptimal) human demonstration.

TABLE IV: Traversal Time in Physical Experiments
(* denotes one additional failure trial)

DWA
72.8£10.1s*

APPLD
43244.1s

APPLR
34.4+4.8s

The physical robot has a Velodyne LiDAR, but we transform
the 3D point cloud to the same 2D laser scan as in the
simulation (720-dimensional and 270° field of view). The
learned policy is deployed in a real-world obstacle course set
up by cardboard boxes (Fig. 6). This physical environment
is different from any of the navigation environments in the
BARN dataset. Therefore, both generalizability and sim-to-
real transfer of APPLR can be tested with this unseen real-
world environment.

Given this target environment, we further collect a tele-
operated demonstration provided by one of the authors and
learn a parameter tuning policy based on the notion of
navigational context (APPLD [3]). The author aims at driving
the robot to traverse the entire obstacle course in a safe and
fast manner. APPLD identifies three contexts using the human
demonstration and learns three sets of navigation parameters.

We compare the performance of APPLR with that of APPLD
and the DWA planner using a set of hand-tuned default
parameters. For each trial, the robot navigates from the fixed
start point to a fixed goal point. Each trial is repeated five
times and we report the mean and standard deviation in
Tab. IV. We observe one failure trial (the robot fails to find
feasible motions and keeps rotating in place at the beginning
of the narrow part) with DWA. Therefore, the DWA results
only contain the four successful trials.

In all DWA trials, the robot gets stuck in many places,
especially where the surrounding obstacles are very tight. It
has to engage in many recovery behaviors, i.e. rotating in
place or driving backwards, to “get unstuck”. Furthermore,
in relatively open space, the robot drives unnecessarily
slowly. All these behaviors contribute to the large traversal
time and high variance (plus an additional failure trial).
Unlike many simulation environments in BARN [21], where
obstacles are generated by cellular automata and therefore
very cluttered, the relatively open space in the physical
environment (Fig. 6) allows faster speed and gives APPLR a

greater advantage. Surprisingly, APPLR even achieves better
navigation performance than APPLD, which has access to a
human demonstration in the same environment. One of the
reasons we observe this result in the physical experiments
is that the human demonstrator is relatively conservative in
some places; the parameters learned by APPLD are upper-
bounded by this suboptimal human performance. On the
other hand, the RL parameter policy aims at reducing the
traversal time and finds better parameter sets to achieve that
goal. Another reason is that while APPLD only utilizes three
sets of learned parameters for the three navigational contexts,
APPLR is given the flexibility to change parameters at each
time step, and RL is able to utilize the sequential aspect of the
parameter selection problem, e.g. slowing down in order to
speed up in the future. However, we observe that in confined
spaces APPLR produces less smooth motion compared to
APPLD. One possible explanation is that the teleoperated
human demonstration in APPLD aims at both fast and smooth
navigation, while APPLR only aims at speed. This issue may
be addressable in future work through a different reward
function.

V. CONCLUSIONS

In this paper, we introduce APPLR, Adaptive Planner Pa-
rameter planning from Reinforcement, which, in contrast to
parameter tuning, learns a parameter policy. The parameter
policy is trained using RL to select planner parameters at
each time step to allow the robot to take suboptimal actions in
a current state in order to achieve better future performance.
Furthermore, instead of learning an end-to-end navigation
planner, we treat a classical motion planner as part of the
environment and the RL agent only interacts with it through
the planner parameters. Learning in this parameter space
instead of a velocity control space not only allows APPLR
to inherit all the benefits of classical navigation systems,
such as safety and explainability, but also eliminates wasteful
random exploration with the help of the underlying planner,
allows it to generalize well to unseen environments, and
reduces the chances of failing to overcome the sim-to-real
transfer gap. The unsupervised APPLR paradigm does not
require any expert tuning or human demonstration. APPLR
is trained on a suite of simulated navigation environments
and is then tested in unseen environments. We also conduct
physical experiments to test APPLR’s sim-to-real transfer. As
mentioned in Sec. IV, one interesting direction for future
work is to design reward functions that encourage motion
smoothness. Currently, APPLR is only useful if there’s no
switching cost in the planner for changing parameter sets,
but, if such a cost exists, future work should take it into
account. Another interesting direction is to use curriculum
learning to start from easy environments and then transition
to difficult ones. Furthermore, the APPLR pipeline has the
potential to be applied to other navigation systems, including
visual, semantic, or aerial navigation.

REFERENCES

[1] K. Zheng, “Ros navigation
arXiv:1706.09068, 2017.

tuning guide,” arXiv preprint

[2]

[3

—_

[4

=

[5]
[6

=

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “Uav assisted usv
visual navigation for marine mass casualty incident response,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 6105-6110.

X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541-4547, 2020.

D. Teso-Fz-Betofio, E. Zulueta, U. Fernandez-Gamiz, A. Saenz-
Aguirre, and R. Martinez, “Predictive dynamic window approach
development with artificial neural fuzzy inference improvement,”
Electronics, vol. 8, no. 9, p. 935, 2019.

M. Bhardwaj, B. Boots, and M. Mukadam, ‘Differentiable gaussian
process motion planning,” arXiv preprint arXiv:1907.09591, 2019.
M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-end
motion planning for autonomous ground robots,” in /EEE International
Conference on Robotics and Automation. 1EEE, 2017.

W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian, “Intention-
net: Integrating planning and deep learning for goal-directed au-
tonomous navigation,” arXiv preprint arXiv:1710.05627, 2017.

H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007-2014, 2019.

X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” arXiv
preprint arXiv:2007.14479, 2020.

B. Liu, X. Xiao, and P. Stone, “Lifelong navigation,” arXiv preprint
arXiv:2007.14486, 2020.

X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through
hallucinated learning and sober deployment,” arXiv preprint
arXiv:2010.08098, 2020.

S. Siva, M. Wigness, J. Rogers, and H. Zhang, “Robot adaptation
to unstructured terrains by joint representation and apprenticeship
learning,” in Robotics: Science and Systems (RSS), 2019.

G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous
self-supervised learning-based navigation system,” arXiv preprint
arXiv:2002.05700, 2020.

M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2018, pp. 3052-3059.

A. Pokle, R. Martin-Martin, P. Goebel, V. Chow, H. M. Ewald,
J. Yang, Z. Wang, A. Sadeghian, D. Sadigh, S. Savarese et al., “Deep
local trajectory replanning and control for robot navigation,” in 2019
International Conference on Robotics and Automation (ICRA). 1EEE,
2019, pp. 5815-5822.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” 2014.

H. V. Hasselt, “Double g-learning,” in Advances in neural information
processing systems, 2010, pp. 2613-2621.

A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D.
Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen,
S. Legg, V. Mnih, K. Kavukcuoglu, and D. Silver, “Massively parallel
methods for deep reinforcement learning,” 2015.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23-33, 1997.

D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” arXiv preprint arXiv:2008.13315, 2020.

