WHAT STARTS HERE CHANGES THE WORLD

LEARNING INVERSE KINODYNAMICS FOR
ACCURATE HIGH-SPEED OFF-ROAD
NAVIGATION ON UNSTRUCTURED TERRAIN

The University of Texas

MAY 2021

Xuesu Xiao', Joydeep Biswas', and Peter Stone'2

The University of Texas at Austin, 2Sony Al

JOYDEEP BISWAS
Assistant Professor, The University of Texas at Austin




WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Ax

Motivation

* Navigation becomes
challenging under
three combined
conditions

— Accurate
— High-Speed

— Off-Road
(Unstructured Terrain)
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Problem Setting
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Controller Objective
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Challenges With Off-Road Driving

Problem: Forward kino-dynamic function depends on World State
unknown world states!
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Related Work: Terrain
Classification

e Vibration-Based Terrain

Classification

[Bai, et al. Access19, Shi, et al. Electronics20, etc.]

* Vision-Based Semantic Mapping
[Maturana, et al. FSR18, Wolf, et al. 10P20, etc.]

* Perceived as discrete
classes/costs for subsequent
planning, no related kinodynamic
effect considered
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Related Work: Terrain-Specific Models
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*  Wheel Slip Models Independent

of Speed and Terrain

[Rabiee, et al. ICRA19, Tian, et al. JIRS14, etc.]
* End-to-End Machine Learning

[Pan, et al. IJRR20, Siva, et al. RSS19]
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Our Approach: Learning All-Terrain Inverse Kinodynamics

1. Treat IKD model learning as a regression problem

=> No need for multiple models w
2. Include sensing observations to learned model World State
=> Discovers world-state dependence
o~ = f(z,u,w
(TR f9 (A$,$,y) U f( - ) ¥ T
Desired R . . . . R
Trajectory —>  Controller > Controls » Forward Kinodynamic Function —>| Car State
All-Terrain IKD
Model y y=g(r,w)
n 1 Observations [« Observation Function «
fo (Az,z,y) =~ [~ (Az, z, w)
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Training From “Off-Track Time”

1. Manually drive around the car on a variety of terrain types

Collect: _
a. Joystick controls %'
b. State of the car ¥

c. Observations ¥
d. Actual outcomes from real-world forward kinodynamics Az’

2. Train regression model with this as supervised loss:
Pretend actual outcomes were desired, regression model should output the joystick controls

0* :argmin Z ||f_1("'a') —f;(A$Z7$Z7yz)||H
0 (Azt,zt yt)eT
= arg min Z ||uz — f;(Axi,fUi,yi)”H,
O (i, Aciziyh)eT
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Implementation
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Control Inputs:  Hokuyo UST-10LX
- Linear Velocity LiDAR
- Steering Curvature N

4-Wheel Drive ~
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Experiment Results

Seen Terrain, Unseen Track

() 2.1m/s o (2) 2.2m/s‘ | (h) 2.3m/s ‘ (i) 2.4m/s . (j) 2.5m/s
Red (Baseline) : No learned model
Blue (Ablation) : Learned model, no sensing inputs
Green (Ours) : Learned model with sensing inputs
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Experiment Results

e Seen Terrain, Unseen Track
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Experiment Results

 Unseen (Easier) Terrain, Unseen Track
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Experiment Results

Unseen (Easier) Terrain, Unseen Track
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Conclusions

®* Usinginertia-based observation embeddings to )
capture elusive and stochastic world state during q
off-road navigation on unstructured terrain

®* Learning inverse kinodynamic model for accurate
and high-speed navigation in a data-driven
manner

®* Improving navigation performance in
seen/unseen terrain and track layout

*  Future Work

— Adding vision-based observation to prepare for
future wheel-terrain interactions

— Generalization from easier to harder
environments




