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APPLE: Adaptive Planner Parameter Learning
From Evaluative Feedback

Zizhao Wang , Xuesu Xiao , Garrett Warnell , and Peter Stone

Abstract—Classical autonomous navigation systems can con-
trol robots in a collision-free manner, oftentimes with verifiable
safety and explainability. When facing new environments, however,
fine-tuning of the system parameters by an expert is typically re-
quired before the system can navigate as expected. To alleviate this
requirement, the recently-proposed Adaptive Planner Parameter
Learning paradigm allows robots to learn how to dynamically
adjust planner parameters using a teleoperated demonstration or
corrective interventions from non-expert users. However, these
interaction modalities require users to take full control of the
moving robot, which requires the users to be familiar with robot
teleoperation. As an alternative, we introduce APPLE, Adaptive
Planner Parameter Learning from Evaluative Feedback (real-time,
scalar-valued assessments of behavior), which represents a less-
demanding modality of interaction. Simulated and physical exper-
iments show APPLE can achieve better performance compared to the
planner with static default parameters and even yield improvement
over learned parameters from richer interaction modalities.

Index Terms—Autonomous vehicle navigation, learning from
demonstration, motion and path planning.

I. INTRODUCTION

MOBILE robot navigation is a well-studied problem in
the robotics community. Many classical approaches have
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been developed over the last several decades and several of them
have been robustly deployed on physical robot platforms moving
in the real world [1], [2], with verifiable guarantees of safety and
explainability.

However, prior to deployment in a new environment, these
approaches typically require parameter re-tuning in order to
achieve robust navigation performance. For example, in clut-
tered environments, a low velocity and high sampling rate
are necessary in order for the system to be able to generate
safe and smooth motions, whereas in relatively open spaces,
a large maximum velocity and relatively low sampling rate are
needed in order to achieve optimal navigation performance. This
parameter re-tuning requires robotics knowledge from experts
who are familiar with the inner workings of the underlying
navigation system, and may not be intuitive for non-expert
users [3]. Furthermore, using a single set of parameters assumes
the same set will work well on average in different regions of a
complex environment, which is often not the case.

To address these problems, Adaptive Planner Parameter
Learning (APPL) is a recently-proposed paradigm that opens
up the possibility of dynamically adjusting parameters to adapt
to different regions, and enables non-expert users to fine-tune
navigation systems through modalities such as teleoperated
demonstration [4] or corrective interventions [5]. These inter-
action modalities require non-expert users to take full control
of the moving robot during the entire navigation task, or, at
least, when the robot suffers from poor performance. However,
non-expert users who are inexperienced at controlling the robot
may be unwilling or unable to take such responsibility due to
perceived risk of human error and causing collisions.

Fortunately, even non-expert users who are not willing to take
control of the robot are typically still able to observe the robot
navigating and provide real-time positive or negative assess-
ments of the observed navigation behavior through evaluative
feedback. For example, even non-expert users can know to
provide negative feedback when a robot is performing poorly,
e.g., getting stuck in highly constrained spaces [6], [7] or driving
unnecessarily slowly in open spaces [8]. This more-accessible
modality provides an interaction channel for a larger community
of non-expert users with mobile robots (Fig. 1).

In this work, we introduce a machine learning method that
can leverage evaluative feedback in the context of autonomous
navigation called Adaptive Planner Parameter Learning from
Evaluative Feedback (APPLE). Based on a parameter library [4],
[5] or a parameter policy [9], APPLE learns how to choose
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Fig. 1. For non-expert users who are unable or unwilling to take control of
the robot, evaluative feedback, e.g. good job (green thumbs up) or bad job (red
thumbs down), is a more accessible human interaction modality, but still valuable
for improving navigation systems during deployment.

appropriate navigation planner parameters at each time step in
order to adapt to different parts of the deployment environment.
Specifically, APPLE treats the scalar human feedback as the
value for the state-action pair in the Reinforcement Learning
framework during training, in which the action is the parameter
set to be used by the underlying navigation system. During
deployment, APPLE selects the parameters to maximize the
expected human feedback value. We implement APPLE both
in the Benchmarking Autonomous Robot Navigation (BARN)
[10] environments and also in real-world, highly constrained
obstacle courses. In both training and unseen environments,
APPLE is able to outperform the planner with default parameters,
and even to improve over APPL variants learned from richer
interaction modalities, such as teleoperated interventions. Our
experimental results indicate that evaluative feedback is a
particularly valuable form of human interaction modality for
improving navigation systems during deployment.

II. RELATED WORK

In this section, we review existing work on machine learning
for mobile robot navigation, adaptive planner parameters, and
learning from human evaluative feedback.

A. Learning for Navigation

While autonomous navigation has been studied by the
robotics community for decades, machine learning approaches
have recently been extensively applied to this problem as well.
Xiao, et al. [11] presented a survey on using machine learning
for motion control in mobile robot navigation: while the majority
of learning approaches tackle navigation in an end-to-end man-
ner [12], [13], it was found that approaches using learning in
conjunction with other classical navigation components were
more likely to have achieved better navigation performance.
These methods included those that learned sub-goals [14], local
planners [6]–[8], [15], [16], or planner parameters [4], [5],
[9], [17]–[19]. Learning methods have also enabled navigation
capabilities that complement those provided in the classical
navigation literature, including terrain-aware [20]–[22] and so-
cial [23]–[25] navigation.

APPLE leverages the aforementioned hybrid learning and clas-
sical architecture, where the learning component only learns to

select appropriate set of planner parameters, and interacts with
the underlying classical navigation system.

B. Adaptive Parameters for Classical Navigation

Considering classical navigation systems’ verifiable safety,
explainability, and stable generalization to new environments,
and the difficulty in fine-tuning those systems, learning adap-
tive planner parameters is an emerging paradigm of combin-
ing learning and planning. Examples include finding trajec-
tory optimization coefficients using Artificial Neural Fuzzy
Inference Improvement [17], optimizing two different sets of
parameters for straight-line and U-turn scenarios with genetic
algorithms [19], or designing novel systems that can leverage
gradient descent to match expert demonstrations [18]. Recently,
the APPL paradigm [4], [5], [9] has been proposed, which further
allows parameters to be appropriately adjusted during deploy-
ment “on-the-fly”, in order to adapt to different regions of a com-
plex environment. APPL also learns from non-expert users using
teleoperated demonstration [4], corrective interventions [5], or
trial-and-error in simulation [9].

APPLE utilizes an accessible but sparse modality of human
interaction in evaluative feedback, which is suitable for non-
expert users who are not able to take control of the robot. It is
also suitable for scenarios where extensive trial-and-error is not
feasible and a handcrafted reward function is not available, e.g.,
using Reinforcement Learning (RL) [9]. Similar, or even better,
navigation performance, compared to that learned from richer
interaction modalities, can be achieved using APPLE.

C. Learning From Human Feedback

The method we propose in this letter uses evaluative feed-
back from a human to drive a machine learning process that
seeks to increase the performance of an autonomous navigation
system. Because evaluative feedback is a relatively easy signal
for humans to provide, several methods have been proposed
to allow machines to learn from such signals over the past
several decades. Broadly speaking, most of these methods can
be understood as trying to interpret the feedback signal in
the context of the classical RL framework. For example, the
COACH framework [26] interprets evaluative feedback as the
policy-dependent advantage, i.e., it is assumed that the feedback
indicates how much better or worse the agent’s current behavior
is compared to what the human currently expects the agent
to do. The TAMER framework [27], on the other hand, can be
thought of as interpreting evaluative feedback to be the value, or
expected payoff, of the current behavior if the agent were to act
in the future in the way the human desires. Yet other approaches
interpret evaluative feedback directly as reward or some related
statistic [28]–[30].

APPLE adopts a similar learning from feedback paradigm,
but instead of taking actions as raw motor commands, APPLE’s
action space is the parameters used by the underlying navigation
system. During training, APPLE learns the value of state-action
pairs based on a scalar human feedback. During deployment,
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APPLE selects the parameters to maximize the expected human
feedback.

III. APPROACH

In this section, we introduce APPLE, which has two novel
features: (1) compared to learning from demonstration or in-
terventions, which require human driving expertise in order to
take full control of the moving robot, APPLE requires instead just
evaluative feedback that can be provided even by non-expert
users; (2) in contrast to previous work [4], [5] that selects the
planner parameter set based on how similar the deployment
environment is to the demonstrated environment, APPLE is based
on the expected evaluative feedback, i.e., the actual navigation
performance. APPLE’s performance-based parameter policy has
the potential to outperform previous approaches that are based
on similarity.

A. Problem Definition

We denote a classical parameterized navigation system as
G : X × Θ → A, where X is the state space of the robot (e.g.,
goal, sensor observations), Θ is the parameter space for G
(e.g., max speed, sampling rate, inflation radius), and A is
the action space (e.g., linear and angular velocities). During
deployment, the navigation system repeatedly estimates state
x and takes action a calculated as a = G(x; θ). Typically, a
default parameter set θ̄ is tuned by a human designer trying
to achieve good performance in most environments. However,
being good at everything often means being great at nothing: θ̄
usually exhibits suboptimal performance in some situations and
may even fail (is unable to find feasible motions, or crashes into
obstacles) in particularly challenging ones [4].

To mitigate this problem, APPLE learns a parameter policy
from human evaluative feedback with the goal of selecting the
appropriate parameter set θ (from either a discrete parameter set
library or from a continuous full parameter space) for the current
deployment environment. In detail, a human can supervise the
navigation system’s performance at state x by observing its
action a and giving corresponding evaluative feedback e. Here,
the evaluative feedback can be either discrete (e.g., “good/bad
job”) or continuous (e.g., a score ranging in [0, 1]). During
feedback collection, APPLE finds (1) a parameterized predictor
Fφ : X × Θ → E that predicts human evaluative feedback for
each state-parameter pair (x, θ), and (2) a parameterized param-
eter policy πψ : X → Θ that determines the appropriate planner
parameter set for the current state.

Based on whether APPLE chooses the parameter set from a
library or the parameter space, we introduce the discrete and
continuous parameter policies in the following two sections,
respectively.

B. Discrete Parameter Policy

In some situations, the user may already have K candidate
parameter sets (e.g., the default set or sets tuned for special
environments like narrow corridors, open spaces, etc.) which
together make up a parameter library L = {θi}K

i=1 (superscript

i denotes the index in the library). In this case, APPLE uses the
provided evaluative feedback e in order to learn a policy that
selects the most appropriate of these parameters given the state
observation x.

To do so, we parameterize the feedback predictor Fφ in a way
similar to the value network in DQN [31], where the input is
the observation x and the output is K predicted feedback values
{êi}K

i=1, one for each parameter set θi in the library L, as a
prediction of the evaluative feedback a human user would give
if the planner were using the respective parameter set at state x.
We form a dataset for supervised learning, D := {xj , θj , ej}N

j=1
(θj ∈ L, subscript j denotes the time step) using the evaluative
feedback collected so far, and Fφ is learned via supervised
learning to minimize the difference between predicted feedback
and the label,

φ∗ = arg min
φ

E
(xj ,θj ,ej)∼D

�(Fφ(xj , θj), ej) (1)

where �(·, ·) is the categorical cross entropy loss if the feedback
ej is discrete (e.g., “good job/bad job” or an integer score be-
tween 1 to 5), or mean squared error given continuous feedback.

To achieve the best possible performance, the parameter pol-
icy π(·|x) chooses the parameter set that maximizes the expected
human feedback (the discrete parameter policy doesn’t require
any additional parameters beyond φ for F , so the ψ is omitted
here for simplicity). More specifically,

π(·|x) = arg max
θ∈L

Fφ∗(x, θ). (2)

Compared to RL, especially DQN, discrete APPLE has a sim-
ilar architecture and training objective. However, an important
difference is that while RL optimizes future (discounted) cumu-
lative reward, APPLE greedily maximizes the current feedback.
The reason is that we assume, while supervising the robot’s
actions, the human will not only consider the current results
but also future consequences and give the feedback accord-
ingly. This assumption is consistent with past systems such as
TAMER [27]. Under this interpretation of feedback, APPLE can
also be though of as trying to maximize some notion of future
performance.

C. Continuous Parameter Policy

If a discrete parameter library is not available or desired,
APPLE can also be used over continuous parameter spaces (e.g.,
deciding the max speed from [0.1, 2] m/s). In this scenario,
APPLE can still learn from either discrete or continuous feedback.
However, learning from discrete feedback of finer resolutions or
even continuous feedback should lead to better performance.

In this setting, we parameterize the parameter policy πψ and
the feedback predictor Fφ in the actor-critic style. With the
collected evaluative feedback D := {xj , θj , ej}N

j=1, the training
objective of Fφ is still to minimize the difference between
predicted and collected feedback, as specified by Eqn. (1). For
the parameter policy πψ , beyond choosing the action that maxi-
mizes expected feedback, its training objective is augmented by
maximizing the entropy of policy H(πψ(·|x)) at state x. Using
the same entropy regularization as Soft Actor Critic (SAC) [32],

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 22,2021 at 02:13:00 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: APPLE: ADAPTIVE PLANNER PARAMETER LEARNING FROM EVALUATIVE FEEDBACK 7747

TABLE I
PARAMETER LIBRARY AND RANGE: MAX_VEL_X (V), MAX_VEL_THETA (W),

VX_SAMPLES (S), VTHETA_SAMPLES (T), OCCDIST_SCALE (O), PDIST_SCALE (P),
GDIST_SCALE (G), INFLATION_RADIUS (I)

πψ favors more stochastic policies, leading to better exploration
during training:

ψ∗ = arg min
ψ

E
xj∈D

θ̃j∼πψ(·|xj)

[
−Fφ(xj , θ̃j) + α log πψ(θ̃j |xj)

]
,

(3)
where α is the temperature controlling the importance of the
entropy bonus and is automatically tuned as in SAC [32].

D. Deployment

During deployment, we measure the state xt, use the
parameter policy to obtain a set of parameters θt ∼ πψ∗(·|xt)
at each time step, and apply that parameter set to the navigation
planner G.

IV. EXPERIMENTS

In our experiments, we aim to show that APPLE can improve
navigation performance by learning from evaluative feedback,
in contrast to a teleoperated demonstration or a few corrective
interventions, both of which require the non-expert user to take
control of the moving robot. We also show APPLE’s general-
izability to unseen environments. We implement APPLE on a
ClearPath Jackal ground robot in BARN [10] with 300 navigation
environments randomly generated using Cellular Automata, and
in two physical obstacle courses.

A. Implementation

The Jackal is a differential-drive robot equipped with a Velo-
dyne LiDAR that we use to obtain a 720-dimensional planar
laser scan with a 270◦ field of view, denoted as lt. The robot
uses the Robot Operating System move_base navigation stack
with Dijkstra’s global planner and the default DWA local plan-
ner [2]. From the global planner, we query the relative local
goal direction gt (in angle) as the averaged tangential direction
of the first 0.5m global path. The state space of the robot is the
combination of the laser scan and local goal xt = (lt, gt). The
parameter space consists of the 8 parameters of the DWA local
planner as described in Tab. I, and the action space is the linear
and angular velocity of the robot, at = (vt, ωt).

For discrete APPLE, we construct the parameter library shown
in Tab. I with the default DWA parameter set θ1 and parameter
sets θ2∼7 learned in the APPLI work [5]. Here, we use parameter
sets learned in previous work, and we have found that this is
important-without a reasonably good set to start with, APPLE

is typically unable to learn, e.g., smaller inflation_radius and
larger vtheta_samples in θ2 achieve good navigation in tight
spaces, while larger max_vel_x and pdist_scale in θ4 perform
well in open ones. Without prelearned parameter sets, one can
obtain a library via coarse tuning to create various driving modes
(e.g. increase max_vel_x to create an aggressive mode). For
continuous APPLE, the parameter ranges for the parameter policy
πψ to select from are listed in the same table.

Implementation-wise, for discrete APPLE, Fφ(x, θ) is a fully-
connected neural network with 2 hidden layers of 128 neurons,
taking the 721 dimensional xt as input and outputting the 7 pre-
dicted feedback signals êt,1∼7 for θ1∼7 respectively. Parameter
policy πψ uses ε-greedy exploration with ε decreasing from 0.3
to 0.02 during the first half of the training. For continuous APPLE,
Fφ(x, θ) shares the same architecture as discrete APPLE, except
for different input (concatenation of xt and θt) and output (scalar
êt). The parameter policy πψ also uses the same architecture,
mapping xt to θt.

To evaluate the performance of APPLE, we use APPLI with
the same parameter library in Tab. I upper part, APPLR with the
same parameter ranges in Tab. I lower part, and the Default DWA

planner as three baselines. Since APPLD does not generalize well
without a confidence-based context predictor [5] and APPLI can
therefore outperform APPLD, we do not include APPLD as one
of the baselines. Despite using the same library, APPLI chooses
the parameter set based on the similarity between the current
observation and the demonstrated environments, while discrete
APPLE uses the expected feedback.

B. Simulated Experiments

We begin by testing APPLE on the BARN dataset, with simulated
evaluative feedback generated by an oracle (proxy human). Note
that although the proxy human for the simulated experiments
appears to be similar to the APPLR work [9], the simulated
experiments aim to validate different APPLE setups with easily
accessible feedback before physical experiments. The intended
use case for APPLE is still during physical deployments with
real humans. The benchmark dataset consists of 300 simulated
navigation environments ranging from easy ones with a lot
of open spaces to challenging ones where the robot needs to
get through dense obstacles. Navigation trials in three example
environments with low, medium, and high difficulty levels are
shown in Fig. 2. We randomly select 250 environments for
training APPLE and hold the remained 50 environments as the
test set.

For the simulated feedback, we use the projection of the
robot’s linear velocity along the local goal direction, i.e., et =
vt · cos(gt), and it greedily encourages the robot to move along
the global path as fast as possible. Then we discretize it to
different number of levels (∞ levels mean using continuous
feedback) to study the effect of feedback resolutions. Notice,
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Fig. 2. Simulated Environments in BARN Dataset with Low, Medium, and High
Difficulty Levels.

Fig. 3. APPLE Learning from Different Feedback Resolutions.

this simulated evaluative feedback is suboptimal as it doesn’t
consider future states, and we expect actual human evaluative
feedback would be more accurate. For example, when the robot
is leaving an open space and is about to enter a narrow exit, a
human would expect the robot to slow down to get through the
exit smoothly, but the simulated oracle still encourages the robot
to drive fast. The oracle provides its evaluative feedback at 1 Hz,
while APPLE, APPLI and APPLR dynamically adjust the parameter
set for the DWA planner at the same frequency.

After training in 250 environments with a total of 2.5 M
feedback signals collected, we evaluate APPLE with discrete
and continuous parameter policies (denoted as APPLE (disc.)
and APPLE (cont.)), as well as three baselines, on the 50 test
environments by measuring the traversal time for 20 runs per
environment. The proxy human aims at improving navigation
efficiency and thus reducing traversal time. We then conduct t-
tests to compute the percentage of environments in which APPLE

with different feedback resolutions is significantly better/worse
(p < 0.05) than baselines, as shown in Fig. 3.

Despite learning from suboptimal evaluative feedback, APPLE

(disc.) and APPLE (cont.) still outperform the Default DWA and
APPLI at all feedback resolutions. These results demonstrate the
advantage of APPLE over APPLI, which selects the parameter set
with a performance-based predictor (Eqns. 2 and 3) rather than
a similarity-based predictor. Among all feedback resolutions,
there is significant improvement of 3 feedback levels over 2, for
both discrete and continuous policies. Further increasing reso-
lutions doesn’t improve performance much (the slight decreases
are likely due to stochasticity in learning), except for using
continuous feedback (i.e., ∞ levels) for continuous policy. These
results suggest that as few as three discrete feedback levels are
needed to improve navigation performance. Most of the cases
where APPLE achieves worse performance are due to a corner
case for the global planner where it keeps switching between two
global paths and thus confuses the local planner. Surprisingly,

TABLE II
TRAVERSAL TIME IN TRAINING AND UNSEEN ENVIRONMENT

Fig. 4. APPLE Running in an Unseen Physical Environment.

despite that in theory APPLR is expected to perform the best,
APPLE (disc.) performs only slightly worse than APPLR, and
APPLE (cont.) outperforms APPLR in 29% of test environments
with continuous feedback. The worse performance of APPLR

may come from challenging optimization of cumulative rewards
or reward design. Lastly, comparing the left and right parts of
Fig. 3, APPLE (cont.) is comparable with APPLE (disc.) with low
feedback resolutions and performs much better with continuous
feedback, because of its larger model capacity in the parameter
space.

C. Physical Experiments

We also apply APPLE on a physical Jackal robot. In a highly
constrained obstacle course (Fig. 1), we first apply APPLI which
provides 5 sets of parameters (1 default θ1 and 4 learned θ2∼5).
Then to train a discrete APPLE policy which uses the same param-
eter library, one of the authors follows the robot autonomously
navigating and uses an Xbox joystick to give binary evaluative
feedback (instead of 3 feedback levels for easier collection) at
2 Hz. The author aims at teaching APPLE to reduce traversal time.
To reduce the burden of giving a large amount of feedback, the
user is only requested to give negative feedback by pressing
a button on the joystick when he thinks the robot’s navigation
performance is bad, while for other instances, positive feedback
is automatically given. In other words, we interpret the absence
of human feedback to be the same as if the human had provided
positive feedback. While this interpretation is not standard in
the literature (and even undesirable at times [34]), we found that
it yielded good results for the application studied here. Because
APPLR [9] requires an infeasible amount of trial and error in
the real world, it is not included as a baseline in the physical
experiments.

The entire APPLE training session lasts roughly 30 minutes, in
which the robot navigates 10 trials in the environment shown in
Fig. 1. APPLE learns in an online fashion with 30% probability of
random exploration. After the training, the learned APPLE model
is deployed in the same training environment. We compare AP-
PLE to APPLI with the same sets of parameters and the confidence

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 22,2021 at 02:13:00 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: APPLE: ADAPTIVE PLANNER PARAMETER LEARNING FROM EVALUATIVE FEEDBACK 7749

measure of context prediction [5], and the DWA planner with
static default parameters. Each experiment is repeated five times.
The results are shown in Tab II. APPLE achieves the fastest
average traversal time with the smallest variance in the training
environment.

To test APPLE’s generalizability, we also test APPLE in an
unseen environment (Fig. 4) and show the results in Tab. II. In
the unseen environment, APPLE has slightly increased variance,
but still has the fastest average traversal time compared to the
other two baselines.

V. CONCLUSIONS

In this work, we introduce APPLE, Adaptive Planner Param-
eter Learning from Evaluative Feedback. In contrast to most
existing end-to-end machine learning for navigation approaches,
APPLE utilizes existing classical navigation systems and inherits
all their benefits, such as safety and explainability. Furthermore,
instead of requiring a full expert demonstration or a few correc-
tive interventions that need the user to take full control of the
robot, APPLE just needs evaluative feedback as simple as “good
job” or “bad job” that can be easily collected from non-expert
users. Moreover, comparing with APPLI which selects the param-
eter set based on the similarity with demonstrated environments,
APPLE achieves better generalization by selecting the parameter
set with a performance-based criterion, i.e., the expected eval-
uative feedback. We show APPLE’s performance improvement
with simulated and real human feedback, as well as its generaliz-
ability in both 50 unseen simulated environments and an unseen
physical environment. In this letter, we use relatively dense feed-
back signals from the human user in the physical experiments
(and different resolutions of simulated feedback signals in the
simulated experiments) to reduce the amount of time needed to
train a good APPLE policy. These dense feedback signals may
not always be practical, for example, the user may not always
be paying attention. Therefore an important direction for future
investigation is to study how little feedback is needed to yield
good performance. Another important direction is to evaluate
APPLE’s generality with human subjects with different exper-
tise levels and feedback criteria using an extensive user study.
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