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Fig. 1: Example Scenarios for Geometric Plans vs. Human Demonstrations in the SCAND dataset: In many social scenarios, the geometric
planner can produce trajectories that align with human demonstration trajectories (left). While uncommon, it is inevitable for geometric
planners to encounter social scenarios that they cannot handle (right). For example, the robot should approach the waiting line carefully
and expect people to make room for it to pass (top right) and carefully move forward after the person on the left passes (bottom right).

Abstract— Empowering robots to navigate in a socially com-
pliant manner is essential for the acceptance of robots moving
in human-inhabited environments. Previously, roboticists have
developed geometric navigation systems with decades of em-
pirical validation to achieve safety and efficiency. However, the
many complex factors of social compliance make geometric
navigation systems hard to adapt to social situations, where
no amount of tuning enables them to be both safe (people
are too unpredictable) and efficient (the frozen robot problem).
With recent advances in deep learning approaches, the common
reaction has been to entirely discard these classical navigation
systems and start from scratch, building a completely new
learning-based social navigation planner. In this work, we find
that this reaction is unnecessarily extreme: using a large-
scale real-world social navigation dataset, SCAND, we find that
geometric systems can produce trajectory plans that align with
the human demonstrations in a large number of social situations.
We, therefore, ask if we can rethink the social robot navigation
problem by leveraging the advantages of both geometric and
learning-based methods. We validate this hybrid paradigm
through a proof-of-concept experiment, in which we develop a
hybrid planner that switches between geometric and learning-
based planning. Our experiments on both SCAND and two
physical robots show that the hybrid planner can achieve better
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social compliance compared to using either the geometric or
learning-based approach alone.

I. INTRODUCTION

Decades of research into autonomous mobile robot nav-
igation allows robots to reliably move from one point to
another without collision with (mostly static) obstacles [1]–
[5]. Recently, there is a growing interest in bringing robots
out of academic labs and into common public spaces in the
wild [6]–[9]. On their way to deliver packages [6], take-
outs [7], and medical supplies [8], those robots need to nav-
igate in a way such that they not only avoid static obstacles
and move towards their goals, but also take other pedestrian’s
objective into account. Therefore, enabling robots to navigate
by social norms, known as the social robot navigation
problem, has emerged as an important research topic.

To address social robot navigation, researchers have col-
lected large-scale demonstration datasets [10]–[14], created
protocols to validate social navigation systems [13]–[15],
and developed social navigation techniques using geomet-
ric [16]–[24] or learning-based [25]–[33] approaches to
move robots in a safe and socially compliant manner.
While geometric approaches enjoy safety, explainability, and
certifiabiliy, they require extensive engineering effort and



are not scalable to complex and diverse social scenarios.
On the other hand, learning-based approaches conveniently
enable social navigation behaviors in a data-driven manner,
but forfeit most of the benefits of their geometric counter-
parts. Moreover, most of these approaches have achieved
improvement in social compliance primarily in experiments
conducted in controlled lab environments.

Despite such academic successes, robotics practitioners
are still reluctant in deploying those state-of-the-art social
navigation systems on their robot fleet in the real world,
especially data-driven approaches, due to their lack of safety,
explainability, and testability. To the best of our knowledge,
most of the navigation stacks running on real-world service
robots are still geometric systems, which can be rigorously
tested, confidently deployed, and easily debugged from a
large-scale, real-world, software engineering perspective.

Considering the stark contrast between (i) our decade-long
research and the current public resistance to mobile robots in
public spaces and (ii) the active academic research in social
robot navigation and the industrial reluctance to use them
in real-world practices, we present a case study on social
compliance of different existing robot navigation systems us-
ing a state-of-the-art Socially CompliAnt Navigation Dataset
(SCAND) [10], [11] as a benchmark. We discover from the
case study that geometric navigation systems can produce
trajectories that align with human demonstrations in many
social situations (up to 80%, e.g., Fig. 1 left). This result mo-
tivates us to rethink the approach to social robot navigation
by adopting a hybrid paradigm that leverages both geometric-
based and learning-based methods. We validate this paradigm
by designing a proof-of-concept experiment in which we
develop a hybrid planner that switches between geometric
and learning-based planning. Our main contributions are:

• A social compliance definition based on how well a
navigation behavior aligns with a human demonstration.

• A case study on the SCAND dataset which provides evi-
dence that 1) geometric navigation systems can produce
socially compliant navigation behaviors in many social
scenarios (up to 80%, Fig. 1 left) but will inevitably fail
in certain social scenarios (Fig. 1 right); and 2) learn-
ing-based methods have the potential to solve challeng-
ing social scenarios where geometric approaches fail
but using them alone can suffer from distribution-shift
problems.

• A hybrid paradigm that leverages both geometric-based
and learning-based methods for social robot navigation.
We validate this paradigm using both playback tests on
SCAND and physical robot experiments on two robots.

II. BACKGROUND

A. Classical Geometric Navigation

As a research topic since decades ago, roboticists have
developed a plethora of classical navigation systems to
move robots from one point to another without collision
with obstacles. Most classical systems take a global path
from a high-level global planner, such as Dijkstra’s [34],
A* [35], or D* [36] algorithm, and seek help from a local
planner [1], [2] to produce fine-grained motion commands

to drive robots along the global plan and avoid obstacles.
Most classical navigation systems require a pre-defined cost
function [37] for both global and local planning and trade
off different aspects of the navigation problem, such as path
length, obstacle clearance, energy consumption, and in recent
years, social compliance. They then use sampling-based [1],
[38], [39], optimization-based [2], [40], or potential-field-
based [41] methods to generate motion commands. These
approaches enjoy benefits such as safety, explainability, and
testability, which can be provably or asymptotically optimal.
Such benefits are important when deploying physical robots
in the real world with humans around, and therefore these
classical navigation systems are still widely favored by
practitioners in the robot industry [6]–[9]. Implementing
classical navigation approaches in socially challenging en-
vironments, however, requires substantial engineering effort
such as manually designing cost functions [37] or fine-
tuning navigation parameters [42]. These drawbacks motivate
the use of learning-based approaches for the social robot
navigation problem.

B. Learning-Based Navigation

Learning-based approaches [28], [43] may be either end-
to-end [44], i.e., producing actions directly from percep-
tion, or in a structured fashion, e.g., learning local plan-
ners [45]–[52], cost functions [29], [53]–[55], kinodynamics
models [56]–[58], and planner parameters [59]–[66]. From
the learning perspective, most approaches fall under either
imitation learning [27], [29], [44], [54], [62] from expert
demonstrations or reinforcement learning [45]–[47], [52],
[65], [66] from trial and error. Despite the convenience
of learning emergent navigational behaviors purely from
data in social scenarios, these systems suffer from the lack
of safety and explainability, and cannot easily go through
rigorous software testing and be debugged and fixed to avoid
future failure cases. Therefore, robot practitioners rarely
use learning-based navigation systems in their robot fleets
deployed in the real world.

C. SCAND

SCAND [10], [11] contains 8.7 hours, 138 trajectories,
and 25 miles of socially compliant, human tele-operated
robot navigation demonstrations on the busy campus of The
University of Texas at Austin, USA. SCAND includes socially
challenging scenarios such as following, intersection, and
overtaking, making it an ideal dataset to test social robot
navigation methods. Additionally, SCAND provides multi-
modal information, including 3D LiDAR, RGB images,
joystick commands, odometry, and inertia readings, collected
on two morphologically different mobile robots—a Boston
Dynamics Spot and a Clearpath Jackal—controlled by four
human demonstrators in indoor and outdoor environments.

III. SOCIAL COMPLIANCE CASE STUDY

In our case study, we first propose a definition of social
compliance based on how well a navigation behavior aligns
with the human demonstration. Then, we use this metric
to benchmark the social compliance of a set of geometric



navigation systems on SCAND. Three major findings from
these analyses are:

1) Different geometric navigation systems show similar
performance, where their trajectories align with human
demonstrations in up to 80% SCAND scenarios.

2) A general purpose navigation planner, e.g.,
move base, even without tuning for specific scenarios
can often produce trajectories aligning with human
demonstrations.

3) Despite the inevitable failures of geometric navigation
planners that cannot be resolved through manual tuning,
such occurrences remain infrequent within SCAND.

Finally, we investigate the performance of geometric-based
and learning-based planners on both an in-distribution and
out-of-distribution test set and find that training on SCAND
can suffer from distribution-shift problems.

A. Defining Social Compliance on SCAND

SCAND is a dataset designed for learning from demon-
stration research, so we assume the human demonstrations
provided in the dataset to be the ground truth1. In this work,
we propose a definition of social compliance based on how
well a navigation behavior produced by a navigation system
aligns with the human demonstration.

Definition 1: Given a navigation scenario St with a human
demonstration behavior BD

t at a time step t, a navigation
behavior Bt is socially compliant if d = ∥Bt − BD

t ∥D < ϵ,
where ∥·∥D is a distance metric and ϵ is a small threshold.

In this work, we define the navigation scenario St to
be the robot sensor observations in the past two seconds
at a certain time step t of a demonstration trajectory in
SCAND. We also define human demonstration behavior BD

t

as a deterministic sequence of waypoints, PD
i = (xD

i , yDi ),
at every step i starting from time step t, to a navigation
goal, PD

tg , 10m ahead of the robot at time step tg on the
human demonstrated path: BD

t = {PD
i }tgi=t, where tg is the

first time step when ∥PD
t − PD

tg )∥ ≥ 10. Then we send
the same navigation goal, PD

tg , to a navigation system to be
benchmarked and retrieve its planned trajectory Bt. Finally,
considering most geometric navigation systems use a global
trajectory planner before local motion planning and the
quality of the robot motions heavily depends on the quality
of the planned global trajectories Bt, we use the undirected
Hausdorff distance, which measures the distance from each
point in the planned trajectory Bt to the closest point in
the corresponding demonstration trajectory BD

t as ∥·∥D, to
measure the social compliance of the planned trajectory:

d = max{ sup
PD

i ∈BD
t

inf
Pi∈Bt

∥PD
i − Pi∥,

sup
Pi∈Bt

inf
PD

i ∈BD
t

∥PD
i − Pi∥}.

Fig. 2 shows trajectories with different Hausdorff distances
from a Bird’s Eye View (BEV). Empirically, navigation
systems that align better with human demonstrations are
expected to yield a lower Hausdorff distance.

1Human demonstrations may not always represent the sole socially
compliant behavior in certain scenarios, thereby challenging our assumption
that deviations from the ground truth inherently lack social compliance [10].

Fig. 2: Different Hausdorff distances between the human demon-
stration trajectory (green) and geometric planner trajectory (red).
White dots denote nearby humans and obstacles. Empirically,
navigation systems that align better with human demonstrations are
expected to yield a lower Hausdorff distance.

Fig. 3: Cumulative Distribution Function (CDF) curves illustrating
the Hausdorff distance and social scenario percentages for four
distinct geometric planners, analyzed on the SCAND.

B. Geometric Navigation Systems
We benchmark the social compliance of four publicly

available geometric navigation systems on SCAND:
1) move base [67]: The Robot Operating System (ROS)

move base is a well-known geometric navigation system
that consists of a global planner and a local planner. The
global planner uses Dijkstra’s algorithm to plan an optimal
trajectory on a static costmap and the local planner then
employs the Dynamic Window Approach (DWA) [1] to
generate real-time actions given the global trajectory.

2) move base with social layer (move base(s)) [68]:
This method enhances move base by incorporating a social
layer into the static costmap. It leverages real-time LiDAR
scans to identify humans and surrounds them with a Gaussian
filter for improved social awareness in planning.

3) Human-Aware Planner [20]: The Human-Aware Plan-
ner introduces a social cost function into path planning to
prioritize human comfort and ensure politeness and safety.
It uses time-dependent and kinodynamic path planning to
consider the spatial relationship of the robot and humans.

4) CoHAN [19]: CoHAN is a human-aware navigation
planner that uses an extension of the Human-Aware Timed
Elastic Band (HATEB) planner [69] as the local planner
to handle complex and crowded navigation scenarios. This
system is developed over the ROS navigation stack by in-
troducing human safety and human visibility costmap layers
into both global and local costmap.

We maintain the default parameterizations and configura-



Fig. 4: CDF curves of Geometric, Learning-Based, and Proposed
Hybrid Navigation Planners on In-Distribution SCAND and Out-of-
Distribution Test Data.

tions for all four geometric navigation systems. Each system
is evaluated by playing back SCAND data, recording the
planned trajectories Bt, and comparing them against the
SCAND demonstration trajectories BD

t to evaluate their social
compliance under Def. 1.

Fig. 3 illustrates four Cumulative Distribution Function
(CDF) curves comparing the performance of the four ge-
ometric navigation systems, indicating consistent trends
among the systems: across many social scenarios in SCAND,
they manage to maintain a moderate deviation from human
demonstrations within ϵ = 1.0. We find that move base
achieves the best alignment with human demonstrations in
over 80% of SCAND navigation scenarios. This outcome is
unexpected, given that move base is the only navigation
system among those evaluated that does not explicitly in-
corporate social factors into its algorithm. This observation
suggests that a general-purpose navigation planner even
without tuning for specific social scenarios can often produce
socially compliant trajectories.

Additionally, we observe a small portion (roughly 5%) of
scenarios where the geometric planners deviate significantly
from human demonstrations (more than 3 meters Hausdorff
distance). To understand the causes of such deviations, we
sample 50 of these scenarios and inspect the interactions be-
tween the robot and the environment. We discover that these
scenarios often require sophisticated reasoning skills that a
geometric planner does not possess. For example, Fig. 1
shows two common social scenarios that are challenging for
geometric planners and inevitably lead to poor compliance.

C. Comparing Geometric and Learning-Based Planner
In social robot navigation, human behaviors are unpre-

dictable and the environment can vary significantly at differ-
ent locations and times. Hence, it is challenging to create one
dataset to capture the full distributions of social scenarios.
This limitation could cause learning-based methods to suffer
from the distribution-shift problem [70].

In order to investigate this problem, in addition to training
and testing on SCAND, we follow SCAND’s procedure and
collect extra demonstrations as an out-of-distribution test set.
These demonstrations contain manually curated social sce-
narios in a lab environment, including intersection encounter,
frontal approach, and people following. We then train a
simple learning-based method, Behavior Cloning (BC) [71],

on the SCAND training set and evaluate its performance on
both the in-distribution SCAND test set and the manually
curated out-of-distribution test set. Finally, we compare it
with a general-purpose geometric planner, move base, on
both in-distribution and out-of-distribution data.

We plot the CDFs of the percentage of social scenarios
over different Hausdorff distance thresholds in Fig. 4. We ob-
serve that while BC can outperform move base on the in-
distribution SCAND test data, BC’s performance significantly
deteriorates on the out-of-distribution test set. move base’s
performance remains unchanged. This result indicates that
training on the SCAND dataset might be affected by the
distribution-shift problem, leading to poor generalization
when facing various unseen social scenarios.

IV. RETHINKING SOCIAL ROBOT NAVIGATION

Our case study results suggest 1) geometric navigation
systems can produce socially compliant navigation behaviors
in many social scenarios but will inevitably fail in certain
social scenarios; and 2) learning-based methods (in our case,
BC) have the potential to solve challenging social scenarios
where geometric approaches fail but using them alone can
suffer from distribution-shift problems.

Our case study motivates us to rethink the approach to
solving social robot navigation: can we take advantage of
both geometric and learning-based approaches? In this work,
we make an initial exploratory effort to answer this question:
we develop a hybrid planner that uses a geometric navigation
system as the backbone and complements it with a learned
model (BC) for handling difficult social navigation scenarios.
We also train a classifier to serve as a gating function,
determining when move base is likely to fail at generating
a socially compliant behavior, at which point we switch to
using the output from BC. To be specific, let St be a social
scenario at time step t. We instantiate our hybrid navigation
planner F(·) based on a geometric navigation planner C(·),
a learning-based planner Lθ(·) with learnable parameters θ,
and a gating function Gϕ(·) with learnable parameters ϕ that
selects between the output from the geometric and learning-
based planners:

Bt = F(St) = Gϕ(C(St),Lθ(St),St).

The parameters ϕ and θ can be learned using supervised
learning on the navigation scenario and behavior tuples
{St,BD

t }Tt=1 in SCAND:

argmin
ϕ,θ

T∑
t=1

d(St),

d(St) = ∥Bt − BD
t ∥,

Bt = Gϕ(C(St),Lθ(St),St).

Among the many ways to learn Gϕ(·) and Lθ(·) (either
jointly or separately), in this work, we present a simple
implementation that first learns a classifier Mϕ(St) based on
the difference d between BD

t and C(St) to choose between
C(St) and Lθ(St):

Bt =

{
C(St), if Mϕ(St) = 1,

Lθ(St), if Mϕ(St) = 0.
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Fig. 5: Human Study Average Scores Per Question.

Jackal Frontal Intersection Doorway

move base 2.66± 0.64 3.98± 0.10 4.08± 0.38
BC 3.63± 0.40 2.49± 0.11 2.84± 0.25

Hybrid 4.04± 0.39 4.06± 0.20 3.89± 0.36

Spot Frontal Intersection Doorway

move base 3.73± 0.22 2.72± 0.17 3.29± 0.19
BC 3.41± 0.19 3.13± 0.12 3.54± 0.49

Hybrid 3.70± 0.26 3.48± 0.15 3.82± 0.14

TABLE I: Human Study Average Scores Per Method and Scenario:
Participants generally prefer the robot with the hybrid approach to
the pure classical or the pure BC approach.

C(·) can already produce socially compliant behaviors when
d ≤ ϵ, while Lθ(·) only learns to address navigation
scenarios where d > ϵ. By comparing C(St) against BD

t , i.e.,
d = ||C(St)−BD

t ||, we separate the original SCAND D into a
socially compliant, DC , and a socially non-compliant, DN ,
subset with respect to C(·), and form a supervised dataset
{St, ct}Tt=1, in which ct = 1 if St ∈ DC (d ≤ ϵ) and ct = 0
if St ∈ DN (d > ϵ). Then, Mϕ(·) is learned via supervised
learning with a cross-entropy loss to classify whether C(St)
is socially compliant or not:

ϕ∗ = argmax
ϕ

T∑
t=1

log
exp(Mϕ(St)[ct])

exp (Mϕ(St)[0]) + exp (Mϕ(St)[1])
.

The learning-based planner Lθ is then learned to minimize
the difference between its outputs and demonstrations in DN :

θ∗ = argmin
θ

∑
(St,BD

t )∈DN

||Lθ(St)− BD
t ||.

During deployment, F(·) first uses Mϕ∗(·) to classify if
C(St) is socially compliant or not, and then executes C(St)
if compliant or Lθ∗(St) if not.

We evaluate the hybrid planner on both the in-distribution
and out-of-distribution test sets and compare it with the
geometric and BC planners. Fig. 4 shows the hybrid planner
performs similarly to the best-performing planner on either
test set, suggesting that the hybrid planner can take advantage
of the best of both worlds during the playback tests.

V. PHYSICAL EXPERIMENTS

We conduct a human study in a series of physical experi-
ments to assess the social compliance of our proposed hybrid
approach, in comparison to an existing classical planner,

i.e., move base, and an end-to-end learning-based method,
i.e., BC trained on SCAND. The experiments are conducted
using a wheeled Clearpath Jackal and a legged Boston
Dynamics Spot to show the generalizability of our proposed
hybrid approach to robots with different morphologies on
two university campuses, George Mason University (GMU)
and The University of Texas at Austin (UT), respectively.
We test the robots’ social compliance within three distinct
social scenarios, i.e., Frontal Approach, Intersection, and
Narrow Doorway. We keep the same setup of our hybrid
approach among all three scenarios. The three methods
are randomly shuffled and repeated five times, and human
participants are requested to respond to a questionnaire with
4-5 questions using Likert scales [15], [29] following each
run. Each scenario is tested on ten different individuals
(fifteen interactions per individual).

A. Social Compliance Questionnaire

For Frontal Approach, the five questions are2:

1) The robot moved to avoid me.
2) The robot obstructed my path∗.
3) The robot maintained a safe and comfortable distance

at all times.
4) The robot nearly collided with me∗.
5) It was clear what the robot wanted to do.

For Intersection, the four questions are:

1) The robot let me cross the intersection by maintaining
a safe and comfortable distance.

2) The robot changed course to let me pass.
3) The robot paid attention to what I was doing.
4) The robot slowed down and stopped to let me pass.

For Narrow Doorway, the four questions are:

1) The robot got in my way∗.
2) The robot moved to avoid me.
3) The robot made room for me to enter or exit.
4) It was clear what the robot wanted to do.

The quantitative results of our experiments are shown in
Fig. 5, where we plot the per-question average along with
error bars for the three methods in each of the scenarios.

B. Engineering Endeavors During Deployment

When deploying the hybrid planner on the robots, we
incorporate a voting system that employs hysteresis by
considering the past n time steps with a threshold value of
r to switch between planners. To prevent collisions, we set
a strict condition: if the robots get within p meters of an
obstacle, they immediately switch to the geometric planner
for the next t seconds. We empirically set the values for
n, r, p, and t depending on the location and robot. These
adjustments make our hybrid system more stable and safer
when running on real robots.

2∗ denotes negatively formulated questions, for which we reverse-code
the ratings to make them comparable to the positively formulated ones.
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Fig. 6: GMU Jackal Frontal Approach (Left) and UT Spot Narrow
Doorway (Right) Robot Experiments.

C. Jackal Experiments at GMU
For the experiments at GMU with the wheeled Jackal,

our hybrid method shows the most distinguishable social
behavior for the frontal approach, maintaining a safe distance
while passing by another person coming straight from the
opposite side. For the other two scenarios, the classifier of
our hybrid method mostly commands to stick to the classical
planner and therefore we see similar performance of the
classical and our hybrid approach. On the other hand, BC
is inconsistent in the majority of the runs: Either it cannot
reach the goal successfully, which is evident in the low
BC scores for Jackal Frontal Approach Q5 (Fig. 5 top left)
and Jackal Narrow Doorway Q4 (Fig. 5 top right), or we
have to manually intervene to avoid an imminent collision
with the human subject or surroundings. Across the different
scenarios, we observe that our approach remains consistent
by maintaining the highest average in most of the questions.
With both GMU and UT experiments, we ran a one-way
ANOVA test on the data from each question with three
groups, and the test confirms the statistical significance of the
comparison at a 95% confidence level. We show the Jackal
Frontal Approach experiment in Fig. 6 left as an example:
Classical approach follows a trajectory which passes very
close to the human; BC avoids the human but it cannot
recover back to the correct trajectory and gets too close to the
wall before we manually intervene; Hybrid approach reacts
early by maintaining a safe distance to the human (using BC)
and successfully reaches the goal (using move base).

D. Spot Experiments at UT Austin
We also conduct experiments with a legged Spot at UT. In

general, we observe our hybrid approach still performs the
most consistently across all three scenarios. However, the
classical planner’s performance is slightly worse compared
to the GMU Jackal experiments. It does not perform well
on Spot Intersection (Fig. 5 lower middle) and Spot Narrow
Doorway (Fig. 5 lower right, except Q4 since unlike BC,
the classical approach can always reach the goal). We posit
this is caused by the different motion morphology of the
Spot: legged robots are holonomic, and like humans it is
possible for them to side-step during a social interaction. Not

being able to do so due to the limitation of move base may
cause its movement to be perceived unnatural. BC performs
slightly better for Spot in Intersection (Fig. 5 lower middle)
and Narrow Doorway (Fig. 5 lower right). We show the Spot
Narrow Doorway experiment in Fig. 6 right as an example:
Classical approach first follows the shortest path until it gets
close to the human and avoids the human; BC avoids the
human but gets lost thereafter; Hybrid approach can slow
down and avoid the human in the beginning and successfully
pass the narrow doorway in the end.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

This work presents a case study on benchmarking so-
cial compliance of different existing geometric navigation
systems using the SCAND dataset. Our case study results
suggest 1) geometric navigation systems can produce socially
compliant navigation behaviors in many social scenarios (up
to 80%) but will inevitably fail in certain social scenarios;
and 2) learning-based methods (in our case, BC) have
the potential to solve challenging social scenarios where
geometric approaches fail but using them alone can suffer
from distribution-shift problems. These findings motivate
us to rethink social robot navigation: we propose a hybrid
paradigm that leverages both geometric-based and learning-
based planners. We develop a hybrid planner and evaluate its
performance both in the playback tests and on two physical
robots as a proof-of-concept experiment. The experiment
shows promising results of the hybrid paradigm.

This work has several limitations. First, getting the system
working robustly during deployment poses engineering chal-
lenges. It requires further investigation to understand how
to integrate geometric-based and learning-based methods
better. In addition, the BC algorithm used in this work is a
straightforward representative of a variety of learning-based
methods, which can be replaced by more sophisticated model
designs. Overall, this work serves as a preliminary effort to
rethink social robot navigation with a hybrid paradigm and
to inspire further investigation of this paradigm in the future.

VII. ACKNOWLEDGEMENTS

This work has taken place in the RobotiXX Labo-
ratory at George Mason University, Autonomous Mobile
Robotics Laboratory (AMRL), and Learning Agents Re-
search Group (LARG) at The University of Texas at Austin.
RobotiXX research is supported by ARO (W911NF2220242,
W911NF2320004, W911NF2420027), AFCENT, Google
DeepMind, Clearpath Robotics, and Raytheon Technologies.
AMRL research is supported by NSF (CAREER2046955,
IIS-1954778, SHF-2006404), ARO (W911NF-19-2- 0333,
W911NF-21-20217), DARPA (HR001120C0031), Amazon,
JP Morgan, and Northrop Grumman Mission Systems.
LARG research is supported by NSF (CPS-1739964,
IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF19-2-0333), DARPA, Lockheed
Martin, GM, and Bosch. Any opinions, findings, and con-
clusions expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.



REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[2] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[3] X. Xiao, Z. Xu, Z. Wang, Y. Song, G. Warnell, P. Stone, T. Zhang,
S. Ravi, G. Wang, H. Karnan et al., “Autonomous ground navigation
in highly constrained spaces: Lessons learned from the benchmark
autonomous robot navigation challenge at icra 2022 [competitions],”
IEEE Robotics & Automation Magazine, vol. 29, no. 4, pp. 148–156,
2022.

[4] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[5] A. Nair, F. Jiang, K. Hou, Z. Xu, S. Li, X. Xiao, and P. Stone,
“Dynabarn: Benchmarking metric ground navigation in dynamic envi-
ronments,” in 2022 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). IEEE, 2022, pp. 347–352.

[6] Amazon, “Meet scout,” www.aboutamazon.com/news/transportation/
meet-scout, 2022.

[7] Starship, “Starship,” www.starship.xyz/, 2022.
[8] Dilligent Robotics, “Dilligent robotics,” www.diligentrobots.com/,

2022.
[9] Tiny Mile, “Tiny mile,” tinymile.ai/, 2022.

[10] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially Compliant Navigation Dataset
(SCAND): A Large-Scale Dataset of Demonstrations for Social Nav-
igation,” IEEE Robotics and Automation Letters, 2022.

[11] ——, “Socially Compliant Navigation Dataset (SCAND),” Texas
Data Repository, 2022. [Online]. Available: https://doi.org/10.18738/
T8/0PRYRH

[12] D. M. Nguyen, M. Nazeri, A. Payandeh, A. Datar, and X. Xiao, “To-
ward human-like social robot navigation: A large-scale, multi-modal,
social human navigation dataset,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023.
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