
In Proceedings of the 38th Conference on Artificial Intelligence (AAAI 2024),
Vancouver, Canada February 2024 1 INTRODUCTION

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

Muhammad Rahman1, Jiaxun Cui1, Peter Stone1,2

1Department of Computer Science, The University of Texas at Austin
2Sony AI

arrasy@cs.utexas.edu, cuijiaxun@utexas.edu, pstone@cs.utexas.edu

Abstract
Robustly cooperating with unseen agents and human partners
presents significant challenges due to the diverse cooperative
conventions these partners may adopt. Existing Ad Hoc Team-
work (AHT) methods address this challenge by training an
agent with a population of diverse teammate policies obtained
through maximizing specific diversity metrics. However, prior
heuristic-based diversity metrics do not always maximize the
agent’s robustness in all cooperative problems. In this work,
we first propose that maximizing an AHT agent’s robustness
requires it to emulate policies in the minimum coverage set
(MCS), the set of best-response policies to any partner policies
in the environment. We then introduce the L-BRDiv algorithm
that generates a set of teammate policies that, when used for
AHT training, encourage agents to emulate policies from the
MCS. L-BRDiv works by solving a constrained optimization
problem to jointly train teammate policies for AHT training
and approximating AHT agent policies that are members of
the MCS. We empirically demonstrate that L-BRDiv produces
more robust AHT agents than state-of-the-art methods in a
broader range of two-player cooperative problems without the
need for extensive hyperparameter tuning for its objectives.
Our study shows that L-BRDiv outperforms the baseline meth-
ods by prioritizing discovering distinct members of the MCS
instead of repeatedly finding redundant policies.

1 Introduction
The Ad Hoc Teamwork (AHT) problem (Stone et al. 2010)
is concerned with learning ways to quickly cooperate with
previously unseen agents or humans (henceforth referred to
as “unseen” or “novel” teammates, or when unambiguous,
simply “teammates”). In problems with multiple ways to
coordinate, agents co-trained with a limited set of teammates
may settle on cooperation conventions that only work when
they collaborate with each other. Specialization towards these
conventions diminishes an agent’s ability to collaborate with
unseen partners that adopt other conventions (Hu et al. 2020).

Recent works address this problem by optimizing diversity
metrics to generate sets of teammate policies for AHT train-
ing (Lupu et al. 2021; Strouse et al. 2021; Xing et al. 2021;
Bakhtin et al. 2022). Through interaction with the generated
broadly representative teammate policies, an agent learns
a policy to interact with previously unseen partners based

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on limited interactions. State-of-the-art methods optimize
adversarial diversity to generate incompatible teammate poli-
cies (Charakorn, Manoonpong, and Dilokthanakul 2023; Cui
et al. 2023a; Rahman et al. 2023). They seek sets of teammate
policies, each maximizing their returns when playing with a
designated AHT agent policy while minimizing returns with
other policies.

Such existing diversity metrics are heuristic in nature and
are not well-justified. It is unclear whether and how optimiz-
ing them can lead to improved robustness in general coop-
erative problems. We further demonstrate that optimizing
these diversity metrics can fail to discover teammate poli-
cies under certain conventions even in simple cooperative
games, specifically if following a convention yields high re-
turns against the best-response policy to another generated
teammate policy. Optimizing adversarial diversity can also
generate teammates adopting self-sabotaging policies (Cui
et al. 2023a). Self-sabotage potentially increases the difficulty
of AHT training since the generated teammate policies can
undermine collaboration with the trained AHT agent.

In this work, we make three contributions that improve
existing teammate generation methods for training robust
AHT agents. First, we outline formal concepts describing an
ideal set of teammate policies for training robust AHT agents,
which can emulate the best-response policy to any teammate
during interaction (Chakraborty and Stone 2014). The impor-
tance of finding the best-response policies to design a robust
agent provides the motivation to estimate the minimum cov-
erage set (MCS), which is the set of best-response policies
to any teammate policy in an environment, before interacting
with unknown teammates. Second, we use the concept of
MCS to propose the L-BRDiv algorithm1 that jointly esti-
mates the MCS of an environment and utilizes it to generate
teammates for AHT training by solving a constrained op-
timization problem. L-BRDiv’s generated set of teammate
policies encourages AHT agents to emulate policies in the
MCS through AHT training. Third, we provide experiments
that empirically demonstrate that L-BRDiv produces more
robust AHT agents than state-of-the-art teammate generation
methods while requiring fewer hyperparameters to be tuned.

1Implementation of L-BRDiv is available at https://github.com/
raharrasy/L-BRDiv. The appendix is also accessible through https:
//arxiv.org/abs/2308.09595.

2 Related Work
Ad Hoc Teamwork Assuming knowledge of teammate
policies that will be encountered during evaluation, some
existing AHT methods train adaptive AHT agents that can
achieve near-optimal performance when interacting with any
teammate policy encountered in evaluation (Mirsky et al.
2022). These methods equip an agent with two components.
The first is a teammate modeling component that infers an
unknown teammate’s policy via observations gathered from
limited interactions with the unknown teammate. The sec-
ond is an action selection component that estimates the best-
response policy to the inferred teammate policy, which selects
actions that maximize the AHT agent’s returns when collabo-
rating with an unknown teammate. PLASTIC-Policy (Barrett
et al. 2016) is an early example AHT method that defines an
AHT agent policy based on the aforementioned components.
Recent works (Rahman et al. 2021; Zintgraf et al. 2021; Pa-
poudakis, Christianos, and Albrecht 2021; Gu et al. 2021)
implement these two components as neural network models
which are trained to optimize the AHT agent’s returns when
dealing with a set of teammate policies seen during training.

Adversarial Diversity Unlike the aforementioned AHT
methods, our work assumes no knowledge of the potentially
encountered teammate policies. Instead, our goal is to learn
what set of teammate policies, when used in AHT training,
maximizes the AHT agent’s robustness against previously
unseen teammates. Previous methods achieve this goal by op-
timizing Adversarial Diversity (Cui et al. 2023a; Charakorn,
Manoonpong, and Dilokthanakul 2023; Rahman et al. 2023).
Optimizing adversarial diversity maximizes self-play returns,
which are the expected returns when a generated policy π−i

collaborates with its intended partner policy πi. At the same
time, adversarial diversity metrics also minimize cross-play
returns, the expected returns when π−i collaborates with the
intended partner of another policy πj . Creating teammate
policies by optimizing adversarial diversity can be detrimen-
tal to AHT training for two reasons. First, minimizing cross-
play returns can lead towards a self-sabotaging teammate pol-
icy, π−i, that minimizes the returns when collaborating with
anyone not behaving like its intended partner, π−i. Learning
to collaborate with a self-sabotaging π−i is difficult since
learning to achieve high collaborative returns is only possible
when the AHT agent fortuitously executes the same sequence
of actions as πi during exploration. Second, we show in Sec-
tion 6.4 and Appendix B that optimizing adversarial diversity
will never yield teammate policies that lead towards the most
robust AHT agent in certain environments.

Other Diversity-based Methods Introducing diversity in
training partners’ policies is one way to generate robust re-
sponse policies in multi-agent systems. A popular line of
methods leverages population-based training and frequent
checkpointing (Strouse et al. 2021; Vinyals et al. 2019; Cui
et al. 2023b; Bakhtin et al. 2022). These methods rely on ran-
dom seeds to find diverse policies, resulting in no guarantee
that the generated policies are sufficiently diverse. Other stud-
ies optimize various types of diversity metrics directly into
reinforcement learning objectives or as constraints. Xing et al.
(2021) introduce a target-entropy regularization to Q-learning

to generate information-theoretically different teammates.
MAVEN (Mahajan et al. 2019) maximizes the mutual infor-
mation between the trajectories and latent variables to learn
diverse policies for exploration. Lupu et al. (2021) propose
generating policies with different trajectory distributions. Tra-
jectory diversity, however, is not necessarily meaningful for
diversifying teammate policies (Rahman et al. 2023), so we
do not consider these methods as baselines in our work.

3 Problem Formulation
The interaction between agents in an AHT environment can
be modeled as a decentralized partially observable Markov
decision process (Dec-POMDP). A Dec-POMDP is defined
by an 8-tuple, ⟨N,S, {Ai}|N |

i=1, P,R, {Ωi}|N |
i=1, O, γ⟩, with

state space S, discount rate γ, and each agent i ∈ N having
an action spaceAi and observation space Ωi. Each interaction
episode between the AHT agent and its teammates starts at an
initial state s0 sampled from an initial state distribution p0(s).
Denoting ∆(X) as the set of all probability distributions
over set X , at each timestep t agent i cannot perceive st and
instead receives an observation oit ∈ Ωi sampled from the
observation function, O : S 7→ ∆(Ω1 × · · · × Ω|N |). Each
agent i ∈ N then decides its action at t, ait, based on its
policy, πi(Hi

t), that is conditioned on the observation-action
history of agent i, Hi

t = {oi≤t, a
i
<t}. The action selected by

each agent is then jointly executed as a joint action, at. After
executing at, the environment state changes following the
transition function, P : S × A1 × · · · × A|N | 7→ ∆S, and
each agent receives a common scalar reward, rt, according
to the reward function, R : S ×A1 × · · · × A|N | 7→ R.

Existing AHT methods learn policies for a robust AHT
agent by interacting with teammate policies from the training
teammate policy set, Πtrain = {π−1, π−2, . . . , π−K}. The
AHT agent then optimizes its policy to maximize its returns
in interactions with policies from Πtrain. The objective of
these existing AHT methods can be formalized as:

π∗,i(Πtrain) = argmax
πi

Eπ−i∼U(Πtrain),

ai
t∼πi,

a−i
t ∼π−i,P,O

[∞∑
t=0

γtR(st, at)

]
,

(1)
with U(X) denoting a uniform distribution over set X . The
learned AHT agent policy, π∗,i(Πtrain), is then evaluated for
its robustness. Given an evaluated π∗,i(Πtrain), this robust-
ness measure, MΠeval

(
π∗,i(Πtrain)

)
, evaluates the expected

returns when the AHT agent deals with teammates uniformly
sampled from a previously unseen set of teammate policies,
Πeval. We formally define MΠeval

(
π∗,i(Πtrain)

)
as the fol-

lowing expression:

Eπ−i∼U(Πeval),ai
t∼π∗,i(Πtrain),

a−i
t ∼π−i, P,O

[∞∑
t=0

γtR(st, at)

]
, (2)

The dependence of π∗,i(Πtrain) on Πtrain then implies that
Expression 2 is also determined by Πtrain.

The goal of an AHT teammate generation process is to find
Πtrain producing an AHT agent policy that maximizes Ex-
pression 2 amid unknown Πeval. Given the objective of AHT

Set of Teammate
Policies ()

MCS(E)

(a) Best-response policies
to each π−i ∈ Π.

Sample Teammate
Policies

(b) Generating Πtrain based on identi-
fied best-response policies.

AHT Training

AHT Agent Emulates

Interaction

(c) AHT training against Πtrain and the expected results when dealing
with previously unseen teammate policies.

Figure 1: Leveraging MCS(E) for Generating Robust AHT
Agents. Figure 1a visualizes how teammate policies (points
in the large triangle) can be grouped based on their best-
response policies. The rectangle then shows an example
MCS(E). From each subset of Π sharing the same best-
response policy (colored small triangles), Figure 1b visu-
alize how one policy is sampled from each subset to create
Πtrain for AHT training. As visualized in Figure 1c, using our
generated Πtrain for AHT training should encourage agents
that emulate the best-response policy (dashed squares) to any
π−i ∈ Π when dealing teammates from Πeval (squares whose
color represent its best-response policy).

training from Equation 1 and the definition of the robustness
measure from Expression 2, the objective of an AHT team-
mate generation process is to find the optimal set of training
teammate policies, Π∗,train, formalized as:

argmax
Πtrain

EΠeval∼U(Π)

[
MΠeval

(
π∗,i(Πtrain)

)]
, (3)

While uniformly sampling Πtrain from Π may appear to be
a reasonable solution to produce Π∗,train, training an AHT
agent using Πtrain may produce low returns if we only sample
a limited number of policies from Π. When Π contains many
possible teammate policies, the exact policies included in
Πtrain becomes important to ensure that the AHT agent is
robust when collaborating with any teammate policy in Π.

4 Creating Robust AHT Agents By
Identifying Minimum Coverage Sets

Assuming knowledge of Πeval, the robustness of an AHT
agent as defined by Expression 2 can be optimized by using
Πeval as teammate policies for AHT training. Given a team-
mate modeling component that accurately infers an unknown

teammate’s policy from Πeval and an action selection compo-
nent that can emulate any policy in the set of best-response
policies to policies in Πeval, BR(Πeval), an AHT agent’s ro-
bustness is maximized by following the best-response policy
to the inferred teammate policy. Unfortunately, Πeval being
unknown makes this ideal training process impossible.

Improving an AHT agent’s robustness without knowing
Πeval is still possible by identifying the coverage set of an en-
vironment. Denoting an environment characterized by a Dec-
POMDP as E, any set containing at least one best-response
policy to each teammate policy in Π is a coverage set of an
environment, CS(E). CS(E) is formally characterized as:

∀π−i ∈ Π,∀Ht,∃π∗ ∈ CS(E) :
Es0∼p0 [R∗,−i(Ht)] = max

πi∈Π
Es0∼p0 [R,i,−i(Ht)] ,

(4)

where Ri,−i(H) denotes the following expression:

E ai
T∼πi(.|HT),

a−i
T ∼π−i(.|HT),

P,O

[∞∑
T=t

γT−tRT (sT , aT)

∣∣∣∣∣Ht = H

]
. (5)

Given this definition, a CS(E) remains a coverage set when
policies are added. Thus, Π itself is trivially a coverage set.

Irrespective of Πeval, CS(E) will contain at least a single
best-response policy to any π−i ∈ Πeval since Πeval ⊆ Π.
An AHT agent capable of emulating any policy from CS(E)
consequently can follow any policy from BR(Πeval) for any
Πeval. Therefore, training an AHT agent to emulate any policy
from CS(E) gives us a solution to design robust AHT agents
even when Πeval is unknown.

Considering CS(E) may contain policies that are not a best-
response policy to any member of Π, we ideally only train
AHT agents to emulate a subset of CS(E) that consists of
policies that are the best-response to some π−i ∈ Π. Based
on this idea, we define the minimum coverage set of an en-
vironment, MCS(E) ⊆ Π, that is a coverage set ceasing to
be a coverage set if any of its elements are removed. This
characteristic of MCS(E) is formalized as:
∀πi ∈ MCS(E) : MCS(E)−{πi} is not a coverage set. (6)

In the example provided in Figure 1a, MCS(E) =
{π1, π2, π3} is an MCS since the elimination of any policy,
π, from it cause a subset of Π to not have their best-response
policy in MCS(E)− {π}.

Our work aims to design AHT agents capable of emulating
any policies from MCS(E) by constructing Πtrain in a spe-
cific way. If Πtrain is constructed for each πi ∈ MCS(E) to
have a π−i ∈ Πtrain such that πi ∈ BR({π−i}), using Πtrain

while optimizing Equation 1 enables us to achieve this goal.
The role of MCS(E) in our teammate generation process is
visualized in Figures 1b and 1c.

5 L-BRDiv: Generating Teammate Policies By
Approximating Minimum Coverage Sets

This section introduces our proposed teammate generation
method based on estimating MCS(E). Section 5.1 details a
constrained objective we use to estimate MCS(E). Finally,
Section 5.2 provides a method that solves the constrained
objective to jointly estimate MCS(E) while generating Πtrain.

Self-play interaction

Cross-play interaction

Self-play return estimates

Cross-play return estimates

1

1

Lagrange
Multipliers

()

Weighted
Summation

Expression 12

Maximize objective via MAPPO

Maximize objective via MAPPO

Minimize
objective via

gradient
descent

Figure 2: Lagrangian Best Response Diversity (L-BRDiv). The L-BRDiv algorithm trains a collection of policy networks (purple
and orange boxes) and Lagrange multipliers (green cells inside the black rectangle). The purple boxes represent a policy from
{πi}Ki=1 ⊆ Π while the policies visualized as an orange box is from {π−i}Ki=1 ⊆ Π. Estimated returns between any possible
pairs of policy, (πj , π−k) ∈ ({πi|πi ∈ Π}Ki=1 × {π−i|π−i ∈ Π}Ki=1), and their associated Lagrange multipliers are used to
compute the optimized term in the Lagrangian dual form (right red box) via a weighted summation operation (black dotted lines
connect weights and multiplied terms). The policy networks are then trained via MAPPO (Yu et al. 2022) to maximize this
optimized term, while the Lagrange multipliers are trained to minimize the term via stochastic gradient descent.

5.1 Jointly Approximating MCS(E) and
Generating Πtrain

Discovering MCS(E) by enumerating the AHT agent’s best-
response policy to each teammate policy is intractable given
the infinite policies in Π. Instead, we can estimate MCS(E) by
eliminating policies from a finite CS(E) to generate MCS(E).
Given a finite CS(E), an AHT agent policy is not a member of
MCS(E) if it is not the best response to any teammate policy.

We check if πi ∈ CS(E) is the best-response policy of at
least one policy from Π by solving the feasibility problem,
which is the following constrained optimization problem:

max
π−i∈Π

Es0∼p0 [Ri,−i(Ht)] , (7)

with the following constraints:

∀πj ∈ (CS(E)− {πi}) :
Es0∼p0 [Rj,−i(Ht)] ≤ Es0∼p0 [Ri,−i(Ht)] .

(8)

Any CS(E) member that violates the above constraint for all
π−i ∈ Π is not a member of MCS(E). While this approach
relies on knowing a finite CS(E), note that knowledge of a
finite CS(E) is sometimes available. For instance, the set of
all deterministic policies is a finite CS(E) for environments
with a finite action space and state space.

Applying the above procedure to find MCS(E) can still
be impossible for two reasons. First, a finite CS(E) can be
unknown. Second, the size of CS(E) may be prohibitively
large, which prevents solving the feasibility problem for all
πi ∈ CS(E). Amid these challenging problems, we resort to
estimating MCS(E) by only discovering its subset with K
policies, MCSest(E) = {πi}Ki=1.

We now describe an alternative constrained optimization
objective that jointly finds MCSest(E) while generating a set

of teammate policies for AHT training, Πtrain = {π−i}Ki=1,
according to the method illustrated in Figure 1. Two character-
istics are desired when finding MCSest(E). First, we require
each AHT agent policy from MCSest(E) to only be the best-
response policy to one teammate policy from Πtrain, πi. The
second characteristic prioritizes the discovery of MCS(E)
members that enables the AHT agent to produce high returns
with a designated teammate policy, π−i ∈ Π. These two
requirements are formulated as the following constrained
optimization problem:

max
{πi}K

i=1⊆Π,

{π−i}K
i=1⊆Π

∑
i∈{1,2,...,K}

Es∼p0 [Ri,−i(Ht)] , (9)

with the following constraints that must be fulfilled for all
i, j ∈ {1, 2, . . . ,K} and i ̸= j:

Es∼p0
[Rj,−i(Ht)] + τ ≤ Es∼p0

[Ri,−i(Ht)] , (10)

Es∼p0 [Ri,−j(Ht)] + τ ≤ Es∼p0 [Ri,−i(Ht)] . (11)

Note that a near-zero positive threshold (τ > 0) is intro-
duced in the constraints to prevent discovering duplicates of
the same πi and π−i, which turns Constraints 10 & 11 into
equality when τ = 0.

5.2 Lagrangian BRDiv (L-BRDiv)
We present the Lagrangian Best Response Diversity (L-
BRDiv) algorithm to generate Πtrain that encourages an AHT
agent to emulate MCSest(E). L-BRDiv generates Πtrain by
solving the Lagrange dual of the optimization problem speci-
fied by Expressions 9-11, which is an unconstrained objective
with the same optimal solution. The Lagrange dual for our

optimization problem is defined as:

min
A⊆RK(K−1)

≥0

×RK(K−1)
≥0

max
{πi}K

i=1⊆Π,

{π−i}K
i=1⊆Π

(∑
i∈{1,...,K}

Es0∼p0
[Ri,−i(Ht)] +

∑
i,j∈{1,...,K}

i ̸=j

αi,j
1 (Es0∼p0

[Ri,−i(Ht)− τ − Rj,−i(Ht)])+

∑
i,j∈{1,...,K}

i ̸=j

αi,j
2 (Es0∼p0 [Ri,−i(Ht)− τ − Ri,−j(Ht)])

)
,

(12)

with A = {(αi,j
1 , αi,j

2)|αi,j
1 ≥ 0, αi,j

2 ≥ 0}i,j∈{1,2,...,K},i̸=j

denoting the set of optimizable Lagrange multipliers.
L-BRDiv learns to assign different values to Lagrange mul-

tipliers in A of (12). Optimizing Lagrange multipliers gives
L-BRDiv two advantages over previous methods, which treat
these hyperparameters as constants. First, we demonstrate in
Section 6 that L-BRDiv creates better Πtrain by identifying
more members of MCS(E). Second, it does not require hy-
perparameter tuning on appropriate weights associated with
cross-play return, which in previous methods require careful
tuning to discover members of MCS(E) (Rahman et al. 2023)
and prevent the generation of incompetent policies not achiev-
ing high returns against any AHT agent policy (Charakorn,
Manoonpong, and Dilokthanakul 2023).

We detail L-BRDiv’s teammate generation process in Al-
gorithm 1 and analyze its computational complexity in Ap-
pendix D. L-BRDiv implements the policies optimized in the
Lagrange dual as neural networks trained with MAPPO (Yu
et al. 2022) to maximize the weighted advantage function
(14), whose weights correspond to the total weight associated
with each expected return term in (12). At the same time,
L-BRDiv trains a critic network to bootstrap the evaluation
of (12) instead of a Monte Carlo approach, which can be
expensive since it requires all generated policy pairs to ini-
tially follow the observation-action history, Ht. Meanwhile,
the Lagrange multipliers are trained to minimize (12) while
ensuring it is non-negative. Figure 2 then summarizes the
training process of L-BRDiv’s models.

6 Experiments
In this section, we describe the environments and baseline
algorithms in Sections 6.1 and 6.2. Section 6.3 then details
the experiment setups for evaluating the robustness of AHT
agents in L-BRDiv and baseline methods via their gener-
ated training teammate policies. Finally, we present the AHT
experiment results and an analysis of MCSest(E) policies
identified by L-BRDiv in Sections 6.4 and 6.5.

6.1 Environments
We run our experiments in four two-player cooperative envi-
ronments. The first environment is a repeated matrix game
where agents have three actions, whose reward function is
provided in Figure 3a. Since eliminating self-sabotaging be-
haviour (Cui et al. 2023a) is not the focus of our work, we
remove teammate-related information and actions from an

Algorithm 1: Lagrangian Best Response Diversity

Cardinality of MCSest(E) and Πtrain, K.
Randomly initialized policy networks in MCSest(E) &
Πtrain, denoted by {πi

θi
}Ki=1 & {π−i

θ−i
}Ki=1 respectively.

Randomly initialized critic network V j,−i
θc

, target V j,−i
θ′
c

.
Initial values for the Lagrange multipliers, A.

1: for tupdate = 1, 2, . . . , Nupdates do
2: (i, j) ∼ U({1, 2, . . . ,K}2)
3: D ← AgentInteraction(πj

θj
, π−i

θ−i
)

4: for (Ht, at, rt, Ht+1) ∈ D do
5: // Critic & Policy Optimization Step (Lines 6 & 8)
6: Update θc with SGD & a target critic to minimize(

V j,−i
θc

(Ht)− rt − γV j,−i
θ′
c

(Ht+1)
)2

(13)

7: wi,j(A)←

1 +

∑
k ̸=j

(
αi,k
1 + αi,k

2

)
, i = j

−
(
αi,j
1 + αj,i

2

)
, i ̸= j

8: Update θj and θ−j with MAPPO to maximize:

wi,j(A)
(
rt + γV j,−i

θc
(Ht+1)− V j,−i

θc
(Ht)

)
(14)

9: if tupdate mod Tlagrange = 0 then
10: // Lagrange Multiplier Optimization Step
11: Update A using SGD to minimize Expression 12

where ∀i, j ∈ {1, 2, . . . ,K}:

Es0∼p0 [Rj,−i(Ht)] ≈ V j,−i
θc

(Ht) (15)

12: A← {max(α, 0) | α ∈ A}
13: end if
14: end for
15: end for
16: Return {π−i

θ−i
}Ki=1

agent’s observation such that self-sabotaging behaviour is not
a member of possibly discovered teammate behaviours, Π.
We also do experiments in the Cooperative Reaching envi-
ronment (Rahman et al. 2023) where two agents can move
across the four cardinal directions in a two-dimensional grid
world. Both agents are given a reward of 1 once they simulta-
neously arrive at the same corner grid. The third environment
is Weighted Cooperative Reaching, which is similar to Co-
operative Reaching except for a modified reward function
(Figure 3c) that provides lower rewards if both agents arrive
at different corner cells. The last environment is Level-based
Foraging (LBF) (Christianos, Schäfer, and Albrecht 2020),
where both agents must move along the four cardinal di-
rections to a cell next to the same object and retrieve it by
simultaneously selecting actions for collecting objects. Suc-
cessful object collection gives both agents a reward of 0.33.

6.2 Baseline Methods
Our experiments compare L-BRDiv against methods that
maximize adversarial diversity, such as BRDiv (Rahman

10 0 4
0 6 4
4 4 6

(a) Repeated Matrix Game.

(b) Coop Reaching.

A B C D
A 10 0 6 6
B 0 10 6 6
C 6 6 8 0
D 6 6 0 8
(c) Weighted Coop Reaching.

(d) LBF.

Figure 3: Environments Used in AHT Experiments. We pro-
vide experiments in a repeated matrix game whose reward
function is displayed in Figure 3a. Figure 3b displays an ex-
ample state of the Cooperative Reaching environment where
the green stars represent corner cells that provide agents re-
wards once they simultaneously reach it. If we start from
the top-left corner cell in Figure 3b and assign IDs (A-D)
to corner cells in a clockwise manner, Figure 3c shows the
reward function of the Weighted Cooperative Reaching en-
vironment where agents’ rewards depend on which pair of
destination cells the two agents arrive at. Finally, Figure 3d
shows a sample state of Level-based Foraging (LBF) where
the apples represent the collected objects.

et al. 2023) and LIPO (Charakorn, Manoonpong, and Dilok-
thanakul 2023). Comparing L-BRDiv and BRDiv helps inves-
tigate the detrimental effect of using fixed uniform weights
instead of L-BRDiv’s optimized Lagrange multipliers (A).
Meanwhile, including LIPO as a baseline enables us to in-
vestigate the advantage of L-BRDiv and BRDiv’s use of
weights with a larger magnitude for self-play maximization
(i.e. wi,i(A) in Eq. 14) compared to the weights for cross-play
minimization (i.e. wi,j(A) in Eq. 14). We do not compare
our method with ADVERSITY (Cui et al. 2023a), which
combines LIPO with techniques to prevent self-sabotage. We
hold that self-sabotaging policies should not be ruled out
during policy generation since teammates may still use them.
By not preventing the discovery of such policies, we ensure
that our method remains fully general.

6.3 Experiment Setup
We start our experiments for each environment by generating
K training teammate policies using the compared methods.
We ensure fairness in our experiments by using RL2 algo-
rithm (Duan et al. 2016) to find an optimal AHT agent policy
defined in Equation 1 based on Πtrain generated by each team-
mate generation algorithm. Since our partially observable
environments provide no useful information to infer team-
mate policies except for rewards obtained at the end of each
interaction episode, we choose RL2 since it can use reward
information to create agent representations maintained and
updated across multiple episodes. For each of the compared

algorithms, the teammate generation and AHT training pro-
cess are repeated under four seeds to allow for a statistically
sound comparison between each method’s performance. As
a measure of robustness, we then evaluate the average re-
turns of the AHT agent trained from each experiment seed
when collaborating with policies sampled from Πeval. We con-
struct Πeval for each environment by creating heuristic-based
agents, whose behaviour we describe in Appendix A. Finally,
we compute the mean and 95% confidence interval of the
recorded returns across four seeds and report it in Figure 4.

6.4 Ad Hoc Teamwork Experiment Results
Figure 4 shows the results of the AHT experiments. We
find that L-BRDiv significantly outperforms other compared
methods in the repeated matrix game, Weighted Cooperative
Reaching, and LBF. While BRDiv slightly outperforms L-
BRDiv in Cooperative Reaching, overlapping confidence
intervals among the last few checkpoints suggest that the
difference is only marginally significant.

L-BRDiv outperforms the compared baselines in all envi-
ronments except Cooperative Reaching since these environ-
ments all have reward functions that cause some members
of the MCS, πi ∈ MCS(E), to yield high expected returns in
cross-play interactions against a generated teammate policy,
π−j ∈ Πtrain, that is not its intended partner, π−i ∈ Πtrain.
Meanwhile, all πi ∈MCS(E) for Cooperative Reaching have
equally low (i.e. zero) returns against the intended partner of
other MCS(E) members. The large cross-play returns disin-
centivize BRDiv and LIPO’s optimized objective from discov-
ering πi and π−i during teammate generation. The inability
to discover πi ∈ MCS(E) and π−i will then lead towards
diminished robustness since the trained AHT agent will yield
lower returns against teammates whose best-response policy
is πi. In contrast, Cooperative Reaching’s reward structure
makes MCS(E) (i.e. the set of four policies moving towards
each distinct corner cell) consist of policies yielding equally
low cross-play returns of zero among each other.

Although both BRDiv and LIPO are equipped with a hy-
perparameter, α > 0, that can change weights associated
with self-play returns maximization and cross-play returns
minimization in their learning objective, it is possible to find
simple scenarios where no feasible α facilitates the discovery
of a desirable Πtrain to maximize an AHT agent’s robustness.
Such a desirable Πtrain is characterized by all AHT agent
policies in MCS(E) having at least one teammate policy in
∈ Πtrain whom it is the best-response policy to. Appendix B
shows that the Repeated Matrix Game and Weighted Cooper-
ative Reaching environment are examples of such scenarios.
Even in environments like LBF where there may exist an α
enabling both BRDiv and LIPO to discover a desirable Πtrain

by optimizing their learning objectives, finding an appropri-
ate α is costly if we factor in the computational resources
required to run a single teammate generation process. Unlike
BRDiv and LIPO, L-BRDiv’s inclusion of Lagrange multi-
pliers as learned parameters enables it to discover desirable
Πtrain in a wider range of environments while reducing the
number of hyperparameters that must be tuned.

Note that L-BRDiv and the baseline methods all success-
fully discover MCS(E) in Cooperative Reaching. However,

0 10 20 30 40 50
Total Timesteps (x20000)

4.5

5.0

5.5

6.0
E

pi
so

di
c

R
et

ur
ns

Repeated Matrix Game

0 10 20 30 40 50
Total Timesteps (x240000)

0.4

0.55

0.7

0.85

Coop Reach

0 10 20 30 40 50
Total Timesteps (x240000)

4.75

5.5

6.25

7.0

Weighted Coop Reach

0 10 20 30 40 50
Total Timesteps (x960000)

0.1

0.2

0.3

0.4

Level-based Foraging

L-BRDiv BRDiv LIPO

Figure 4: Generalization Performance Against Previously Unseen Teammate Types. This figure shows that L-BRDiv produced
significantly higher episodic returns when dealing with unknown teammate policies in all environments except for Cooperative
Reaching. We also show L-BRDiv achieving similar returns to other methods in Cooperative Reaching.

π(A) π(B) π(C)
1 1 0 0
2 0 1 0
3 0 0 1

(a) AHT agent action selection probability for policies in MCSest(E)
in the Repeated Matrix Game.

(b) MCSest(E) in Coop Reaching
& Weighted Coop Reaching.

(c) AHT agent policies in the
MCSest(E) discovered for LBF.

Figure 5: MCSest(E) Yielded by L-BRDiv. L-BRDiv is capa-
ble of estimating all members of MCS(E) in all environments
except LBF. Even so, L-BRDiv still discovers more conven-
tions with distinct best-response policies than the baselines
in LBF. The discovery of more MCS(E) results in L-BRDiv
producing more robust AHT agents.

each teammate policy generated by L-BRDiv and LIPO
which has one of the MCS(E) members as its best-response
policy ends up being less optimal than their BRDiv-generated
counterparts. These suboptimal policies require more steps
to complete an episode by occasionally moving away from
their destination corner cell. Learning from these suboptimal
agents made the AHT agent less decisive when selecting
which corner cell to move towards and finally ends up pro-
ducing agents with slightly lower returns.

6.5 Behaviour Analysis
The AHT agent policies that L-BRDiv discovers as members
of MCSest in all environments are provided in Figures 5a-5c.
Unlike the compared baseline methods that only discover
two members of MCS(E), results from the Repeated Matrix
Game show L-BRDiv is capable of consistently finding all
three deterministic policies that are members of MCS(E). As
a consequence of Cooperative Reaching’s reward structure,

all compared methods successfully discover MCS(E) and
achieve the similar performances. Meanwhile, L-BRDiv is
the only method that finds all four members of MCS(E) corre-
sponding to movement towards each corner grid in Weighted
Cooperative Reaching. As we show in Appendix B, BRDiv
and LIPO’s failure to discover all members of MCS(E) in the
Repeated Matrix Game and Weighted Cooperative Reaching
is because discovering MCS(E) does not optimize their opti-
mized objective for any constant and uniform α. Despite no
method perfectly discovering MCS(E) consisting of all six
possible orderings for collecting objects in LBF, L-BRDiv
is closer to estimating MCS(E) than the baseline algorithms
by discovering four MCS(E) members in one seed and five
MCS(E) members in the remaining seeds. L-BRDiv’s abil-
ity to discover more MCS(E) members than baselines leads
towards more robust AHT agents that can emulate the best-
response policy to a wider range of teammate policies.

7 Conclusion & Future Work
In this work, we propose that an appropriate set of teammate
policies for AHT training must enable agents to emulate all
policies in MCS(E), the smallest set of policies containing
the best-response policy to any teammate policy in Π. To
generate such teammate policies for robust AHT training, we
introduce and evaluate L-BRDiv. By solving a constrained
optimization problem using the Lagrange multiplier tech-
nique, L-BRDiv then learns to jointly approximate the MCS
of an environment and generate a set of teammate policies for
AHT training. Our experiments indicate that L-BRDiv yields
more robust AHT agents compared to state-of-the-art team-
mate generation methods by identifying more members of
the MCS while also removing the need for tuning important
hyperparameters used in prior methods.

Future work will consider extending L-BRDiv to more
complex environments where more than two agents must
collaborate. Another promising research direction is to extend
L-BRDiv with techniques to discourage the discovery of
self-sabotaging policies (Cui et al. 2023a). Finally, applying
our method in fully competitive and general-sum games is
another promising direction for creating robust agents since
the concept of minimum coverage sets is not limited to fully
cooperative problems.

Acknowledgements
All research conducted in this work was done under the
Learning Agents Research Group (LARG) at UT Austin’s
Department of Computer Science. The research in LARG is
supported in part by Lockheed Martin, NSF (CPS-1739964,
IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF19-2-0333), DARPA, GM, and
Bosch. Peter Stone serves as the Executive Director of Sony
AI America and receives financial compensation for this
work. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin following its
policy on objectivity in research.

References
Bakhtin, A.; Wu, D. J.; Lerer, A.; Gray, J.; Jacob, A. P.;
Farina, G.; Miller, A. H.; and Brown, N. 2022. Mastering
the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning. arXiv preprint
arXiv:2210.05492.
Barrett, S.; Rosenfeld, A.; Kraus, S.; and Stone, P. 2016. Mak-
ing Friends on the Fly: Cooperating with New Teammates.
Artificial Intelligence.
Chakraborty, D.; and Stone, P. 2014. Convergence, targeted
optimality and safety in multiagent learning. Sample Efficient
Multiagent Learning in the Presence of Markovian Agents,
29–47.
Charakorn, R.; Manoonpong, P.; and Dilokthanakul, N. 2023.
Generating Diverse Cooperative Agents by Learning Incom-
patible Policies. In The Eleventh International Conference
on Learning Representations.
Christianos, F.; Schäfer, L.; and Albrecht, S. V. 2020. Shared
Experience Actor-Critic for Multi-Agent Reinforcement
Learning. In Advances in Neural Information Processing
Systems (NeurIPS).
Cui, B.; Lupu, A.; Sokota, S.; Hu, H.; Wu, D. J.; and Foerster,
J. N. 2023a. Adversarial Diversity in Hanabi. In The Eleventh
International Conference on Learning Representations.
Cui, J.; Yang, X.; Luo, M.; Lee, G.; Stone, P.; Lee, H.-H. S.;
Lee, B.; Suh, G. E.; Xiong, W.; and Tian, Y. 2023b. MACTA:
A Multi-agent Reinforcement Learning Approach for Cache
Timing Attacks and Detection. In The Eleventh International
Conference on Learning Representations.
Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P. L.; Sutskever,
I.; and Abbeel, P. 2016. RL2: Fast reinforcement learning via
slow reinforcement learning.
Gu, P.; Zhao, M.; Hao, J.; and An, B. 2021. Online ad
hoc teamwork under partial observability. In International
Conference on Learning Representations.
Hu, H.; Lerer, A.; Peysakhovich, A.; and Foerster, J. 2020.
“other-play” for zero-shot coordination. In International
Conference on Machine Learning, 4399–4410. PMLR.
Lupu, A.; Cui, B.; Hu, H.; and Foerster, J. 2021. Trajec-
tory diversity for zero-shot coordination. In International
conference on machine learning, 7204–7213. PMLR.
Mahajan, A.; Rashid, T.; Samvelyan, M.; and Whiteson, S.
2019. Maven: Multi-agent variational exploration. Advances
in Neural Information Processing Systems, 32.

Mirsky, R.; Carlucho, I.; Rahman, A.; Fosong, E.; Macke, W.;
Sridharan, M.; Stone, P.; and Albrecht, S. V. 2022. A survey
of ad hoc teamwork research. In European Conference on
Multi-Agent Systems, 275–293. Springer.
Papoudakis, G.; Christianos, F.; and Albrecht, S. 2021. Agent
Modelling under Partial Observability for Deep Reinforce-
ment Learning. Advances in Neural Information Processing
Systems, 35.
Rahman, A.; Fosong, E.; Carlucho, I.; and Albrecht, S. V.
2023. Generating Teammates for Training Robust Ad Hoc
Teamwork Agents via Best-Response Diversity. Transactions
on Machine Learning Research.
Rahman, A.; Höpner, N.; Christianos, F.; and Albrecht, S. V.
2021. Towards Open Ad Hoc Teamwork Using Graph-Based
Policy Learning. In International Conference on Machine
Learning, volume 139. PMLR.
Stone, P.; Kaminka, G.; Kraus, S.; and Rosenschein, J. 2010.
Ad hoc autonomous agent teams: Collaboration without pre-
coordination. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 24, 1504–1509.
Strouse, D.; McKee, K.; Botvinick, M.; Hughes, E.; and
Everett, R. 2021. Collaborating with humans without human
data. Advances in Neural Information Processing Systems,
34: 14502–14515.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):
350–354.
Xing, D.; Liu, Q.; Zheng, Q.; Pan, G.; and Zhou, Z. 2021.
Learning with Generated Teammates to Achieve Type-Free
Ad-Hoc Teamwork. In IJCAI, 472–478.
Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.;
and Wu, Y. 2022. The Surprising Effectiveness of PPO in
Cooperative Multi-Agent Games. In Thirty-sixth Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track.
Zintgraf, L.; Devlin, S.; Ciosek, K.; Whiteson, S.; and Hof-
mann, K. 2021. Deep interactive bayesian reinforcement
learning via meta-learning. arXiv preprint arXiv:2101.03864.

A Teammate Policies for AHT Evaluation
We outline the different types of teammate policies in the
set of teammates we use for AHT evaluation, Πeval. For each
environment, teammate policies in Πeval are based on simple
heuristics. Details of heuristics used for each environment
are outlined in the following sections.

A.1 Repeated Matrix Game
Since the Repeated Matrix Game is a simple environment
without any states, we only implemented six simple heuristics
which details are provided below:

• H1. Agents that follow this heuristic will always choose
the first action.

• H2. This heuristic will get an agent to always choose the
second action.

• H3. Agents using this heuristic will always choose the
third action.

• H4. Unlike H1-H3, this heuristic gives agents a policy
that chooses the first, second, and third action with proba-
bilities of 0.7, 0.15, and 0.15 respectively.

• H5. This is a policy that chooses the first, second, and
third action with probabilities of 0.15, 0.7, and 0.15 re-
spectively.

• H6. Agents following this heuristic will choose the third
action 70% of the time. Meanwhile, it is also equally
likely to choose between the first and second actions.

A.2 Cooperative Reaching and Weighted
Cooperative Reaching

For the Cooperative Reaching and Weighted Cooperative
Reaching environment, we implement 15 types of teammate
heuristics whose behaviour are detailed below:

• H1. H1 controls an agent to always move to the closest
corner cell from its initial location.

• H2. This heuristic moves an agent towards the furthest
corner cell from its the agent’s initial location at the be-
ginning of the episode.

• H3. H3 controls an agent to move towards the closest
corner cell between corner cells A and B.

• H4. Based on the agent’s initial location at the beginning
of an episode, H4 will move agents towards the furthest
cell between cells A and B.

• H5. H5 moves an agent towards the closest cell between
cells C and D.

• H6. Depending on the agent’s position at the beginning
of an episode, H6 controls the agent to move towards the
furthest cell between cells C and D.

• H7. At the beginning of each interaction, H7 randomly
picks a destination cell between A, B, C, and D with equal
probability. For the remainder of each episode, the agent
will be controlled to move towards the destination cell.

• H8-H11. H8-H11 move agents towards corner cells A-D
respectively.

• H12. H12 moves an agent towards corner cell A with a
55% chance. Meanwhile, the other corner cells are equally
likely to be chosen as destination cells.

• H13. H13 moves an agent towards corner cells A, B, C,
and D with a 15%, 55%, 15%, and 15% chance respec-
tively.

• H14. H14 moves an agent towards corner cells A, B, C,
and D with a 15%, 15%, 55%, and 15% chance respec-
tively.

• H15. H15 moves an agent towards corner cell D 55%
of the time. Meanwhile, the remaining corner cells are
equally likely to be chosen as destination cells.

A.3 Level-based Foraging
Experiments in the Level-based Foraging environment evalu-
ate AHT agents against Πeval consisting of 8 heuristic types
defined below:
• H1. Agents under H1 will move towards the closest item

from its current location and collect it. This process is
repeated until no item is left.

• H2. At the beginning of an episode, agents under heuristic
H2 will move towards the furthest object from its location
and collect it. Every time its targeted item is collected, the
agent will then move to collect the remaining item whose
location is furthest from the agent’s current location. This
process is repeated until no item remains.

• H3-H8. H3-H8 each corresponds to a heuristic that col-
lects items following one of the six possible permutations
of collecting the three items available in the environment.

B Analyzing Baseline Failure in Repeated
Matrix Game & Weighted Cooperative

Reaching
In this section, we mathematically demonstrate that no con-
stant and uniform α > 0 can make BRDiv or LIPO identify
all policies in MCS(E) for the Repeated Matrix Game and
Weighted Cooperative Reaching environment. Section B.1
details our argument regarding the baselines’ failure in the
repeated matrix game. Meanwhile, the same argument for the
Weighted Cooperative Reaching environment is provided in
Section B.2.

B.1 Repeated Matrix Game
Based on the payoff matrix provided in Figure 3a, it is clear
that the MCS of the Repeated Matrix Game environment
consists of the three deterministic policies displayed in Fig-
ure 5a. Ideally, L-BRDiv, BRDiv, and LIPO should all pro-
duce MCSest(E) and Πtrain containing policies displayed in
Figure 5a. However, we show it is impossible to find α > 0
that can make BRDiv and LIPO discover MCSest(E) for this
environment and generate a set of teammate policies to maxi-
mize the AHT agent’s robustness.

LIPO and BRDiv fail in this simple environment because
another set of policies produces a higher adversarial diversity
metric compared to the ideal MCSest(E) and Πtrain for any
α > 0. An example set of policies producing a higher adver-
sarial diversity metric than the ideal MCSest(E) is displayed

π(A) π(B) π(C)
1 1 0 0
2 0 1 0
3 0 1 0

(a) A set of policies that appear more optimal than MCS(E) for
BRDiv and LIPO.

10 0 0
0 6 6
0 6 6

(b) Cross-play matrix for the policies discovered in Figure 6a.

Figure 6: An Example Failure Mode of BRDiv & LIPO. The
above figures provide an example set of policies that will
appear to be more optimal than MCS(E) if we optimize the
diversity metric used by LIPO and BRDiv.

in Figure 6. Compared to discovering MCS(E) as MCSest(E)
and Πtrain that results in a cross-play matrix like the payoff
matrix, the cross-play matrix from discovering policies in
Figure 6a has a lower sum of non-diagonal elements while
having the same trace.

We now evaluate the value of LIPO and BRDiv’s op-
timized diversity metric when both MCSest(E) and Πtrain

equals MCS(E) and when it instead discovers the set of poli-
cies displayed in Figure 6a, which we denote as Πalt. Note
that the adversarial diversity metric maximized by BRDiv,
BRDiv({πi}Ki=1,{π−i}Ki=1), can be expressed as:∑

i∈{1,...,K}

Es0∼p0
[Ri,−i(Ht)] +

∑
i,j∈{1,...,K}

i̸=j

α (Es0∼p0
[Ri,−i(Ht)− Rj,−i(Ht)])+

∑
i,j∈{1,...,K}

i̸=j

α (Es0∼p0
[Ri,−i(Ht)− Ri,−j(Ht)]) , (16)

for some α > 0. Meanwhile, the adversarial diversity metric
optimized by LIPO, LIPO({πi}Ki=1,{π−i}Ki=1), is given by
the following expression:∑

i∈{1,...,K}

Es0∼p0
[Ri,−i(Ht)]−

∑
i,j∈{1,...,K}

i̸=j

α (Es0∼p0
[Rj,−i(Ht) + Ri,−j(Ht)]) , (17)

assuming α > 0. For α > 0, the resulting BRDiv and LIPO
objective for both sets of policies are provided in the follow-
ing table: From Table 1, it is clear that discovering Πalt will
always produce higher diversity metrics for BRDiv and LIPO.
It is then impossible to discover MCS(E) while optimizing
both of these objectives. Its inability to discover some mem-
bers of MCS(E) and instead discover other members twice
eventually leads LIPO and BRDiv towards producing AHT
agents with significantly worse returns than L-BRDiv.

Table 1: Value of LIPO and BRDiv objectives for the Re-
peated Matrix Game. The expressions that evaluate LIPO
and BRDiv’s optimized diversity metric for the Repeated
Matrix Game are provided below. No α > 0 enables MCS(E)
to have higher diversity objectives than Πalt.

Method MCS(E) Πalt

BRDiv 22+56α 22+64α
LIPO 22-16α 22-12α

π(A) π(B) π(C) π(D)
1 1 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 1 0 0

(a) Denoting π(X) as the probability of ending up in a corner cell
having an ID of X, the above set of policies produce higher diver-
sity metrics than MCS(E) in the Weighted Cooperative Reaching
environment for BRDiv and LIPO.

10 10 0 0
10 10 0 0
0 0 10 10
0 0 10 10

(b) Cross-play matrix between policies discovered in Figure 7a.

Figure 7: Another Example Failure Mode of BRDiv & LIPO
in Weighted Cooperative Reaching. By not discovering poli-
cies that move towards corner cells C and D, BRDiv and
LIPO can achieve a higher diversity metric than when discov-
ering MCS(E).

B.2 Weighted Cooperative Reaching

To show the shortcomings of LIPO and BRDiv in Weighted
Cooperative Reaching, we also construct a set of policies
that will produce higher diversity metrics for both BRDiv
and LIPO. This set of policies that appears more desirable
for LIPO and BRDiv than MCS(E) is denoted by Πalt and is
visualized by Figure 7. Instead of discovering four policies
moving towards different corner cells in the environment,
Πalt discovers policies moving towards cells A and B twice.
Discovering Πalt and using it as MCSest(E) and Πtrain results
in a cross-play matrix displayed in Figure 7b.

Compared to MCS(E) that produces a cross-play matrix
that is the same as Figure 3c, the cross-play matrix from Πalt

has a higher sum of self-play returns and a lower sum of cross-
play returns. As a result, no α > 0 should make MCS(E)
appear more desirable to LIPO and BRDiv. We show the
expressions evaluating LIPO and BRDiv’s diversity metrics
for MCS(E) and Πalt in Table 2. Since a set of policies like
Πalt that does not discover all members of MCS(E) appear
more preferable than MCS(E), LIPO and BRDiv end up yield-
ing AHT agents that cannot robustly interact with teammate
policies whose best-response policies are not discovered.

Table 2: Value of LIPO & BRDiv Objectives for Weighted
Cooperative Reaching. The expressions that evaluate LIPO
and BRDiv’s optimized diversity metric for Weighted Co-
operative Reaching are provided below. No α > 0 enables
MCS(E) to have higher diversity objectives than Πalt.

Method MCS(E) Πalt

BRDiv 36+120α 40+160α
LIPO 36-48α 40-40α

C Analyzing the Lagrange Multipliers of
L-BRDiv

The role of the Lagrange multipliers in the learning process
undergone by L-BRDiv is highlighted in Figure 8. Since
the randomly initialized teammate policies cannot fulfil the
upheld constraints in the beginning, optimizing Expression 12
encourages the increase of the Lagrange multipliers’ values.
The increasingly large Lagrange multipliers then force the
learned policies to start fulfilling these constraints. Once
policies learn to fulfil a constraint, the Lagrange multiplier
associated with that constraint will decrease towards zero. At
the end of the optimization process, we see that all Lagrange
multipliers eventually converge to zero after all constraints
are fulfilled.

D Computational Complexity of L-BRDiv
The complexity of a neural network’s forward computation
and backpropagation will then serve as a basis to identify the
computational complexity of L-BRDiv. Denoting the size of
the nth hidden layer of the policy network as Ln and given
input data with —D— datapoints & F features, the compu-
tational complexity of forward computation and stochastic
gradient descent (SGD) for neural networks isO(|D|M) with
M = max(FL1,maxi(LiLi+1)). This complexity follows
from forward and backpropagation in neural networks being
a sequence of matrix multiplications.

Given MAPPO, BRDiv, and LIPO’s experience collec-
tion and policy update process (based on optimizing Expres-
sions 12 and 14 for a given α described in Appendix C) that
does forward and backpropagation for all T experiences col-
lected during training, their complexity becomes O(TM).
Unlike these methods, L-BRDiv also has to compute the
Lagrange dual for each experience (Line 12 in pseudocode).
Given K generated policies, computing the Lagrange dual for
each requires computing 2K(K − 1) forward computations
for each experience, which results in a O(K2TM) complex-
ity. Although it may appear to be a considerable increase,
note that K is often set to a small value. Existing neural net-
work libraries can also parallelize the 2K(K − 1) forward
computations in the Lagrange dual evaluation using GPUs,
resulting in a computational complexity closer to O(TM)
for L-BRDiv.

E Teammate Generation Hyperparameter
Details

The hyperparameters that we use during L-BRDiv’s team-
mate generation process are provided below:

Table 3: Hyperparameter Values for L-BRDiv’s Experiments.
The specific hyperparameter values used in our teammate
generation experiments in Repeated Matrix Games (RPM),
Cooperative Reaching (CR), Weighted Cooperative Reaching
(WCR), and Level-based Foraging (LBF) are provided below.

RPM CR WCR LBF
K 3 4 4 6
λπ 10−3 10−4 10−4 10−4

λV 10−3 10−4 10−4 10−4

λα 0.05 0.5 0.5 0.05
γ 0.99 0.99 0.99 0.99
T 106 3.2×107 3.2×107 2.4×108

Nthreads 40 160 160 160
Tupdate 2 8 8 8
Tlagrange 10 10 10 10

τ 1 0.2 0.5 0.1
went 10−3 5×10−3 5×10−3 8×10−4

• K: Number of generated policies.
• λπ: Policy learning rate.
• λV : Critic learning rate.
• λα: Lagrange multiplier learning rate.
• γ: Discount rate.
• T : Number of experiences used in learning.
• Nthreads: Number of parallel threads for data collection

during training.
• Tupdate: Number of timesteps between update.
• Tlagrange: Number of policy updates between subsequent

Lagrange multiplier updates.
• τ : Tolerance factor used in the Lagrange dual.
• went: Entropy multiplier to encourage exploration in

MAPPO. To prevent the magnitude of the entropy loss
from being overwhelmed by the policy loss, in practice
we multiply this term with wi,i(A) in Expression 14 to
compute the entropy weights.

For these hyperparameters, we outline their value for the four
environments used in our experiments as provided in Table 3.
Meanwhile, we also use multilayer perceptrons as our policy
and critic network architecture for all compared methods.
Details of the size of these models in each environment are
provided in Table 4.

We ensure a fair comparison between L-BRDiv and the
baseline methods by using the same hyperparameter values
and network architecture. However, note that BRDiv and
LIPO still require us to set α to a value that facilitates the
generation of Πtrain that facilitates the training of robust AHT
agents. Since teammate generation and AHT training is com-
putationally expensive , we follow these steps to tune α:

1. We initially run LIPO and BRDiv with α ∈
{0.1, 0.5, 1, 5, 10}. Two experiment runs are done for
each α.

2. We look at the generated teammates and see which tested
α discover more members of MCS(E).

0 2500 5000 7500
Total Updates

0.0

0.25

0.5

0.75

1.0
La

gr
an

ge
 M

ul
tip

lie
r M

ea
n

N
or

m
Repeated Matrix Game

0 800 1600 2400
Total Updates

0.0
1.0
2.0
3.0
4.0
5.0

Coop Reach

0 800 1600 2400
Total Updates

0

25

50

75

100
Weighted Coop Reach

0 6000 12000 18000
Total Updates

0.0

3.5

7.0

10.5

14
LBF

Figure 8: The Changing Values of L-BRDiv’s Lagrange Multipliers. Figure 8 show how L-BRDiv’s Lagrange multipliers change
over time. Since a randomly initialized policy will not fulfil the constraints upheld by L-BRDiv, the Lagrange multipliers will
initially increase their value to add more pressure to the policies to fulfil the constraints. Finally, the Lagrange multipliers will
decrease to zero once constraints are fulfilled.

Table 4: Network size for L-BRDiv’s experiments. The size
of models in our experiments in the Repeated Matrix Games
(RPM), Cooperative Reaching (CR), Weighted Cooperative
Reaching (WCR), and Level-based Foraging (LBF) environ-
ment are detailed below.

RPM CR WCR LBF
πi
θ (Layer 1) 32 128 128 128

πi
θ (Layer 2) 32 256 256 128

πi
θ (Layer 3) N/A 256 256 N/A

πi
θ (Layer 4) N/A 128 128 N/A

Vθc (Layer 1) 32 128 128 128
Vθc (Layer 2) 32 256 256 128
Vθc (Layer 3) N/A 256 256 N/A
Vθc (Layer 4) N/A 128 128 N/A

3. Based on the α producing the best estimate of MCS(E),
we then do slight tuning to α by finding values close to α
producing the best approximate to MCS(E).

Following this process, the final hyperparameter value that we
end up using for LIPO and BRDiv is summarized in Table 5.
In alignment with the findings from Charakorn, Manoon-
pong, and Dilokthanakul (2023), note that LIPO ends up
using small α values since larger α results in incompetent
policies that cannot even achieve high returns against their
intended partner in self-play. The only exception is Coop-
erative Reaching where MCS(E) consists of policies whose
cross-play returns are zero, which enables the use of a large
α. This emergence of incompetent policies is a natural conse-
quence of optimizing Expression 17, which cross-play return
term’s magnitude can overwhelm the self-play return term
for large enough α.

F AHT Experiment Hyperparameters
As we mention in Section 6.3, we use the RL2 algorithm to
train AHT agents based on the set of teammates generated
by each compared method. The hyperparameters of the RL2

algorithm are listed below:
• λπ: Policy learning rate.
• λV : Critic learning rate.

Table 5: α for Baseline Methods. The value of α used by
baseline methods in their respective objectives for the Re-
peated Matrix Games (RPM), Cooperative Reaching (CR),
Weighted Cooperative Reaching (WCR), and Level-based
Foraging (LBF) environment are detailed below.

RPM CR WCR LBF
LIPO 0.5 8 0.25 0.08

BRDiv 1 10 1 0.4

• γ: Discount rate.
• T : Number of experiences used in learning.
• Nthreads: Number of parallel threads for data collection

during training.
• Tupdate: Number of timesteps between update.
• went: Entropy weight term to encourage exploration.
• Lrep: The length of representation vectors to characterize

teammates.
For each environment used in our experiments, hyperparam-
eter values that we use in each environment is provided in
Table 6.

Table 6: Hyperparameter values for L-BRDiv’s Experiments.
The specific hyperparameter values used in our Repeated
Matrix Games (RPM), Cooperative Reaching (CR), Weighted
Cooperative Reaching (WCR), and Level-based Foraging
(LBF) environment are provided below.

RPM CR WCR LBF
λπ 10−4 10−4 10−4 10−4

λV 10−4 10−4 10−4 10−4

γ 0.99 0.99 0.99 0.99
T 106 1.2×107 1.2×107 4.8×107

Nthreads 10 16 16 16
Tupdate 2 8 8 8
went 10−4 2.5×10−4 2.5×10−4 8×10−4

Lrep 16 32 32 64

Apart from these hyperparameters, our policy and critic
networks have a similar architecture to the teammate gener-

ation process. The only difference is that we use an LSTM
layer as our final layer. We use the LSTM layer to enable
agents to process the previous sequence of observations and
experienced rewards to model the type of teammates the AHT
agent is interacting with.

