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Bottom-Up Skill Discovery from Unsegmented
Demonstrations for Long-Horizon Robot

Manipulation
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Abstract—We tackle real-world long-horizon robot manip-
ulation tasks through skill discovery. We present a bottom-
up approach to learning a library of reusable skills from
unsegmented demonstrations and use these skills to synthesize
prolonged robot behaviors. Our method starts with constructing
a hierarchical task structure from each demonstration through
agglomerative clustering. From the task structures of multi-
task demonstrations, we identify skills based on the recurring
patterns and train goal-conditioned sensorimotor policies with
hierarchical imitation learning. Finally, we train a meta controller
to compose these skills to solve long-horizon manipulation tasks.
The entire model can be trained on a small set of human
demonstrations collected within 30 minutes without further
annotations, making it amendable to real-world deployment. We
systematically evaluated our method in simulation environments
and on a real robot. Our method has shown superior performance
over state-of-the-art imitation learning methods in multi-stage
manipulation tasks. Furthermore, skills discovered from multi-
task demonstrations boost the average task success by 8%
compared to those discovered from individual tasks.1

Index Terms—Deep Learning for Grasping and Manipulation,
Imitation Learning, Sensorimotor Learning.

I. INTRODUCTION

REAL-world manipulation tasks challenge autonomous
robots to reason about long-term interactions with the

physical environment through the lens of raw perception. To
tackle this challenge, temporal abstraction [38, 47] offers a
powerful framework to model the compositional structures of
manipulation tasks. The key idea is to use (sensorimotor) skills
as the basic building blocks for synthesizing temporally ex-
tended robot behaviors. Recently, skill-based manipulation al-
gorithms, including task and motion planning [11, 18, 19] and
hierarchical reinforcement learning [6, 47], have demonstrated
promising results in some restrictive settings. Nonetheless, it
remains challenging to devise an effective yet automated way
of building a rich repertoire of skills without costly manual
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Fig. 1: Overview of BUDS. We construct hierarchical task structures of
demonstration sequences in a bottom-up manner, from which we obtain
temporal segments for discovering and learning sensorimotor skills.

engineering, especially when incorporating real-world sensory
data.

Several paradigms have been investigated for automating
skill acquisition. Notable ones include the options frame-
work [2, 10, 13, 23, 26, 50] and unsupervised skill discovery
based on information-theoretic metrics [8, 15, 43]. While
initial successes have been achieved for discovering skills
from a robot’s self exploration, primarily in simulation, these
methods exhibit a prohibitively high sample complexity or
require access to ground-truth physical states, hindering their
applicability on real robots. An alternative strategy is to
extract skills from human demonstrations, easing the explo-
ration burdens. A direct approach is to manually annotate
the demonstrations into coherent segments as skills [17], but
manual annotations of temporal segments can be ambiguous
and costly. Instead, our approach discovers skills from a
small set of unsegmented human demonstrations with no
temporal labels. It reduces the human efforts and improves
the scalability. Prior work on learning from unsegmented
demonstrations used Bayesian inference [23, 36], generative
modeling [22, 42, 48], and dynamic programming [44] to
temporally decompose the demonstrations into a sequence of
shorter skill segments. However, these methods usually fall
short of processing high-dimensional sensor data. Recent ad-
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vances in hierarchical imitation learning [14, 31, 32], modeled
with deep neural networks, have shown promise in tackling
long-horizon manipulation tasks in a hierarchical manner.
They have focused on solving individual tasks rather than
discovering a library of reusable skills across tasks.

We develop a hierarchical approach to tackling real-world
robot manipulation through skill discovery from unsegmented
demonstrations. Our method BUDS (Buttom-Up Discovery of
sensorimotor Skills), presented in Figure 1, starts with an un-
supervised clustering-based segmentation model that extracts
a library of sensorimotor skills from human demonstrations
collected through teleoperation. Each skill is modeled as a
goal-conditioned sensorimotor policy that operates on raw
images and robot proprioceptiion. BUDS further learns a
high-level meta controller that selects a skill and predicts
the subgoal for the skill to achieve at any given state. Both
the skills and the meta-controllers are trained with imitation
learning on human demonstrations. Together it presents a
scalable framework for solving complex manipulation tasks
from raw sensory inputs, amendable to real-robot deployment.

Four key properties of BUDS are crucial for its effec-
tiveness: 1) it uses bottom-up agglomerative clustering to
build hierarchical task structures of demonstrations. These
hierarchical representations offer flexibility for the imitation
learner to determine the proper granularity of the temporal seg-
ments. 2) BUDS segments the demonstrations based on multi-
sensory cues, including multi-view images and proprioceptive
features. It takes advantage of the statistical patterns across
multiple sensor modalities to produce more coherent and
compositional task structures than using a single modality. 3)
BUDS extracts skills from human demonstrations on multiple
tasks that achieve different manipulation goals, facilitating
knowledge sharing across tasks and improve the reusability of
the discovered skills. 4) we train our goal-conditioned skills
with the recently developed Hierarchical Behavior Cloning
algorithm [14, 31, 32, 49], producing perceptually grounded
yet versatile skills for composition.

We systematically evaluate our method in simulation and on
a real robot and perform ablation studies to validate our design
choices. BUDS achieves an average 66% success rate on three
challenging vision-based manipulation tasks, which the recent
hierarchical imitation learning algorithms [14, 32] struggled
to solve. It also outperformed the most competitive baselines
over 20%. We further show that skills learned from multi-
task demonstrations boost the success rate by 8% compared
to those learned for each task separately. Moreover, we show
that the skills can be reused for solving new task variants
that require different subtask combinations. Finally, we deploy
BUDS on a real robot for a complex kitchen task, achieving
a 56% success rate on par with our simulation results. For all
experiments, BUDS is trained on 50-120 demonstrations for
each task collected within 30min.

We summarize the three key contributions of this work:
1) We present a bottom-up clustering algorithm to discover
sensorimotor skills from unsegmented demonstrations; 2) We
introduce a hierarchical policy learning method that composes

the skills for long-horizon, vision-based robot manipulation
tasks; 3) We show the practical advantages of BUDS both in
simulation and on real hardware.

II. RELATED WORK

Robot Skill Discovery. Skill discovery has been studied in a
large body of existing works. A major line of works focuses on
acquiring skills from self-exploration in environments. Many
works fall into the options framework [47], discovering skills
through hierarchical reinforcement learning [2, 10, 13, 23,
26, 50]. Other works use information-theoretic metrics to
discover skills from unsupervised interaction [8, 15, 43]. These
works typically require high sample complexity and operate
on ground-truth physical states, hindering their applicability
to real robot hardware. An alternative to self-exploration is to
segment skills from human demonstrations, such as Bayesian
inference [24, 35, 36] and trajectory reconstruction [42, 48].
These approaches produce temporal segmentation on low-
dimensional physical states, difficult to scale to raw sensor
data. Weakly supervised learning methods discover skill seg-
ments through temporal alignment on demonstrations [37,
44], but require manual human annotations of task sketch.
Our work resonates with these works on skill discovery from
human demonstrations; however, it directly operates on raw
sensor data and requires no manual labeling on execution
stages in demonstrations. Similar to prior works [5, 46], we
take advantage of multi-sensory cues in demonstrations. An
important difference is that our method produces closed-loop
sensorimotor policies, while the others focus primarily on
learning task structures.

Bottom-up Methods in Perception and Control. Bottom-
up processing of sensory information traces back to Gibson’s
theory of direct perception [12], of which the basic idea is
that the higher level of information is built up on the retrieval
of direct sensory information. Bottom-up methods have been
successfully employed in various perception tasks. These
methods construct hierarchical representations by grouping
more fine-grained visual elements, such as pixels/superpixels
for image segmentation [9] and spatio-temporal volumes for
activity understanding [27, 39, 40]. Recently, bottom-up deep
visual recognition models [28, 33, 56] achieved competitive
performances compared to the mainstream top-down methods.
The bottom-up design principles have also been studied for
robot control. A notable example is the subsumption architec-
ture developed in behavior-based robotics, which decomposes
a complex robot behavior into hierarchical layers of sub-
behaviors [3, 4, 25, 34]. Our work leverages a similar bottom-
up principle to discover hierarchical representations of human
demonstrations. Furthermore, we demonstrate how imitation
learners can exploit such hierarchies to scale to long-term
manipulation behaviors.

Hierarchical Imitation in Robot Manipulation. We leverage
hierarchical imitation learning [29] for learning policies of
sensorimotor skills. Hierarchical imitation learning is a class of
approaches which uses temporal abstractions to tackle longer-
horizon tasks than vanilla imitation models. In particular, we
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use hierarchical behavior cloning [14, 31, 32, 49], which
recently shows great promises in robot manipulation. These
methods learn a hierarchical policy where a high-level policy
predicts subgoals and a low-level policy computes actions to
achieve the subgoals, where the subgoals can be obtained
through goal relabelling [1]. One-shot imitation learning is
a meta-learning framework that aims to learn from a single
demonstration of test tasks [7, 45, 52, 53]. Our work differs
from prior work in that we extract a set of skills from multi-
task demonstrations for task composition and directly handle
raw sensory data.

III. APPROACH

We introduce BUDS, an approach for sensorimotor skill
discovery and hierarchical imitation learning of closed-loop
sensorimotor policies in robot manipulation. The core idea is
to discover a set of reusable sensorimotor skills from multi-
task, multi-sensory demonstrations, which can be composed to
solve long-horizon tasks. An overview of BUDS is illustrated
in Figure 1. In the following, we first formalize our problem,
and then present the two key steps of our approach: 1) skill
segmentation with hierarchical agglomerative clustering on
unsegmented demonstrations, and 2) learning skills and meta-
controllers with hierarchical behavioral cloning.

A. Problem Formulation

We formalize the problem of solving a robot manipula-
tion task as a discrete-time Markov Decision Process M =
(S,A,P, R, γ, ρ0) where S is the state space, A is the
action space, P(·|s, a) is the stochastic transition probability,
R(s, a, s′) is the reward function, γ ∈ [0, 1) is the discount
factor, and ρ0(·) is the initial state distribution. Our goal is to
learn a sensorimotor policy π : S → A that maximizes the
expected return E[

∑∞
t=0 γ

tR(st, at, st+1)]. In our context, S is
the space of the robot’s sensor data including raw images and
proprioceptions, A is the space of the robot’s motor actions,
and π is a closed-loop sensorimotor policy that we deploy on
the robot to perform the task.

To tackle long-horizon tasks, we factorize the policy π with
a two-level temporal hierarchy. The low level consists of a set
of K skills, {π(1)

L , π
(2)
L , . . . , π

(K)
L }, each of which corresponds

to a goal-conditioned policy π
(k)
L : S ×Ω → A, where ω ∈ Ω

is a vector that represents a goal, and k is the skill index. This
is a standard formulation of hierarchical policy learning, under
which prior work has explored different goal representations,
with Ω being the original state space [41] or a learned latent
space [50]. A latent goal for π

(k)
L can be computed using an

encoder Ek on the goal state, which is defined in the original
state space. To harness these skills, we further design a high-
level meta controller πH : S → {1, 2, . . . ,K}×Ω. Intuitively,
the meta controller outputs two pieces of information from a
given state to invoke a low-level skill: a categorical distribution
over the skill indices, of which we take the mode as the
selected skill, and a vector that specifies the goal for this

selected skill to reach. With this temporal abstraction, the
policy π can be thus represented as

π(at|st) =
K∑
i=1

1(i = k)π
(i)
L (at|st, ω),

where (k, ω) = πH(st)

(1)

Prior works proposed different algorithms to train hierarchical
policies with reinforcement learning [14] or imitation learn-
ing [31], but typically focusing on a single task. In contrast,
we examine a multi-task learning formulation, where the
skills are learned from multi-task human demonstrations. We
assume the demonstrations come from M different tasks, each
corresponding to a different MDP. We assume the MDPs of
all M tasks share the same state space, action space, and
transition probabilities, but differ in reward functions and
initial state distributions. Our demonstrations are collected
from human operators to complete instances of each task
from different initial states. We denote D(m) = {τ (m)

i }Nm
i=1 as

the demonstration datasets for the m-th task, where τ
(m)
i =

{(st, at)}T
(m)
i

t=0 is the i-th demonstration sequence of length
T

(m)
i and Nm is the total number of demonstrations for this

task. Let D =
⋃M

m=1 D(m) be the aggregated dataset of all
tasks.

Our method learns the hierarchical policies from the
multi-task demonstrations. We use hierarchical clustering
(Sec. III-B) to identify the recurring temporal segments
from the aggregated dataset, separating D into K partitions
{D̃1, . . . , D̃K}. By learning on D, we augment the training
data for individual tasks and facilitate the learned low-level
skills to be reusable across tasks. We use hierarchical behavior
cloning (Sec. III-C) to learn the goal-conditioned skills π

(k)
L

on D̃k for k = 1, 2, . . . ,K. Once obtaining skills, we learn to
compose the skills with a task-specific meta-controller trained
on the demonstration data of that task, for example, training
πH to solve the m-th task on D(m).

B. Skill Segmentation with Hierarchical Clustering
We present how to split the aggregated dataset D into K

partitions, which we use to train the K skills. Our objec-
tive is to cluster similar temporal segments from multi-task
demonstrations into the same skill, easing the burden for the
downstream imitation learning algorithm. To this end, we first
learn per-state representations based on multi-sensory cues,
which we use to form a hierarchical task structure of each
demonstration sequence τ

(m)
i with bottom-up agglomerative

clustering. We then identify the recurring temporal segments
across the entire demo dataset via spectral clustering. The
whole process is fully unsupervised without additional anno-
tations beyond the demonstrations.

Learning Multi-Sensory State Representations. Our ap-
proach learns a latent representation per state in the demonstra-
tions. It is inspired by research in event perception [54], which
addresses the importance of correlation statistics presented in
multiple sensory modalities for event segmentation. BUDS
learns the representations from multi-modal sensory data to
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Fig. 2: Overview of the hierarchical policy. Given a workspace observation, the meta controller selects the skill index and generates the latent subgoal vector
ωt. Then the selected sensorimotor skill generates action at conditioned on observed images, proprioception, and ωt.

capture their statistical patterns. Our method follows Lee et
al. [30] which learns a joint latent feature of all modalities by
fusing feature embeddings from individual modalities (multi-
view images and proprioception) with the Product of Ex-
perts [16]. The feature is optimized over an adapted evidence
lower bound loss [21] which reconstructs the current sensor
inputs. The reconstruction is different from the one from
Lee et al. which is optimized over reconstructing next states.
This different design choice is motivated by the fact that the
previous work focuses on policy learning with fused represen-
tation inputs which needs to encode future state information,
while BUDS focuses on learning the statistical patterns of
multi-sensory data at the current state. By learning the joint
representation, it captures the congruence underlying multi-
sensory observations while retaining the information necessary
to decode st. We denote ht as the latent vector computed from
st.

Discovering Temporal Segments. BUDS uses the per-state
representations to effectively group states in temporal proxim-
ity to build a hierarchical representation of a demonstration
sequence. The strength of a hierarchical representation, as
opposed to flat segmentation, is the flexibility to decide the
segmentation granularity for imitation learning. Here we use
hierarchical aggomerative clustering, where in each step we
combine two adjacent temporal segments into one based on
similarity until all segments are combined into the entire
demonstration sequence. This process produces a tree of seg-
ments. To reduce the tree depth, we start with the bottom-level
elements that contain a temporal segments of a demonstration
of W steps (W = 10 in our case). The clustering process
selects two adjacent segments that are most similar to each
other among all pairs of adjacent segments, and merges them
into one longer segment. The similarity between two segments
is computed according to the ℓ2 distance between their segment
features, defined to be the average of latent vectors {ht}
of all states in each segment. The process is repeated until
we have only one segment left for each τ

(m)
i . We discover

a collection of intermediate segments, which we term as
temporal segments, from the formed hierarchies. This concept
is inspired by the concept of Mid-level Action Elements [27]
in the action recognition literature. The way we determine the
temporal segments is to breadth-first search from the root node
of the hierarchy. During the search, we stop on one branch if
the length of the intermediate segment is not longer than a

given threshold of minimum length. And the whole breadth-
first search is stopped when we have the number of segments
at the lowest levels on every branch are more than a given
threshold, and each segment at the lowest levels on every
branch in τ

(m)
i is a temporal segment.

Partitioning Skill Datasets. After we have a set of temporal
segments for every τ

(m)
i , we aggregate them from all demon-

strations into one set, and apply another clustering process
to group them into K partitions {D̃1, . . . , D̃K}, and we use
each partition D̃k to train the skill π(k)

L . By training the skills
on datasets from multiple tasks, it improves the reusability of
the skills. We use spectral clustering [51] with RBF kernel on
the features of temporal segments. The feature of a segment
is computed as the concatenation of representations of the
first, middle (or several frames in the middle), and last states
of the segment. The number of keyframes chosen in the
middle of a segment can vary based on the average length
of demonstrations. The spectral clustering step results in K
datasets of temporal segments for skill learning. In practice,
we set the maximum number of clusters in spectral clustering
and merge any classified skill into an adjacent skill if its
average length is below a threshold. The number of remaining
classes is denoted as K, which is the final number of skills
we partition demonstrations into.

C. Policy Learning with Hierarchical Behavioral Cloning
We use the obtained K datasets of temporal segments from

the segmentation step to train our hierarchical policies using
a hierarchical behavioral cloning algorithm, including two
parts: 1) skill learning with goal-conditioned imitation; 2) skill
composition with a meta controller. Figure 2 visualizes the
model structure of the hierarchical policy.

Skill Learning with Goal-Conditioned Imitation. We train
each skill π

(k)
L on the corresponding dataset D̃k ∀k =

1, . . . ,K. Every skill π(k)
L (at|st, ωt) takes a sensor observation

st ∈ S and a subgoal vector ωt as input, and produces a robot’s
motor action at ∈ A. By conditioning π

(k)
L on a subgoal

vector, we enable the meta controller to invoke the skills and
specify the subgoals that these skills should achieve. Instead
of defining the subgoals in the original sensor space, which
is typically high-dimensional, we instead learn a latent space
of subgoals Ω, where a subgoal state sg is mapped to a low-
dimensional feature vector ωt ∈ Ω. For each state st, we define
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its subgoal as the future state either H steps ahead of st in
the demonstration or the last state of a skill segment if it
reaches the end of the segment from st within H steps. The
reason we define a subgoal as a look-ahead state a constant
number of steps in the future, as opposed to the final goal state
of the task, is to exploit the temporal abstraction and reduce
the computational burden of individual skills — skills only
need to reach short-horizon subgoals, without the need for
reasoning about long-term goals. Concretely, we train such a
goal-conditioned skill on skill segments in D̃(k). For each π

(k)
L ,

we sample (st, at, sgt) ∼ D̃(k) where gt = min (t+H,T ) (T
is the last timestep of end of the segment), and we generate
a latent subgoal vector ωt for the subgoal of st, sgt , using a
subgoal encoder ωt = Ek(sgt), where Ek(·) is a ResNet-18
backboned network jointly trained with the policy π

(k)
L .

Skill Composition with A Meta Controller. Now we that
have a set of skills, we need a meta controller to decide which
skill to use at st and specify the desired subgoal for it to reach.
We train a task-specific meta controller πH for each task.
Given the current state, πH outputs an index k ∈ {1, . . . ,K}
to select the k-th skill, along with a subgoal vector ωt on which
the selected skill is conditioned. As human demonstrations are
diverse and suboptimal by nature, the same state could lead
to various subgoals in demonstration sequences (e.g., grasp
different points of an object, push an object at different contact
points). Thus, the meta controller needs to learn distributions
of subgoals from demonstration data of a task D(m), and we
choose conditional Variational Autoencoder (cVAE) [21]. To
obtain the training data of skill indices and subgoal vectors,
we sample (st, sgt) ∼ D(m), and from the clustering step we
have the correspondence between a skill index k and state
st while from the skill learning step we can generate a per-
state subgoal vector ωt = Ek(sgt). The meta controller πH

is trained to generate a skill index k and a subgoal vector
ωt conditioned on state st. During evaluation, the controller
generates the skill index and the subgoal vector conditioned
on the current state st and a latent vector z from the prior
distribution N (0, I). The controller for evaluation is typically
chosen to operate at a lower frequency than skills so that it
can avoid switching among skills too frequently.

Training meta controllers follows the same cVAE training
convention in prior works [31, 32] which minimizes an ELBO
loss on demonstration data. To obtain the training supervision
for skill indices and subgoal vectors, we augment the demon-
strations with results from the clustering and skill learning
steps: 1) The training labels of skill indices come from the
cluster assigments; 2) The latent subgoal vectors are computed
on the demonstration states, and the encoders for computing
the vectors were jointly trained with skill policies.

IV. EXPERIMENTS
We design our experiments to examine three questions:

1) How does BUDS perform in long-horizon vision-based
manipulation tasks compared to baseline methods? 2) Do
learning from multi-task demonstrations and using multimodal
features improve the quality and reusability of skills? and 3)
Does BUDS work with real-world sensor data and physical
hardware?

(a) (b) (c) (d) (e)

Fig. 3: Visual illustrations of the four simulation tasks and one real
robot task used in our experiments. (a) Tool-Use; (b) Hammer-Place;
(c) Kitchen; (d) Multitask-Kitchen; (e) Real-Kitchen.

A. Experimental Setup

We perform baseline comparisons and model analysis in
simulation environments developed with the robosuite
framework [57], and present quantitative results on real
hardware. Figure 3 illustrates all the tasks. The first three
single-task environments, Tool-Use, Hammer-Place,
and Kitchen, are designed primarily for baseline com-
parisons and ablation studies. The multi-task domain
Multitask-Kitchen is designed for investigating the
quality and reusability of skills discovered from multi-task
demonstrations. The Real-Kitchen task is for real-world
validation and deployment. We provide detailed task descrip-
tions below. For all the experiments, we use a 7-DoF Franka
Emika Panda arm with a position-based Operational Space
Controller [20] and a binary command for controlling parallel-
jaw gripper. The meta controller runs at 4Hz and the skills run
at 20Hz. We release our datasets, simulation environments, and
model implementations on our project website for reproducing
purpose.

Single tasks. The three single tasks require prolonged in-
teractions with the environment and entail a broad range of
prehensile and nonprehensile behaviors, such as tool use and
manipulating articulated objects. The goal of Tool-Use is to
put the cube into the metal pot. In order to fetch the cube which
is initially beyond the robot’s reach, the robot needs to first
grasp an L-shape tool and pull the cube with the tool. After
fetching the cube, it needs to put the tool aside, pick up the
cube, and place it into the pot. The goal of Hammer-Place
is to put the hammer in the drawer and close the drawer, where
the hammer is small and hard to grasp. To achieve this goal,
the robot needs to open the drawer, place the hammer into
the drawer, and close the drawer. The goal of Kitchen is
to cook and serve a simple dish in the serving region and
turn off the stove. This task is the most complex among the
three, requiring a sequence of subtasks, including turning on
the stove, placing the pot on the stove, putting the ingredient
into the pot, putting the pot on the table, pushing it to the
serving region (red region on the table), and turning off the
stove at the end.

Multitask-Kitchen. The multi-task domain includes
three tasks (referred to as Task-1, Task-2, and Task-3)
that are distinct from each other by their end goals. The goal
state of Task-1 entails the drawer closed, the stove on, the
cube in the pot, and the pot placed on the stove. The goal of
Task-2 entails the drawer closed, the stove on, the cube in
the pot, and the pot in the serving region. The goal of Task-3
entails the drawer closed, the stove off, the cube in the pot,
and the pot in the serving region. To study the reusability
of our skills, we design three variants for each task based on
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their initial configurations, which we refer to as Variant-1,
Variant-2, Variant-3. We describe all task variants in
details at our project website. Different initial configurations
require solving different combinations of subtasks. Therefore,
we examine whether skills learned in a subset of task variants
can be reused in new variants.

Real-Kitchen. The task requires versatile behaviors in-
cluding grasping, pushing, and tool use. The robot needs to
remove the lid of the pot, place the pot to the plate, pick up
the tool, use the tool to push the pot along with the plate to the
side of the table, and put down the tool in the end. We capture
RGB images from the workspace camera (Kinect Azure) and
the eye-in-hand camera (Intel Realsense D435i).

Data Collection. We collect human demonstrations through
teleoperation with a 3Dconnexion SpaceMouse. We col-
lect 100 demonstrations for each of the three single
tasks (less than 30 minutes each task), 120 demonstra-
tions for each task (40 for each of the three task vari-
ants) in Multitask-Kitchen, and 50 demonstrations for
Real-Kitchen. Each demonstration consists of a sequence
of sensory observations (images from the workspace and the
eye-in-hand camera, proprioception) and actions (the end-
effector displacement and the gripper open/close).

B. Quantitative Results
For all simulation experiments, we evaluate BUDS and

baseline methods in each task for 100 trials with random initial
configurations (repeated with 5 random seeds). We use the
success rate over trials as the evaluation metric, and a trial
is considered successful if the task goal is reached within the
maximum number of steps.

Single Task Experiments. Here we compare BUDS with
imitation learning baselines on the single-task environments.
To examine the efficacy of hierarchical modeling for long-
horizon tasks, we first compare with a Behavior Cloning (BC)
baseline [55] which trains a flat policy on the demonstra-
tions. To examine our bottom-up clustering-based segmenta-
tion method, we compare with a second baseline that uses
a classical Change Point Detection (CP) algorithm [35] to
temporally segment the demonstrations while keeping the rest
of the model design identical to ours.

Table I reports the quantitative results. BUDS outperformed
both baselines for all three tasks, by over 20% on average.
The comparison between BC and BUDS shows that while
BC is able to solve short-horizon task reasonably well, it
suffers a significant performance drop in longer tasks, such
as Kitchen. In contrast, BUDS breaks down a long-horizon
task with skill abstraction, leading to a consistent high per-
formance across tasks of varying lengths. The comparison
between CP and BUDS suggests that the quality of skill
segmentation plays an integral role in final performance.
Qualitatively, we found that the CP baseline failed to produce
coherent segmentation results across different demonstrations,
hindering the efficacy of policy learning.

We observe two major failure modes in BUDS: 1) Incor-
rect selection of skills due to out-of-distribution states, 2)

TABLE I: Success rate (%) in single task environments.

Environments BC [55] CP [35] BUDS(Ours)

Tool-Use 54.0 ± 6.3 36.8 ± 5.1 58.6 ± 3.1
Hammer-Place 47.8 ± 3.7 60.4 ± 4.5 68.6 ± 5.7
Kitchen 24.4 ± 5.3 23.4 ± 3.4 72.0 ± 4.0

Manipulation failures due to imprecise grasps. We quantify
the failure modes in the Kitchen task with 5 repeated runs.
Failures due to the first mode take up 12.3% ± 2.9% of the
evaluation trials, and failures due to the second one take up
9.0% ± 3.6%. Both failure types pertain to the fundamental
limitations of imitation learning on small offline datasets. We
believe the model performance could be improved with large-
scale training and online robot experiences. We leave it for
future work.

Comparisons to Hierarchical Imitation Learning Algo-
rithms. BUDS shares the same principle with recent works on
hierarchical imitation learning, including IRIS [31], GTI [32],
and RPL [14]. One notable distinction is that the prior works
consider a single low-level skill, rather than a library of skills.

To compare BUDS with GTI, we evaluate our method with
varying numbers of skills through a parameter sweep on the
number of clusters K in the spectral clustering step. In the
special case when BUDS has only a single skill (K = 1),
our method is equivalent to a variant of GTI without the
image reconstruction term. Table II reports the results in the
Kitchen task. We observe that the number of skills has a
salient impact on model performance. Intuitively, when K is
too small, each skill will have difficulty dealing with diverse
subgoals and various visual observations; and when K is too
large, each skill has fewer data points to train on, as the dataset
is fragmented into smaller partitions. The peak performance
is observed with K = 6 skills, which is the value we used for
the main experiments.

The GTI variant with a single skill (K = 1) fails to achieve
non-zero task success. We also implemented the original GTI
with the image reconstruction term, but observed no significant
change in performance. After analyzing the qualitative behav-
iors of the GTI policy, we find that it works fine if the initial
state is close to the task goal, but it cannot handle initial states
that are further away. For quantitative evidence, we conduct
an additional evaluation with the Tool-Use task, where we
reset the robot to the state when it has already fetched the
cube and placed the tool down. To complete the task, the
robot only needs to pick up the cube and place it in the pot.
In this shorter subtask, the GTI variant and BUDS achieved
63.0% and 60.3% success rates respectively. In comparison,
they achieved 0.0% and 58.6% (Table I) success rates when
starting from the original initial states. These results imply that
GTI does not generalize well to longer tasks studied in this
work.

Comparisons to IRIS and RPL require additional efforts
as they were designed for low-dimensional states. We adapt
RPL to handle image inputs by extracting visual features with
a ResNet-18 module in the policy network, but the adapted
model achieves no task success. After a closer examination,
RPL fails to generalize to various object placements. Further-
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TABLE II: Results in Kitchen with varying numbers of skills

K = 1 (GTI [32]) K = 3 K = 6 K = 9 K = 11

Kitchen 0.0± 0.0 24.2± 3.6 72.0± 4.0 60.6± 6.53 44.6± 3.38

TABLE III: Success rate (%) in Multitask-Kitchen.

Train (Multi) Train (Single) Test

Task-1 70.2± 2.2 52.6± 5.6 59.0± 6.4
Task-2 59.8± 6.4 60.8± 1.9 55.3± 3.3
Task-3 75.0± 2.0 67.6± 1.8 28.4± 1.5

more, it also uses a single low-level policy similar to GTI,
which we have shown lower performance with the GTI-variant.
On the other hand, IRIS is more difficult to adapt as its high-
level policy predicts subgoals in the original state space, in
our case, the raw sensory space. We expect it to suffer the
similar issues as the other two methods.

Learning from Multi-task Demonstrations. We investigate if
BUDS is effective in learning from multi-task demonstrations.
BUDS discovers K = 8 skills in the Multitask-Kitchen
domain, and we examine the skills from two aspects: 1)
quality: are skills learned from multi-task demonstrations
better than those from individual tasks? 2) reusability: can
these skills be composed to solve new task variants that require
different subtask combinations?

We evaluate three settings: 1) Train (Multi): the skills
are discovered and trained on the multi-task demonstrations,
and the meta controller is trained for each task respectively;
2) Train (Single): the skills are discovered from demon-
strations of each individual task; so is the meta-controller;
and 3) Test: the skills are trained on demonstrations of
Variant-1 and Variant-2 and the meta-controller is
trained on Variant-3. Table III presents the evaluation
results. The comparisons between Train (Multi) and Train
(Single) indicate that skills learned across multi-task demon-
strations improve the average task performance by 8% com-
pared to those learned on demonstrations of individual tasks.
We hypothesize that the performance gain roots from our
method’s ability to augment the training data of each skill
with recurring patterns from other tasks’ demonstrations. The
results on Test show that we can effectively reuse the skills to
solve the new task variants that require different combinations
of the skills by solely training a new meta controller to invoke
the pre-defined skills. We also observe the low performance
of Variant-3 on Test, because it has more subtasks than
its training counterparts, and the execution failure of each
skill compounds, leading to the low success rate. We provide
additional visualizations of our skills and policy rollouts on
our project website.

TABLE IV: Ablation study on demonstration state representations.
BUDS BUDS-Image BUDS-WS-Image BUDS-Proprio

Kitchen 72.0± 4.0 41.4± 2.2 7.4± 2.4 36.8± 5.8

Ablation Study on Demonstration State Representations.
The quality of segmentation heavily relies on the choice of
features we use to represent the demonstration data. A critical
design of BUDS is to use multimodal representations learned
from multi-view images and proprioceptive data for each state.
This ablation study analyzes its impact. We compare BUDS

“Remove lid” “Pick pot” “Grab tool”“Place pot” “Move” “Push pot” “Place down tool”

Fig. 4: Visualization of temporal segments in two demonstrations of
Real-Kitchen with different lengths. Each cuboid corresponds to a tempo-
ral segment, and each color represents one skill that the temporal segment is
clustered into. Text annotations are our interpretations of the segmented skills.
We show that the temporal segments, though discovered without supervision,
nicely capture semantically meaningful subtasks. They are consistent across
demonstrations despite the differences in motions, e.g., the states of the tool
during pushing are very different from each other.

with three ablative models, which learns the state representa-
tions from both workspace and eye-in-hand cameras (BUDS-
Image), from only the workspace camera (BUDS-WS-Image),
and from the proprioceptive data (BUDS-Proprio). The rest of
these ablative models remains identical to BUDS. Table IV
reports the comparisons. The use of multimodal representa-
tions in BUDS substantially outperforms the ablative models
in task success rate. We note that the ablative model BUDS-
WS-Image results in significantly lower performance. The
workspace images without the aid of eye-in-hand images do
not capture all task-relevant information of objects due to
occlusion, leading to the poor segmentation results. This study
shows that the use of multi-sensory observation leads to a more
coherent task structure and better skill learning for solving
challenging manipulation tasks.

Real Robot Experiments. We perform evaluations in the
Real-Kitchen task to validate the practicality of BUDS
for solving real-world manipulation tasks. Quantitatively, we
evaluate 50 trials on varying initial configurations, achieving a
56% success rate. The performance is at the same level as our
simulation evaluations, showing that BUDS generalizes well
to real-world data and physical hardware. We also evaluate
the most competitive baseline CP model on the real robot,
which only achieved a 18% success rate. A consistent failure
mode of this baseline is that the robot failed to place the
pot correctly on the plate. We also qualitatively visualize
the temporal segments of two demonstration sequences col-
lected for the Real-Kitchen task in Figure 4. While our
clustering-based segmentation algorithm is fully unsupervised,
our quantitative inspection identifies consistent segments that
can be interpreted with semantic meanings.

V. CONCLUSION

We presented BUDS, a hierarchical approach to tackling
vision-based manipulation by discovering sensorimotor skills
from unsegmented demonstrations. BUDS identifies recur-
ring patterns from multi-task human demonstrations based on
multi-sensory cues. Then it trains the skills on the recurring
temporal segments with imitation learning and design a meta
controller to compose these skills for tasks. The results show
the effectiveness of BUDS in simulation and on real hardware.
We also examine the impacts of different model designs
through ablation studies.
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While BUDS achieved superior performances over base-
lines in our evaluation tasks, it suffers from the common
limitations of learning from offline demonstration datasets.
One future direction is to improve its performance with the
robot’s online experiences. Another limitation of our current
approach is the need of task-specific meta controllers to
compose the skills for individual tasks. For future work, we
would like to develop planning methods that integrate these
acquired skills with a high-level task planner, such that they
can compose the skills to solve novel manipulation tasks
without training a new meta controller.
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