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Learning Inverse Kinodynamics for Accurate
High-Speed Off-Road Navigation on

Unstructured Terrain
Xuesu Xiao , Joydeep Biswas , and Peter Stone

Abstract—This letter presents a learning-based approach to con-
sider the effect of unobservable world states in kinodynamic motion
planning in order to enable accurate high-speed off-road navigation
on unstructured terrain. Existing kinodynamic motion planners
either operate in structured and homogeneous environments and
thus do not need to explicitly account for terrain-vehicle interac-
tion, or assume a set of discrete terrain classes. However, when
operating on unstructured terrain, especially at high speeds, even
small variations in the environment will be magnified and cause
inaccurate plan execution. In this letter, to capture the complex
kinodynamic model and mathematically unknown world state,
we learn a kinodynamic planner in a data-driven manner with
onboard inertial observations. Our approach is tested on a physical
robot in different indoor and outdoor environments, enables fast
and accurate off-road navigation, and outperforms environment-
independent alternatives, demonstrating 52.4% to 86.9% improve-
ment in terms of plan execution success rate while traveling at high
speeds.

Index Terms—Autonomous vehicle navigation, motion and path
planning, machine learning for robot control.

I. INTRODUCTION

CURRENT mobile robot navigation methods can navigate
a robot from one point to another safely and reliably

in structured and homogeneous environments [1], [2], such as
indoor hallways or outdoor paved surfaces. These consistent en-
vironments allow the robots to use simple kinodynamic motion
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planners independent of the environment, thanks to the limited
environment disturbances and stochasticity.

Dating back at least to DARPA’s Grand Challenge [3] and
LAGR (Learning Applied to Ground Vehicles) [4] program,
researchers have also looked into applying autonomous navi-
gation in unstructured outdoor environments. Challenges arise
from multiple fronts in those natural spaces, but most off-road
navigation work focused on perception, e.g., detecting natural
obstacles [4], classifying underlying terrain types [5]–[7], or
building semantic maps [8]–[10]. For motion control, most off-
road robots simply travel at low speeds to minimize uncertainty
and to maximize safety [11]–[14].

While recent advances in deep learning provide roboticists
with a different avenue to investigate those perception problems
in off-road navigation, researchers also started to combine per-
ception, planning, and motion control using end-to-end learning
in unstructured environments [15], [16]. These systems do not
require a heavily-engineered navigation pipeline, and can react
to natural environments in a data-driven approach. Although
these methods can enable successful navigation, they are data-
intensive and and generally do not lead to better navigation than
their classical counterparts.

Focusing on the motion control side of off-road navigation
on unstructured terrain, the contribution of this letter is to use
learning to capture the effect of complex and unknown environ-
mental factors on the robot’s low-level kinodynamic model. We
use onboard inertial observation to encode environmental factors
and learn an inverse kinodynamic model to produce fast and
accurate low-level control inputs. Using our method, even with
extensive disturbances caused by high-speed terrain-vehicle in-
teraction, the robot is still able to perform fast and accurate
off-road navigation (Fig. 1), compared to a kinodynamic model
based on ideal assumptions and a learned model that does not
consider environmental factors.

II. RELATED WORK

In this section, we review related off-road navigation work in
terms of perception and motion control.

A. Off-Road Perception

The first challenge arises from off-road navigation is percep-
tion. In unstructured off-road environments, perception is no
longer simply in the geometric sense (e.g., free vs. obstacle),
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Fig. 1. The UT Automata scale 1/10th autonomous vehicle drives an eight-turn
(T1–T8 on the red path) outdoor race track with unstructured terrain. Close-ups
of some terrain (black inserts) are shown, including cement, mud, grass, which
are covered by leaves, stalks, and/or twigs at different densities. For high-speed
terrain-aware navigation, the robot has to interact with these unstructured terrain
(red insert).

but also requires semantic information (e.g., grass vs. mud).
A plethora of research in terrain classification has leveraged
vibration-based signals to classify terrain types [5]–[7]. Vision-
based sensors, e.g., LiDAR and camera, combined with current
deep learning methods, have also been used to build semantic
maps [8]–[10]. These perception methods assign costs to discrete
terrain classes for planning, but do not consider robot’s kinody-
namic model when moving on these terrain. Our work does not
distinguish among discrete terrain classes and uses observations
collected during interactions with different terrain to enable fast
and accurate kinodynamic planning.

B. Off-Road Motion Control

Although research thrust for off-road navigation has been pri-
marily focused on perception, roboticists have also investigated
off-road navigation from the motion control side. Many wheel
slip models [11]–[14] have been developed and used to design
controllers to minimize slip. Most of these models treat slip only
as a function of the vehicle kinematics. But to achieve high-speed
off-road navigation, slip is inevitable and also highly dependent
on the underlying terrain.

Researchers have also used machine learning for motion
control in off-road navigation. A recent survey [17] pointed out
that learning is most efficient when targeting at navigation com-
ponents, e.g., learning local planners [18]–[23], costmaps [24],
[25], or planner parameters [26]–[30]. Research on using learn-
ing for motion control in off-road scenarios is scarce. Pan, et
al. [31] enabled high-speed navigation with end-to-end imitation
learning from RGB input in a closed circular dirt track. The
expert demonstrator is a model predictive controller with access
to high-precision sensors including GPS-RTK. The end-to-end
learning approach most likely does not generalize well to other
terrain and tracks. Aiming at a variety of terrain, Siva, et al. [32]
used imitation learning from human demonstration to navigate
five discrete terrain types (concrete, grass, mud, pebble, rock).
In contrast, our method only targets at learning a kinodynamic

model and can navigate any global path. We also do not inten-
tionally separate terrain into discrete types, and treat different
terrain characteristics in a continuous manner. Reinforcement
learning has also shown potential in learning motion control
for navigation, but at the cost of extensive training overhead:
Brunnbauer, et al. [33] took 8 million time steps (37 hours of
interactions) to learn a simple kinematic model. In comparison,
our approach only requires 30 minutes to learn a kinodynamic
model, which would require far more training by such reinforce-
ment learning approaches.

III. LEARNING INVERSE KINODYNAMIC MODELS

Most navigation systems either assume kindodynamic models
to be independent of the environment, or that there exists a dis-
crete set of environment classes [32], e.g., one model for paved
terrain and another for grass. In this work, we relax these assump-
tions by learning a single continuous inverse kinodynamic model
that accounts for environmental factors across different terrain
types without having to perform discrete terrain classification,
or analytic modelling. The learned model takes as input inertial
observations that make the impact of environmental factor on
kinodynamic motion observable (e.g., how bumpiness from
gravel will result in understeer at high speeds). This inverse
kinodynamic model is learned in a data-driven manner.

A. Problem Formulation

Given vehicle state x, control input u, and world state w, the
state dynamics and observation y are given by

ẋ = f(x, u, w), y = g(x,w), (1)

where f(·, ·, ·) is the system’s forward kinodynamic function,
while g(·, ·) is the observation function. Note that in most cases,
w is not directly observable and cannot be easily modeled.
A navigation planner generates a global plan Π : [0, 1] → X
mapping from a unitless progress variable s ∈ [0, 1] to planned
vehicle state x ∈ X , incorporating both global (e.g., traversable
map) and local (e.g., sensed obstacles) information to take the
robot from the start stateΠ(0) to the goal stateΠ(1). A projection
operator ρ : X → [0, 1] maps the robot state x (e.g., from local-
ization) to infer the progress variable s (i.e., the robot’s progress
along the global plan so far), such that the closest state in the
plan to a robot state x is Π(ρ(x)). For simplicity of notation, we
represent the projected state at any time as xΠ = Π(ρ(x)). We
also omit the explicit time-dependence of variables x(t), u(t),
and y(t), denoting them simply as x, u, and y. The objective of
our controller u is thus to minimize the total navigation time T
while following the plan precisely, as represented by the joint
cost function

J = T + γ

∫ T

0

||x(t)− xΠ(t)||2dt. (2)

Here, γ is a hyperparameter that trades total navigation time for
execution accuracy.

We formulate the solution to this optimal control problem as a
receding-horizon controller u∗ over a unitless progress horizon
(along the global plan) Δ and corresponding time-horizon Δt
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such that the control input drives the robot state from x to the
receding horizon plan state Π(ρ(x) + Δ) over time-period Δt:

u∗ = arg minu

(
Δt+ γ

∥∥∥∥ΔxΠ −
∫ Δt

0

f(x, u, w)dt

∥∥∥∥
2
)
,

ΔxΠ = Π(ρ(x) + Δ)− x, (3)

where ΔxΠ is the state change between the receding horizon
plan and current vehicle state.1 The optimal control u∗ can be
solved using the receding horizon inverse kinodynamic model
f−1 as

u∗ = f−1(Δx, x, w), (4)

that takes as input the desired relative state change Δx, the
current robot state x, and world state w. Unfortunately, it is
hard to express f−1 accurately via analytical models, and even
if it could be expressed accurately, computing u∗ is error-prone
since the world state w is not directly observable.

B. Learning Inverse Kinodynamics

In this work, in order to enable fast and accurate navigation
under the influence of different terrain interactions from the
world state w, we adopt a data-driven approach to capture the
effect of w. Specifically, we introduce the function

f+
θ (Δx, x, y) ≈ f−1(Δx, x, w), (5)

parameterized by θ, as an approximation for the original reced-
ing horizon inverse kinodynamic function (superscript+ denotes
pseudo inverse).

The key insight in this approximation is that the impact of w
on u∗ becomes predictable given observations y related to high-
speed terrain-aware navigation—in our case we use onboard
inertial sensing to capture speed-dependent terrain interaction.
To learn f+

θ , a training dataset T with N samples

T = {〈Δxi, xi, ui, yi〉Ni=1}
is desired, using the optimal but unknown receding horizon
inverse kinodynamic function ui = f−1(Δxi, xi, wi) and ob-
servation function yi = g(xi, wi) from Eqns. 1 and 4. Unfortu-
nately, we neither know f−1, nor do we know the world states
wi. However, we do have access to f as a black-box function
via real-world execution: we can simply pick arbitrary sample
controls ui at corresponding starting states xi, and observe the
resulting state changeΔxi after the chosen receding horizonΔt,
including the impact of the unknown wi:

Δxi =

∫ Δt

0

f(xi, ui, wi)dt.

Thus, the original chosen control ui is the control2 for the
resulting state change Δxi from the original state xi, for the
corresponding but unknown (and hence unrecorded) world state
wi. Along with the corresponding sensor observation yi, we

1In general, the minus signs in Eqn. 3 is the generalized difference operator
� over Special Euclidean Group SE(n) and the corresponding Lie Algebra.

2Here, we assume the optimal control that follows the global path (second
term in Eqn. 2) also implicitly minimizes navigation time (first term).

generate each sample i for dataset T . To ensure that the learned
parameters θ of f+

θ approximate f−1 accurately at states that
the robot will encounter during execution, T must include
representative samples for x, u, and y. With the collected dataset
T , we formulate deriving f+

θ (·, ·, ·) as a learning problem by
minimizing a supervised loss:

θ∗ = arg minθ

∑
(Δxi,xi,yi)∈T

‖f−1(·, ·, ·)− f+
θ (Δxi, xi, yi)‖H

= arg minθ

∑
(ui,Δxi,xi,yi)∈T

‖ui − f+
θ (Δxi, xi, yi)‖H ,

(6)

where ||v||H = vTHv is the norm induced by positive definite
matrix H , used to weigh the learning loss between the different
dimensions of the control input ui. We represent f+

θ (·, ·, ·) as
a neural network and can therefore use gradient decent to find
an approximately optimal θ∗. In this work, we collect raw 6-
DoF readings from an onboard IMU, and construct y by feeding
inertial data through an autoencoder to encode relevant terrain-
vehicle interaction at different driving speeds. More details are
provided in Section IV.

C. Online Execution

The learned inverse kinodynamic model f+
θ∗ (·, ·, ·) provides

a means to approximately account for w using the onboard
observation y for fast, terrain-aware, and precise navigation.
At each time step t during online execution, we compute the
desired change of state ΔxΠ = Π(ρ(x) + Δ)− x with x from
localization, the projection operator ρ(·), projection horizon Δ,
and global plan Π(·). Along with onboard observation y and
current vehicle state x, we use the learned inverse kinodynamic
model f+

θ∗ to produce system control input:

u(t) = f+
θ∗ (ΔxΠ, x, y), (7)

and repeat this process for every time step.

IV. EXPERIMENTS

In this section, we present experimental results using a learned
inverse kinodynamic model f+

θ∗ (Δx, x, y), which considers un-
observable world state w by taking y as input, and can precisely
track different global plans by different Π.

We denote the baseline forward and inverse kinodynamic
functions, which do not consider world state w, as fB(x, u)
and f+

B (Δx, x), respectively. As an ablation study to test the
effectiveness of capturing the world statew with y, we also learn
an ablated inverse kinodynamic model f+

Aφ∗(Δx, x), which is
parameterized by φ∗ and does not take observation y as input to
represent w. Note that the baseline represents classical model-
based local planners [2], while the ablation is equivalent to exist-
ing learning-based local planners, e.g., Imitation Learning [34].
We show that the learned f+

Aφ∗ can outperform the baseline f+
B .

Adding the learned observation y as another input, f+
θ∗ (Δx, x, y)

can outperform both f+
Aφ∗(Δx, x) and f+

B (Δx, x).
The learned inverse kinodynamic model for online execution

is also agnostic to different online plans and unseen terrain. We
show that the model learned through a global planner Π1 (a
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Fig. 2. (a): A UT Automata robot, scale 1/10th autonomous vehicle platform
used in the experiments. (b): The sampling-based baseline approximates ΔxΠ

by rolling out the optimal uB among 100 samples with fB .

randomly exploring policy driven by a human operator) can also
generalize well to a complicated global plannerΠ2 on an outdoor
race track, and a simple global plannerΠ3 on an indoor track. We
also test the generalizability with respect to unseen world states
through the encoded y and f+

θ∗ (Δx, x, y) on unseen terrain.

A. Implementation

1) Robot Platform: Our learned inverse kinodynamic model
is implemented on a UT Automata robot, a scale 1/10th au-
tonomous vehicle platform (Fig. 2 a). The Ackermann-steering
four-wheel drive vehicle is equipped with a 2D Hokuyo UST-
10LX LiDAR for localization, a Vectornav VN-100 IMU for
inertial sensing (200 Hz), a Flipsky VESC 4.12 50 A motor
controller, and a Traxxas Titan 550 Motor. Although the platform
has individual suspensions, the relatively short-travel suspen-
sions are not specifically designed for off-road navigation. We
specifically pick this platform because its small size and weight
and the lack of designed off-road capability can maximize the
difference in accuracy between navigating with and without the
learned terrain-aware inverse kinodynamic model. The robot has
a NVIDIA Jetson onboard, but only the CPU is used during
deployment.

2) Environment: The environment comprises of cement,
grass, and mud; and some patches are covered by different
artifacts, such as leaves, stalks, and/or twigs, with different
densities (Fig. 1). For a small vehicle like the UT Automata
robot, these artifacts can cause significantly different world
states (Fig. 1 red insert). Note that the terrain also changes due to
environmental factors such as sunlight, wind, and moisture, and
is also affected by the robot’s wheel and chassis. To minimize the
effect of artifacts being pushed off the course during extended
experiments, we frequently shuffle and redistribute the artifacts.
We do not specify discrete terrain classes and treat the terrain
characteristics in a continuous manner.

3) Model Implementation: During autonomous navigation,
the robot uses Episodic Non-Markov Localization (ENML) [35]
with a pre-built map of the environment to derive vehicle state
x. A global planner Π includes a pre-generated global path
for the robot to follow and uses line-of-sight control (similar
to [36], [37]) to generate desired receding horizon plan state
Π(ρ(x) + Δ) on the global path 1 m away from the robot. In
a model predictive control manner, the robot uses the baseline

Fig. 3. Neural network architecture. input: blue IMU encoder and orange
desired state change (desired velocity and curvature in practice); Output: purple
learned function approximator f+

θ∗ as the inverse kinodynamic model.

forward kinodynamic function fB and samples candidate ve-
locity and curvature control inputs u ∈ U evenly distributed
within a physically-feasible window to jointly find the desired
state change ΔxΠ and control input uB (shown in Fig. 2 b).
More specifically, to compute control input, the baseline inverse
kinodynamic model f+

B produces the curvature input, which
results in the desired ΔxΠ and drives the robot as close to
Π(ρ(x) + Δ) as possible:

uB = f+
B (·, ·)

= arg minu‖Π(ρ(x) + Δ)−
∫ Δt

t=0

fB(x, u)dt‖,
(8)

for the second term in Eqn. 2, and selects the fastest possible
velocity for the first term T , considering the robot’s acceleration
limit and a safety distance to decelerate in case of obstacles.

For our learned ablated and final model, f+
Aφ∗ and f+

θ∗ , we
utilize the ΔxΠ from the baseline kinodynamic model (corre-
sponds to uB), but instead of using the baseline’s control input,
we query our learned models to produce u = f+

Aφ∗(ΔxΠ, x) or

u = f+
θ∗ (ΔxΠ, x, y). In practice, we use the baseline control

input uB = {v, c} (linear velocity and steering curvature) to
represent the desired state change rate ΔxΠ.

4) Data Collection: To collect training data, the robot
is teleoperated with a joystick in an open environment
with linear velocity v ∈ [0, 3]m/s and steering curvature c ∈
[−1.35, 1.35]m−1 for 30 minutes (24 418 data points). The
teleoperator randomly varies both linear velocity and steering
curvature (Π1). In our specific implementation, the robot reasons
in the robot frame and therefore the state xi in the training
trajectory T = {〈Δxi, xi, ui, yi〉Ni=1} becomes the origin in
the robot frame. The ground truth Δxi is represented as real
{vir, cir}, where vir is from vehicle odometry and cir = ωi

r/v
i
r (ωi

r

is the sensed angular velocity around the vertical z axis from the
IMU). Currently, we take vir from wheel odometry only, which
can be further improved by adding visual, point cloud, and/or in-
ertial information in future work. The commanded control input
ui = {vic, cic} is recorded from joystick input. For y, we collect
the 6-DoF raw IMU signal, including 3-DoF accelerometer and
3-DoF gyroscope, as a sliding history window.
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Fig. 4. Results of outdoor experiments on seen terrain: Localized robot positions of all 300 laps are plotted around the pre-defined global path (black line
segments) on the map (grey lines). The size of the circles at each turn denotes the number of failures at that turn. Red: baseline f+

B (Δx, x), blue: ablated model

f+
Aφ∗ (Δx, x), green: learned model f+

θ∗ (Δx, x, y).

5) Network Architecture: As a function approximator for
f+
θ∗ , we use a two-layer neural network with 32 neurons each

layer (shown in purple in Fig. 3) and we empirically show that
such a small network is very efficient to train and suffices to
improve off-road navigation. The neural network takes realis-
tic/desired {vir, cir} (as a proxy for Δxi, Fig. 3, orange) and
observation y as input, and outputs to-be-commanded control
input ui = {vic, cic}. For observation y, we concatenate the last
100 IMU readings (0.5 s) into a 600-dimensional vector, and feed
it into two 256-neuron layers as an autoencoder (Fig. 3, blue).
The final embedding for y is a two dimensional vector, then
concatenated with {vir, cir}, and finally trained in an end-to-end
fashion. The entire network architecture is shown in Fig. 3.
For the ablated model f+

Aφ∗ , the two-dimensional y embedding
is removed (only the orange and purple components remain).
Training both models takes less than five minutes on a NVIDIA
GeForce GTX 1650 laptop GPU. During runtime, the trained
model is used onboard the robot’s Jetson CPU with libtorch.

B. Navigation on Seen Terrain

We first test the inverse kinodynamic model’s performance
on the same terrain where the training data is collected, but
with a different global planner Π2. After collecting the training
data with Π1, an outdoor race track is constructed using plastic
panels and wooden posts (Fig. 1). Starting from the origin (robot
location in Fig. 1), eight turns are created (T1–T8, Π2). While
Turn 1, 2, and 3 are relatively gentle left-, right-, and left-hand
turns, Turn 4 and Turn 8 are roughly 90◦ left-hand turns. Turn
5, 6, and 7 are sharp 180◦ left-, right-, and left-hand turns.

Ten different target speeds (the maximum speed the robot tar-
gets at reaching while maintaining safety tolerance to decelerate
and avoid potential collisions) are tested, ranging from 1.6 m/s to
2.5 m/s with 0.1 m/s intervals. For the three models, the baseline
f+
B (Δx, x), the ablated f+

Aφ∗(Δx, x), and learned f+
θ∗ (Δx, x, y),

we repeat ten trials/laps each for statistical significance. A total
300 laps are executed. The localized robot position from ENML

Fig. 5. Failure rate per target speed.

Fig. 6. Failure rate per turn.

TABLE I
OVERALL SUCCESS RATES OF ALL SPEEDS AND TURNS

are shown in Fig. 4 in the subplots corresponding to the target
speeds.

At lower target speeds, the green trajectories by the learned
model f+

θ∗ (Δx, x, y) are much closer to the pre-defined global
path, compared to the baseline f+

B (Δx, x), because the latter
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Fig. 7. Experiment results in unseen environment.

Fig. 8. Failure rate per target speed on unseen terrain.

Fig. 9. Failure rate per turn on unseen terrain.

model fails to consider the world state caused by the unstructured
terrain. With increasing speed, the robot trajectory becomes
more scattered around the global path due to increased stochas-
ticity from vehicle-terrain interaction. But overall speaking, the
green trajectories are always closer to the global path than other
alternatives. The blue trajectory is generated by the ablated
model f+

Aφ∗(Δx, x). Like f+
θ∗ , it learns from actual terrain in-

teractions, but it does not consider the current observation y. So
f+
Aφ∗ is roughly an averaged model over the continuous spectrum

of terrain. Therefore, f+
Aφ∗ outperforms the baseline f+

B , but

underperforms f+
θ∗ because it fails to consider the current world

state.
At each turn, the size of the red, blue, and green circles

represents the number of failed turns (collision or getting stuck)
in the ten attempted turns. Turn 6 and 7 cause a lot of trouble for
the baseline even at lower speeds. With increasing speed, more
turns cause failure for other models as well, but in general, the
baseline fails more frequently at most turns than the ablated
and learned models. Fig. 5 and Fig. 6 show the percentage
of failed turns per target speed and per turn, respectively. In

Fig. 5, failure rate increases with faster speed, while within
each speed, the learned model achieves the lowest failure rate,
while the baseline fails most frequently. In Fig. 6, Turn 6 is
the most difficult for all three alternatives, and at most turns,
the learned model outperforms the ablation and the baseline.
Since Turn 8 is immediately after the terrain change from grass
to cement, the robot sometimes oversteers (to compensate for
slip on grass) and does not react quickly enough to understeer
(for higher friction on cement), causing it to get stuck in a few
laps with the learned model. This problem can be addressed by
adding forward looking camera to predict future wheel-terrain
interaction in future work. The overall success rates of the three
models for all turns are shown in the first row in Table I.

C. Navigation on Unseen Terrain

To test that the learned model generalizes to different global
planners Π and also to unseen terrain, we further conduct an
indoor experiment with a different track and global path (Π3)
on an unseen wooden floor (Fig. 7 a). Note that f+

θ∗ has only
seen training data from random exploration on the outdoor
terrain (Fig. 1). Since the unseen wooden floor is relatively
more consistent and therefore easier to navigate than the outdoor
unstructured terrain,3 we increase the navigation target speed to
2.4 m/s - 2.8 m/s, also with 0.1 m/s intervals. The baseline and the
learned model are applied with these five different target speeds,
ten repetitions each. Fig. 7 shows the results from the 100 laps
on the unseen terrain with a different global path. Similar to
the results on seen terrain, the learned model produces more
concentrated and also closer robot trajectories to the global path
to be tracked. As shown in Fig. 8 and 9, the learned model also
outperforms the baseline in terms of failure rate at all target
speeds and in most turns (except Turn 2). The overall success
rates of the baseline and learned model are shown in the second
row in Table I.

V. CONCLUSION

In this letter, we present a data-driven approach to learn an
inverse kinodynamic model for accurate high-speed navigation
on unstructured terrain. To capture the elusive and stochastic

3We speculate that the generalization would not be as good were the model
trained indoors (on easy terrain) but applied outdoors.
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world state caused by vehicle-terrain interaction at different high
speeds, we use an inertia-based observation embedding as an in-
put to the learned inverse kinodynamic function. This approach
is tested on a physical robot on seen and unseen terrain with
different global plans at different high speeds. The experimental
results show that the learned model can significantly outperform
an ideal baseline model without consideration of world state. Our
ablation study also shows our observation embedding is useful
to enable fast and accurate off-road navigation on unstructured
terrain. For future work, better ground truth linear velocity esti-
mation needs to be investigated: in addition to wheel odometry
alone, other sources of perception, e.g., vision, point cloud,
and/or inertia, can be leveraged. Better linear velocity estimation
can account for significant wheel slippage on more challenging
terrain, e.g., on ice, and enable even faster navigation. Adding
vision-based observation also has the potential to enable the
robot to prepare for future interactions, e.g., to reduce the failures
at Turn 8. Another interesting direction to investigate in the
future is generalization from easier to harder environments.
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