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ABSTRACT
This extended abstract introduces a novel setting of reinforcement
learning with constraints, called Relaxed Exploration Constrained
Reinforcement Learning (RECRL). As in standard constrained rein-
forcement learning (CRL), the aim is to find a policy that maximizes
environmental return subject to a set of constraints. However, in
RECRL there is an initial training phase in which the constraints
are relaxed, thus the agent can explore the environment more freely.
When training is done, the agent is deployed in the environment
and is required to fully satisfy all constraints. As an initial approach
to RECRL problems, we introduce a curriculum-based approach,
named CLiC, that can be applied to existing CRL algorithms to
improve their exploration during the training phase while allowing
them to gradually converge to a policy that satisfies the full set of
constraints. Empirical evaluation shows that CLiC produces poli-
cies with a higher return during deployment than policies learned
when training is done using only the strict set of constraints.
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1 INTRODUCTION
In reinforcement learning, the main objective is to optimize the
return received from the environment. However, in many cases,
agents are subject to various constraints (e.g., safety, fairness, smooth-
ness of the policy, etc.). To this end, the constrained reinforcement
learning (CRL) problem setting was introduced, in which the objec-
tive is to optimize return subject to a given set of constraints.

Most work on CRL aims at quickly identifying and focusing
exploration on policies that adhere to the constraints, while contin-
ually improving the environment return. Some lines of work even
further restrict the exploration and aim to completely avoid con-
straint violations while learning a policy (this is often referred to as
“safe exploration”, [3]). Adhering to the constraints while learning
a policy limits the exploration, which often results in suboptimal
policies. This strongly-restricted exploration is important in some

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

settings. Nonetheless, given the rapid development of fast and ac-
curate simulators, it is reasonable to only require these constraints
during deployment, while letting the agent explore more freely
during training. Alternatively, agents can be initially trained in
lab conditions (e.g., with additional supervision), which allow for
more lenient constraints than during deployment. To model such
situations, we introduce the problem of relaxed exploration con-
strained reinforcement learning (RECRL), in which constraints can
be relaxed during an initial training phase, while the aim is to find
a policy that would comply with the constraints while maximizing
environmental return during deployment (i.e., after the training
phase is over). In the following sections, we briefly describe the
RECRL framework, present a curricilum-based approach for solv-
ing RECRL problems, and show experimental study on the safe-RL
benchmark [4], in which agents operate under safety constraints.

2 RELAXED EXPLORATION CRL
The CRL problem is concerned with finding a policy that maximizes
the environment return subject to the given set of constraints. As
a result, algorithms designed for solving such problems focus on
searching in the space of feasible policies which obey the con-
straints. To account for scenarios in which constraints can be alle-
viated when the policy is being trained, we introduce the Relaxed
Exploration Constrained Reinforcement Learning problem, or RECRL.
In this setting, agents face two different phases, a training phase
and a deployment phase. The deployment phase is consistent with
standard CRL, i.e agents are allowed to consider only feasible poli-
cies that do not validate the given constraints. By contrast, in the
training phase, the constraints (cost limits) are relaxed. Formally, a
RECRL problem consists of a training budget 𝐵 and two constrained
Markov decision process [2] (CMDPs), 𝑀𝑡 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑𝑡 )
and 𝑀𝑑 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑𝑑 ), corresponding to the training and
deployment phases, respectively. Both CMDPs are identical with the
exception of their cost limits. To capture the desire for relaxed con-
straints during training, we require that 𝑑𝑡𝑖 ≥ 𝑑𝑑𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 .
Note that in the casewhere the agent is trained using a simulator, we
can set 𝑑𝑡𝑖 = ∞ for all 1 ≤ 𝑖 ≤ 𝑘 , effectively reducing𝑀1 to an MDP.
The objective in RECRL is to find a policy for 𝑀𝑑 that optimize the
return subject to the constraint, 𝜋∗ = argmax𝜋 ∈Π (𝐶,𝑑𝑑 ) 𝐽 (𝜋). How-
ever, in contrast to CRL, for the first 𝐵 episodes, the agent operates
on𝑀𝑡 and is therefore allowed to explore policies in Π(𝐶,𝑑𝑡 ).

3 SOLVING RECRL PROBLEMS
While agents that solve RECRL problems can benefit from more
lenient constraints during training, they still need to converge to a
policy that satisfies the strict constraints during deployment. Since
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an optimal policy for 𝑀𝑡 is not a valid solution for 𝑀𝑑 , CRL al-
gorithms cannot be simply executed on 𝑀𝑡 to learn a policy for
𝑀𝑑 in the RECRL setting. While CRL algorithms can learn a valid
policy when directly being applied on𝑀𝑑 , they will fail to utilize
the advantages of training with relaxed constraints. In this section,
we introduce a method based on a Cost-Limit Curricilum (CLiC)
that aims at adapting any CRL algorithm to benefit from the ad-
ditional exploration allowed for by RECRL problems. Instead of
training the agent on𝑀𝑡 throughout the entire training phase, the
agent is presented with a curriculum, i.e., a sequence of models,
M = 𝑀𝑡1 . . . 𝑀𝑡𝑛 , that differ in their cost limits. We restrict the
space of curricula to sequences with non-ascending cost limits, in
which the final task is the the deployment model𝑀𝑑 . This formula-
tion enables agents to learn a policy using constraints that gradually
become tighter, ensuring that the final policy fits the deployment
constraints, while supporting better exploration opportunities dur-
ing the training process. The restriction on the cost limits solves the
sequencing problem of determining the order in which the different
source tasks are presented to the agent. However, to generate a
curriculum the teacher needs to determine: 1) what are the source
tasks, i.e. which cost limit to choose for each model presented to
the agent, and 2) for how many time steps to train the agent on
each task. To this end, we consider two types of curricula.

Static Curricula. static curricula (static CLiC). Such curricula are
predetermined and do not require any runtime information. Three
types of static curricula are studied, based on the most common
scheduling strategies: linear decay, cosine decay, and exponential
decay. These curricula change the cost limit at every episode based
on the training progress with respect to the training budget 𝐵, the
training costs 𝑑𝑡 , and the deployment cost 𝑑𝑑 .

By using a static curriculum, students benefit from improved
exploration while bounding both the maximum and the cumula-
tive worst-case cost violations experienced during training. Yet,
static curricula are not without flaws. First, since the cost limits at
each iteration are predetermined, the curriculum cannot reflect the
actual costs observed by the student. For example, models in the
curriculum can have a cost limit that is much higher than the costs
experienced by the student, which can result in “wasted” iterations,
in which no progress is made towards converging to a policy that
satisfies 𝑑𝑑 . Moreover, the return of the student is also not taken
into consideration, thus the student can be constantly introduced
to new cost limits without ever learning a stable policy. Finally, the
student is at risk of converging to a policy that does not satisfy 𝑑𝑑
at the end of the training phase.

Dynamic Curriculum. To mitigate the above weaknesses of the
static CLiC, we introduce a new teacher, capable of generating
a curriculum dynamically (Dynamic CLiC) based on the recent
history of a student’s experience. In Dynamic CLiC , the cost limit
in the first model is initialized to be 𝑑𝑡 . The teacher provides the
student with the same model, while observing the performance
of the agent in a moving window of𝑊 episodes. Once the agent
has experienced at least𝑊 episodes on the current cost limit and
has converged to a policy both with respect to the environment
return and the costs (as determined by two thresholds, 𝜖𝑟 and 𝜖𝑐 ),
the cost limits are reduced linearly in each dimension, with respect
to the difference between the current limits and 𝑑𝑑 , and the number

Figure 1: Static and Dynamic CLiC applied to CPO

remaining episodes; this part of the dynamic curriculum addresses
the first two issues of the static curricula. In addition, if the costs
observed by the agent are higher than the cost limit, noise is added
to the policy of the student in order to encourage exploration, in
an attempt to escape possible local optima.

4 EMPIRICAL EVALUATION
To create RECRL instances and to evaluate the effect of the curriculum-
based approaches, we utilize the Safety Gym benchmark [4]. In this
benchmark, a robot operates in an environment in the presence of
unsafe elements. In the reported experiment, we considered the car
robot, a wheeled robot with differential drive control, that aims to
press a highlighted button. The outcomes considered as unsafe are
entering dangerous areas, touching dangerous objects (either mov-
able or immovable, and either stationary or moving), and pressing
the wrong button. The cost at every step is a binary function which
indicates whether at least one unsafe outcome has occurred. The
agent interacts with the environment for 1𝑒7 steps. The first 95% of
the steps are the training phase, in which the agent can be trained
using relaxed constraints, while the last 5% of the steps (500k) are
the deployment phase, where the agent must adhere to the full set of
constraints. We applied the CLiC methods on the Constrained pol-
icy optimization (CPO, [1]) algorithm, which enforces constraints
throughout training by solving trust region optimization problems
at each policy update. The results that shown in Figure 1, in which
the solid lines are the mean values (returns or costs), the dashed
horizontal line (cyan) indicates the deployment cost-limit (𝑑𝑑 ), and
the dashed vertical line (black) indicates the transition between the
training phase and the deployment phase. In addition, the shaded
areas in the plots depict the standard error.

The results show that all CLiCmethods improved over the base al-
gorithms, obtaining policies with better returns that induce similar
costs, and that the Dynamic CLiC outperformed all static curricula.

5 CONCLUSION
We introduced a setting for constrained reinforcement learning
(CRL) that enables agents to train with constraints that are more
lenient than during their deployment. To solve such problems, we
introduced a curriculum-based (CLiC) approach that can be applied
to existing CRL algorithms, with two types of curricula, static and
dynamic. The different CLiC methods were shown to significantly
boost performance when applied to CPO in an empirical study on
the Safe-RL benchmark.
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