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Executive Summary
Austin Robot Technology's (ART's) entry in the DARPA Urban Challenge has two main goals. 
First and foremost, the team aims to create a fully autonomous vehicle that is capable of safely 
and robustly meeting all of the criteria laid out in the Technical Evaluation Criteria document [1]. 
Second, and almost as important, the team aims to produce, educate, and train members of the 
next generation of computer science and robotics researchers. This technical report documents 
our significant progress towards both of these goals as of May 2007 and presents a concrete plan 
to achieve them both fully by the time of the National Qualifying Event (NQE) in October. 
Specifically,  it  presents  details  of  both  our  complete  hardware  system  and  our  in-progress 
software, including design rationale, preliminary results, and future plans towards meeting the 
challenge.  In addition, it provides details of the significant undergraduate research component of 
our efforts and emphasizes the educational value of the project.

1 Introduction
The starting point for ART's entry in the Urban Challenge is the same vehicle that was designed 
and engineered as a part of the 2005 DARPA Grand Challenge. The vehicle qualified for that 
year's NQE and continues to meet all of the basic safety requirements that are uncompromisingly 
essential for participation in the Urban Challenge, including a purely mechanical E-stop that, 
with no software in the loop, is able to bring the car to a safe and quick stop. The main hardware 
enhancements since 2005 are 1) an Applanix POS-LV inertial navigation unit1 that provides sub-
meter GPS accuracy, and 2) a Velodyne HDL-64E high-density lidar sensor2 that provides a 360° 
high-density point cloud of range data at a frequency of 10 Hz. Other key modifications include 
the introduction of the ability to shift into and drive in reverse, the ability to control the turn 
signals from software, improved braking controls, and the repositioning of the existing SICK 
lidars and visual sensors so as to provide close-range sensing and road marking information that 
complements the information provided by the Velodyne. As fully described in Section 3.1, we 
believe  that  the  vehicle  hardware is  already  fully  capable  and  robust  enough  to  support 
successful completion of the Urban Challenge. 

As such, ART's main focus this year has been, and continues to be, on the software required to 
interpret the rich and voluminous sensor data and to safely, accurately, and robustly control the 
vehicle in an urban environment. This software is being developed in close partnership with The 
University of Texas at Austin (UT Austin) as a part of the Freshman Research Initiative (FRI) 
within the College of Natural Sciences (CNS). The aim of the FRI is to provide undergraduate 
students, including but not limited to freshmen, direct hands-on exposure to science research 
during their undergraduate careers. FRI is supported by the National Science Foundation (NSF). 
As a part of this program, CNS supported a spring 2007 class taught by Professor Peter Stone 
that was devoted entirely towards developing software for ART's Urban Challenge entry.3 The 
course included 25 undergraduate students ranging from freshmen to seniors with widely varying 
backgrounds.  In  addition  to  approving  this  course  as  Professor  Stone's  primary  teaching 
responsibility for the semester, CNS is supporting a senior graduate research assistant (GRA) – 
Patrick Beeson – to help manage and oversee the ongoing undergraduate research. CNS has also 
contributed  the  crucial  new  Applanix  and  Velodyne  hardware  to  the  vehicle.  This  deep 
institutional commitment has enabled the team to place a heavy focus on education and training 

1 Applanix POS LV: http://www.applanix.com/products/poslv_index.php
2 Velodyne HD Lidar: http://www.velodyne.com/lidar/home.html
3 Course website: http://www.cs.utexas.edu/~pstone/Courses/378spring07/



 

while also moving steadily forward towards the primary goal of meeting the challenge. Indeed, 
the control software that drove the car during the autonomous run shown in ART's qualification 
video was written by undergraduates as part of this course.

The two main problems we are trying to solve for the Urban Challenge are 1) the interpretation 
and integration of high-density sensory data towards a complete, real-time model of the world 
that includes an awareness of local terrain and any obstacles or other vehicles in the vicinity and 
2) precise, safe control that takes into account this world model, including reaction to observed 
and predicted behaviors of  other  vehicles.  In  pursuit  of  these two challenges,  the three key 
themes that drive our design choices, as well as central lessons in the UT Austin class, are as 
follows:

1. Safety first. All software needs be designed in such a way that the worst case scenario is 
mission failure. If there is any doubt regarding the safety of a maneuver, then it should not be 
undertaken. For example, this criterion indicates that in sensing obstacles, to the extent that 
trade-offs  are necessary,  false positives are preferred to false negatives:  the vehicle must 
never fail to recognize an obstacle in its vicinity. Sensing "phantom" obstacles may degrade 
performance but will not compromise safety. With the maintenance of no false negatives as 
an invariant, the incidence of false positives should be reduced as much as possible.

2. Controlled complexity.  While it is important to be fully aware of and knowledgeable about 
state-of-the-art robotics research, for any given problem the simplest possible solution should 
be tried first. Given the current state of the art and the time scale involved, we view the 
Urban Challenge as mainly an integration challenge. That is,  most of the technologies to 
succeed already exist. Thus the research to be done is not in the development of completely 
new algorithms and approaches, but rather in tuning and integrating existing algorithms. For 
the sake of robustness and transparency, straightforward solutions are highly preferable.

3. Frequent and incremental testing.  To succeed in the Urban Challenge it is not sufficient to 
successfully navigate  an urban environment  once.  Rather,  the car must  be able  to  safely 
complete every mission it is given, no matter what the weather conditions or the behaviors of 
the other vehicles in the environment. As such, every individual software component must be 
tested,  first  in  simulation  but  also  in  the  real  world,  in  as  many possible  conditions  as 
possible, and every change to a component needs to be tested in the context of the complete 
system to ensure that it doesn't adversely affect other interacting software components.

Though we do  not  explicitly  refer  to  it  again  in  this  document,  this  theme is  pervasive 
throughout our entire design and development process. We regularly test on long straight-
aways  and  parking  lots  on  the  UT  Austin  Pickle  Research  Campus  (PRC)4,  on  curvy 
roadways at Driveway Austin5 (see Figure 7), and occasionally at the Southwest Research 
Institute (SwRI) site visit location6 in San Antonio.

The remainder of this document is organized as follows. Section 2 provides an overview of the 
main components of our system and team organization, beginning with the system architecture 
and including the team composition and further details about our approach to education and 
training. Section 3 presents and analyzes our system design, focusing first on hardware and then 
dividing the software into the sensing, modeling, and control components. Section 4 includes our 
performance results to date, and Section 5 concludes.

4 PRC satellite photo: http://www.wikimapia.org/maps?ll=30.3866,-97.7269&spn=0.008592,0.005932&t=k
5 Driveway Austin Motorsports Academy and Retreat: http://www.drivewayaustin.com 
6 SwRI site visit: http://urban.challenge07.googlepages.com/sitevisitcourse



 

2 Overview
This  section begins  with  an  overview of  our  system architecture.  Full  details  of  its  various 
components are provided in Section 3. We then present an overview of our team's composition 
with emphasis on the key areas of expertise that are needed to succeed in the Urban Challenge, 
and elaborate on the ways in which we are achieving our goal of educating and training future 
computer scientists.

2.1 System Architecture Overview

An abstract  view of  the  system architecture  consists  of  the  following  four  components,  as 
illustrated in Figure 1.  

1. The vehicle hardware, shown in blue, includes an electro-mechanical E-Stop; actuators for 
steering,  throttle,  shifting,  signaling,  and  braking;  computing  hardware;  and  sensing 
hardware.

2. The sensing subsystem, shown in purple, takes raw sensor data as input and interprets it into 
a form that can be used for world modeling. This module includes coordinate transforms into 
a single frame of reference, ground plane removal, and other related pre-processing steps.

3. The  world model, shown in orange, merges the fused sensory data into a single, coherent 
representation of the state of the vehicle and its environment.

4. The control software, in green, itself takes a common layered approach, being divided into a 
pilot that is in charge of low-level actuator commands, a navigator that is in charge of local 
obstacle  avoidance and lane following,  and a commander that  is  in charge of  high-level 
planning based on the assigned mission.

Figure 1 - System architecture overview.

Though fairly generic at this level of abstraction, a key feature of this architecture that aligns 
with our “safety first” design principle is that the E-stop is completely independent from the 
software.  That is, no error in the software can affect the E-stop.  Further detail on each of the 
above four components is presented in detail in Section 3.

2.2 Team Composition

In  order  to  complete  an  integration  project  as  complex  as  creating  an  autonomous  vehicle, 



 

expertise in a wide variety of areas is needed. Specifically,  every effective team needs deep 
expertise in mechanical engineering, electrical engineering, computer science/robotics, software 
development, and project management. In this section, we summarize the qualifications of some 
of the key personnel on the ART team with specific attention to how they fill the above needs.

Mechanical engineering: A prerequisite for any successful Urban Challenge entry is a vehicle 
that  has been engineered mechanically to  be robust  and failsafe.  Our  base vehicle  has  been 
created largely by Juan Martin-de-Nicolas who brings to the team over 20 years of experience 
working with machinery and mechanical systems. For ART’s entry in the October 2005 DARPA 
Grand  Challenge  NQE,  Juan  was  responsible  for  all  mechanical  work  done  to  convert  a 
passenger vehicle into a competitive autonomous robot. Juan continues to maintain the vehicle 
hardware and make any necessary modification as new sensory systems become active.

Electrical engineering: As a close counterpart to the vehicle's mechanical systems, its electrical 
system also requires significant engineering and maintenance. Our electrical engineering is led 
by Don McCauley, who has over 25 years of experience designing hardware systems architecture 
and microprocessors for IBM, Intel,  and AMD. Don has led the effort to re-engineer all our 
vehicle's sensors and actuators for the Urban Challenge. This effort dramatically improved the 
reliability and fault tolerance of all onboard systems. Skilled in interfacing analog and digital 
systems, Don designed most of the analog and digital filters and custom hardware interfaces 
required within our vehicle. Don also designed and integrated the various computer systems, 
micro-controllers and networks used within our vehicle.

Computer Science  and Robotics: UT Austin  contributes  world class expertise  in  computer 
science  and  robotics  via  the  leadership  of  Professor  Peter  Stone  and  GRA Patrick  Beeson. 
Professor Stone, recent winner of the prestigious IJCAI Computers and Thought Award, brings 
with him 13 years of experience in CS robotics, with specific focus on machine learning and 
multirobot systems. In the course of developing several championship RoboCup robot soccer 
teams, he has contributed novel algorithms for sensor/actuator calibration [2], robot vision [3-5], 
localization [6], agent modeling for prediction of other agents'  behaviors [7], reasoning under 
uncertainty [8], and multiagent reasoning [9], all of which are directly applicable to this project. 
At least as significantly as his technical algorithmic contributions, Professor Stone has extensive 
experience fielding complete, robust working multirobot systems, as is necessary for successful 
participation in  international  research competitions  such as  RoboCup and the  Trading Agent 
Competition [7, 10-14]. This competition expertise will be invaluable as we prepare to field a 
complete, robust working system in the Urban Challenge.

Patrick Beeson is working closely with Professor Stone on this project with regards to software 
development, sensor calibration, and education of the students involved in the project. Patrick is 
within a few months of completing his Ph.D. on topological navigation to facilitate human-robot 
interaction.7 His published research contributions are directly relevant to this project [15-21].

Software development: With such a large team of contributors at various levels of expertise, it 
is essential  that  our team use software development  best  practices in order to succeed.  Jack 
O'Quin brings to the project 30 years of experience in contributing to development of large, 
complex software systems. He worked for IBM and the T.J. Watson Research Center leading 
development  of,  among other  things,  AIX (IBM's version of UNIX) and the microprocessor 
architecture for the PowerPC.  Since retirement, he has helped pioneer open-source, real-time 
audio applications for Linux.  Jack has been a member of ART since 2004, and developed much 
of the software for our 2005 DARPA Grand Challenge entry. His contributions include: selecting 
7 Patrick is delaying his thesis defense until after the competition so as to be able to participate fully in this project.



 

and deploying programming tools for build and change control; packaging stable versions of all 
external  software  dependencies,  including the Linux operating system; improvements  in  on-
board serial  device error handling; PID control for braking and throttle to achieve requested 
vehicle speeds; and much vehicle integration testing and debugging.

Project management: In addition to software development expertise, the size and scope of this 
project  requires  expert  project  management.  Dave  Tuttle  is  a  technical  and  management 
consultant  based  in  Austin,  team leader  of  the  ART team,  and  a  team member  of  the  UT 
Challenge-X  hybrid  vehicle  project.  He  started  Sun  Microsystems’ Austin  Microprocessor 
Design Center from scratch. Over a 5 year period he built  one of Sun's most effective CPU 
design teams. He was one of the key designers and project leaders of the teams which launched 
the IBM Power1,  Apple PowerMac, the "Deep Blue" chess playing supercomputer,  and two 
generations of the world's fastest supercomputers for the ASCI projects.

In addition to the key personnel listed above, the team includes several other past and/or part-
time contributors from ART and dozens of students from UT Austin.

2.3 Education and Training

As noted in Section 1, one of the two central goals of ART's Urban Challenge entry is to produce, 
educate, and train members of the next generation of computer science and robotics researchers. 
The  currently  declining  enrollments  in  computer  science  undergraduate  programs across  the 
country is a potential crisis for the nation's future IT industry, as well as for government research 
agencies  such  as  DARPA.  Inspiring  challenge  problems  may  be  essential  drivers  towards 
reversing  this  enrollment  trend.  As  such,  we  believe  strongly  that  the  long-term  impact  of 
competitions such as the Urban Challenge will be as much in education and training as it will be 
in technological innovation.

Acting on this belief, our team has already used the project as a tool for educating 25 UT Austin 
undergraduate students about the world of computer science research and continues to work 
directly with these students towards successful completion of the Urban Challenge. With full 
participation and cooperation from ART members, Professor Stone designed and taught a spring 
semester course called "CS 378 -- Autonomous Vehicles: Driving in Traffic."  

As a part of the Freshman Research Initiative described in Section 1, Professor Stone structured 
the class as a single, unified software development project. Rather than being assigned papers, 
the students read and summarized research papers of their own choosing (at least two per week), 
chose component subprojects in teams according to their own interests and expertise, and used 
class sessions to discuss their  progress and brainstorm future directions.  In contrast  to more 
standard  courses,  they  worked  collaboratively  rather  than  individually;  read  and  evaluated 
cutting edge research rather than reading pre-digested textbook information; worked on a single, 
large,  open-ended project  rather  than  a  series  of  constrained programming assignments;  and 
presented their work to the class rather than listening to lectures. 

The  students  were  presented  with  this  contrast  as  representative  of  the  difference  between 
undergraduate  and  graduate  education  with  the  goal  of  encouraging  them  to  explore  the 
possibility of proceeding to graduate school and eventual careers in research. Feedback from 
class surveys indicates that indeed several of the class members are newly interested in pursuing 
such a path,  and one class member used his  contribution to the project  as the basis  for his 
undergraduate honor’s thesis.  Although the class itself ended at  the beginning of May 2007, 
almost half of the students are continuing on with the project in some capacity over the summer 



 

and, should we qualify for the NQE, into the fall of 2007.

From the perspective of education, our project has already been a great success. Students in the 
course have directly contributed to many aspects of the autonomous vehicle. They have helped 
make hardware modifications such as enabling software control of the turn signals. They have 
made needed extensions to the Stage simulator for more realistic offline testing.  They have 
developed  low-level  software  control  devices  for  braking  and  speed  control.  They  have 
developed prototype vision algorithms for stop-line and lane detection. They have developed 
parsers and visualization tools for RNDF and MDF files. They have developed capabilities to 
generate  and  follow smooth  curves  for  path-planning.  They  have  developed  drivers  for  the 
Velodyne and our other sensors. And they have developed the complete high-level planner for 
vehicle control and obstacle avoidance that controlled the car during the autonomous run shown 
in ART's qualification video.  This last  development achieved the explicit  goal of the course, 
which  was  to  collaboratively  create  software  with  the  capability  of  passing  the  video 
qualification and to thereby make significant progress towards the capabilities needed for the site 
visit.

Nonetheless, the project is still very much a work in progress and the students are eager to see it 
through to  completion.  As noted  above,  several  of  them are continuing  to  contribute  to  the 
project, many on their own time, and plan to continue through the site visit. In fact, we plan to 
allow students from the class to  handle most  of the duties during the actual  June site  visit. 
Should we qualify for the NQE, they will be energized to continue their work through October 
and will get to experience the ultimate satisfaction of creating a complete working autonomous 
vehicle. As such, qualifying for the NQE would dramatically increase the educational impact of 
the project.

3 Analysis and Design
This section expands in detail on the four system components presented in Section 2.1, namely 
the hardware, sensing, world modeling, and control, in more detail.  As appropriate, we sketch 
the reasoning behind the design decisions and analyze their effectiveness.  More detailed testing 
and evaluation of some of the key system components is presented in Section 4.

3.1 Hardware

Our base is  the same vehicle  that  participated at  the National Qualifying Event of the 2005 
DARPA Grand  Challenge.  Figure 2  includes  a  recent  picture  of  our  vehicle,  a 1999  Isuzu 
VehiCROSS “Ironman”  edition which is described in detail in our 2005 technical paper.8 Our 
complete hardware system upgrades our 2005 entry to handle urban environments, which require 
higher precision and more robustness.  Most significantly,  we have augmented the vehicle to 
include a high precision inertial navigation system that provides sub-meter localization accuracy 
and a high-density lidar that provides 3D range data at a frequency of 10 Hz. Both of these 
sensor  additions  are  described  in  detail  below after  a  brief  overview of  our  existing  E-stop 
system and computing hardware. The overall hardware system is illustrated in Figure 2.

3.1.1 Actuators Hardware and E-Stop

Our actuators control the vehicle’s steering, throttle, shifting, signaling, and braking. Steering, 
throttle, and braking all were in place and performed well during the 2005 Grand Challenge 
8 ART’s 2005 Tech Report: http://www.darpa.mil/grandchallenge05/TechPapers/Austin_Robot_Technology.pdf



 

NQE. Since then, we have installed a custom shift-by-wire system to control forward, park, and 
reverse, and we have installed relays to do signaling.   By monitoring the vehicle brake pressure, 
we now have a much more precise braking system than in 2005.  All actuators have performed 
extremely  reliably  throughout  the  spring  semester,  creating  a  stable  platform  for  the 
undergraduate class to test their software.

Our highly reliable electro-mechanic reactive E-Stop system is connected to the brake and the 
throttle, providing instant response to a disable signal with no software in the loop so that it 
works even if our vehicle loses power. The disable signal cuts current to a relay, which in turn 
activates the brake in full,  disengages the throttle,  and simultaneously interrupts the ignition 
circuit. The main idea behind the braking component is that a brake cable is connected to an 
engaged electromagnet pulling against tension coils. When the circuit to the electromagnet is 
broken, the tension coils pull the brake cable, causing the brake to engage fully. 

Figure 2 - Hardware overview. 

3.1.2 Computing Hardware

Our  computing  hardware  is  a  mobile  TeraFLOPS  supercomputer.  It  consists  of  a  pair  of 
computers to be used for vision and a third computer used for sensor fusion, world modeling, 
navigation, and planning.  Each of the computer systems uses two shock-mounted SATA hard 
disk drives. The computers are connected with dual Gbps Ethernet links. The vision computers 
connect to the cameras with dual IEEE-1394a PCI cards and the other computers use multi-port 
RS-232 PCI cards to connect other sensors and actuators with RS-232, RS-422, RS-485, and 
USB  2.0  connections.  These  computer  systems  were  designed  for  redundancy  and  high 
reliability. Parts — and even entire systems — can be swapped, if necessary.   

Though our current system does not rely heavily on vision, we expect to focus on improving and 
extending vision capabilities towards the semifinals and finals, as described in Section 3.3.3. 
Thus the vision system is configured for maximum speed and reliability. Each vision system 



 

includes two low-power dual-core AMD Opteron 64-bit microprocessors (4 cores total) and two 
16-lane PCI-Express based NVIDIA 7900 GT Graphics Processing Units (GPUs) running stereo 
vision software. Each of the other computers includes two single-core Opteron processors (2 
cores total) with the same GPUs for visual display and debugging. Each of the NVIDIA GPUs is 
capable of approximately 250 GFlops.  Combining 8 GPUs with 12 Opteron cores gives our 
vehicle well in excess of 2 TeraFLOPS of processing power.

3.1.3 Sensor Hardware

For navigation and maneuvering, two of the most crucial pieces of information needed by the 
vehicle are its current location and velocity. We use the POS LV system from Applanix, a high 
quality inertial  navigation system (INS) coupled with GPS [22],  to provide reliable  location, 
heading, and speed information even during GPS outages. To improve our dead-reckoning ability 
and provide redundancy for the INS, our vehicle is fitted with a Sauer-Danfoss Hall effect rotary 
position sensor (RPS), which provides a very accurate independent confirmation of the steering 
angle and the wheel rotations.

For local sensing of obstacles and other vehicles, we rely most heavily on lidar sensors due to 
their reliability, precision, and the fact that they are not greatly affected by lighting conditions. 
However, we see vision as a necessary component of the system for its ability to recognize road 
markings that cannot be picked up by lidars. To the extent that vision is also able to provide 
information about obstacles and other vehicles, we will use it as a redundant information source 
to verify and calibrate information from lidar.

Because  we  believe  high-density  sensors  will  be  vital  to  winning  the  2007  DARPA Urban 
Challenge, we have invested in a Velodyne HDL-64E rotating high-density lidar, which gives a 
360° real-time view of the environment around the vehicle, and thus is a perfect choice for this 
purpose. We also use low-facing SICK brand lidars to cover blind spots of the Velodyne lidar, to 
provide  reactive  collision  avoidance  for  immediate  threats,  and  to  look for  curbs  and  other 
geometric lane boundaries visible to lidars. As detailed in Section 3.3.2.2, bringing the Velodyne 
sensor online has been an extensive focus of our efforts during the spring of 2007. It is now 
operational and will provide the bulk of our local sensory information during the site visit.

At this writing, our vision hardware, along with prototyped software, is in place, but we do not 
use vision yet for vehicle control.  Our vision system consists of a set of four stereo cameras and 
additional short-range color cameras. The housings for the left two cameras of our four-camera 
stereo rig are visible in Figure 2. These high resolution (1280x960) cameras from Sony deliver 
quality  images  through  a  Firewire  (IEEE-1394)  interface  to  our  multi-processor  computing 
systems,  where dedicated  GPUs process  the  data  in  real  time and output  depth information 
similar to the data from lidars. The stereo cameras are black/white and front-facing. We will 
mount multiple short-range low-quality color cameras around the vehicle to fill gaps in close-
range information. They will be used to recognize road markings and other vehicles’ signals and 
to cover blind spots of the stereo cameras.

3.2 Robot Control Interface

We utilize the Player robot server9 as our hardware control interface. In doing so, we get well-
defined interfaces  of  commonly used robot  data  types,  a  distributed object  system, message 
passing, thread handling, and seamless integration with the Stage 2D simulation backend. All 
9 Player project: http://playerstage.sourceforge.net/



 

software modules, except for the Commander module, are written as Player drivers, which allow 
for clients written in several languages to connect to the drivers for testing. This platform has 
been invaluable for allowing students to make progress in the class, as they can focus almost 
entirely on the problems of programming the vehicle, while issues like threading and message 
passing are mostly handled “behind the scene” by Player.

Figure  3  illustrates  the  current  robot  architecture  as  Player  drivers.  This  is  a  more  detailed 
explanation of the overall software design that combines elements of Figures 1 and 2.

3.3 Sensing Modules

The sensing subsystem interfaces individual sensors.  The sensing modules correspond to the 
three main types of sensing on our vehicle – global positioning (localization), lidar, and vision.

Figure 3 - Detailed system architecture, as Player drivers/clients. Note the left side of the figure denotes sensor 
fusion, while the right side lays out safe control. 

3.3.1 Odometry

The Applanix POS LV sensor provides continuous position, heading, and speed information for 
navigation and control. The Applanix sensor provides this sub-meter position and orientation in 
the Lat/Long coordinate system used by the RNDF. For ease of  development,  the  odometry 
module transforms this data from Lat/Long coordinates to a Cartesian (x,y,θ) coordinate system 
whose origin is centered on the vehicle’s rear axle at the start of a mission.  This Cartesian 
coordinate system is used by the lidar fusion module (Section 3.4.1) and the map lanes module 
(Section 3.4.2) to produce a world model.



 

The odometry module is also responsible for converting the Applanix velocities (in a Lat/Long 
coordinate system) into translational and rotational velocities (m/s).  This information is used by 
both Navigator and Pilot (see Section 3.5) for reactive speed control.

3.3.2 Lidars

3.3.2.1 SICK Lidars

Our use of the SICK lidar units is relatively straightforward. We have mounted our units upside 
down to reduce sunlight interference by keeping the rotating mirror inside the unit angled away 
from the sky. We have had problems with the front SICK frequently overheating due to the Texas 
climate combined with the heat coming off the engine block. We have ordered thermal coolers 
that,  once  installed,  will  keep  the  lidar  below  100° Fahrenheit.   Our  sickfast player  driver 
improves on the standard Player driver by supporting the SICK S14 FAST and by setting the 
device to run in "high availability mode", which eliminates most laser shutdown conditions.

3.3.2.2 Velodyne Lidar

The  Velodyne  lidar,  which  is  newer  technology  that  arose  from Team DAD’s  2005  Grand 
Challenge entry,10 has been more challenging to use effectively. Figure 6(left) illustrates the 3D 
point cloud provided by the Velodyne unit, which provides information between +2° and -25° 
from  the  horizontal  plane.  Much  work  was  needed  to  obtain  these  high  quality  results. 
Specifically,  our  unit  arrived  lacking  calibration  and returned  drastically  incorrect  distances, 
adding 2.6 cm to every meter of real world distance, so that an object 40 meters away would 
show up as 41.04 meters away (not including the additive distance errors discussed below).

Unfortunately, this small distance-dependent error was not the only source of error in the unit. 
The device itself contains 64 individual lasers, each of which has a large constant error that is 
initially unknown and apparently unique to each unit. Calibrating these was straightforward once 
the distance-dependent error discussed above was discovered and solved for. To calibrate the 
unit, we first took several indoor data sets and focused on the few lasers that have pitch near 0°. 
Given that our data sets had unique obstacles that were a known distance away (e.g. a piece of 
plywood held vertically in a long corridor), we found the offsets to subtract from each of these 
near horizontal lasers in order to obtain the correct distance information. 

Once we had several  lasers  calibrated,  we then took several  sets  of  data  logs with the unit 
mounted at +45° and aimed at tall, flat buildings on the UT Austin campus. By using the few 
calibrated lasers to determine the ground truth distances of these buildings, we were able to find 
the distance offsets needed for the rest of the 64 lasers. Most of these constant distance errors are 
between .3 and .5 meters - quite a significant distance from the perspective of world modeling.

To take advantage of the calibrated Velodyne sensor and following our design principle of trying 
the simplest algorithms first, we use “height-difference” maps to identify vertical surfaces in the 
environment without the need for cutting-edge algorithms for 3D, real-time modeling [23-24]. 
We take the 3D Velodyne data, and at each cycle (i.e. every complete set of 360° data), we create 
a  2½D “height-difference” map. Our solution can be thought of as a “slimmed down,” thus 
computationally efficient, version of the terrain labeling method performed by the 2005 Grand 
Challenge by the Stanley team [25].

10 Team DAD’s 2005 tech report: http://www.darpa.mil/grandchallenge05/TechPapers/TeamDAD.pdf



 

In our solution, we have a Cartesian grid (similar to the occupancy grid in Section 3.4.1) that is 
populated, analyzed, and then cleared at each processing cycle. Instead of each cell modeling the 
probability of occupancy as in our laser fusion module, each cell tracks the max and min Z value 
(height) of lidar scans that fall into the cell for the current set of 360° range data. After all range 
data for a revolution is added to the occupancy grid, a simulated lidar scan (described in detail in 
Section 3.4.1) is produced from the grid –- the algorithm casts rays from the Velodyne origin, 
and an obstacle is “detected” whenever the difference between the max and min Z values is 
above a threshold. The result is a 360° 2D simulated lidar scan, which looks very similar to the 
data output by the SICK lidar devices.  However,  this  lidar only returns the distances to the 
closest obstacles that have some predetermined vertical extent.

This simplified approach lends itself to speedy operation, allowing us to efficiently process the 
two million points per second produced by the Velodyne. Each of these points is transferred from 
the device in  a  UDP packet.  The act  of  capturing and processing these packets,  for  reasons 
described in Section 4.2, is split into two modules. The 'reading' module serves only to capture 
data packets from the Velodyne, while the 'processing' module performs the actions necessary to 
transform the Velodyne output into useful information.

3.3.3 Vision

Figure 3 omits any reference to vision because we currently do not use vision information in the 
vehicle’s navigation. Instead we rely on lidars and on the implied lane boundaries extracted from 
the RNDF waypoints (see Section 3.4.2 for details).  Upon completion of the vision modules 
explained below, the World Model module (Section 3.4) will subscribe to the visual sensors and 
incorporate visual data, along with RNDF, lidar, and odometry, to improve our current model of 
the vehicle’s local surroundings.

The Stereo Vision module has been in development since the 2005 Grand Challenge NQE. Once 
operational, it will complement the Velodyne lidar output by providing texture information (such 
as road markings) in addition to range data. Using GPUs to process stereo vision faster than 
using CPUs, the output of vision is an orthographic projection of the road ahead of the vehicle, 
viewed  from  overhead.  Lane  markings,  obstacles,  and  vehicles  appear  in  a  Euclidean 
reconstruction that  preserves  relative  distances.  The  stereo  vision  outputs  depth  information, 
similar to that from lidar, to ease fusing of sensing data. Figure 4 shows an example of the stereo 
vision: the left image is obtained by superimposing left and right camera data; the right image 
shows a recovered bird’s-eye view of the scene. Note that the computed positions of double 
lines, the traffic cones, and the trash can correspond to their real-world positions.  

The  Short-Range Color Vision  module is a new addition to the system, intended to recognize 
road markings and other vehicles in traffic. For the Urban Challenge, the vehicle needs to be 
careful to recognize and stop at stop lines and to stay in its lane. It is also important that the 
vehicle be able to recognize other vehicles in traffic as well as their intentions, including from 
their past trajectories and from their signals (braking, backing up, and turning) when available. 
Unlike the stereo vision, this module uses color cues for these purposes. Distance information for 
objects of known dimensions is recovered based on sizes of monochromatic colored objects. This 
module is designed with special-purpose shape and color heuristics specialized to recognize each 
expected type of road mark or signal. Such a design requires low computation overhead and is 
appropriate for the auxiliary roles played by these sensors. This work was initiated as a class 
project. Preliminary results for color-based road detection are shown in Figure 5.



 

       
                        Figure 4 - Stereo Vision.                                         Figure 5 - Color-based road surface detection. 

3.4 World Model

As introduced in Section 1, we believe that one of the two fundamental problems to be solved as 
a part of the Urban Challenge is the interpretation and integration of high-density sensory data 
towards a complete, real-time model of the world that includes an awareness of local terrain and 
any obstacles or other vehicles in the vicinity. Our current software does this using a combination 
of lidar fusion that provides distances to the closest obstacles seen by any lidar in the recent past, 
map lanes that provides a predictive representation of lane locations generated from the input 
RNDF, and object recognition that fits obstacles that fall into lanes to rectangular models and 
tracks each distinct object over time.

3.4.1 Lidar Fusion

The  lidar fusion module is responsible for integrating information from the Velodyne and the 
SICK lidars.  Currently,  this  is  done  as  an  extension  to  the  commonly-used  occupancy  grid 
structure [26-27] that allows noise to be handled by accruing evidence of obstacles over time and 
allows blind spots to be handled by remembering information in portions of the environment not 
immediately visible to the vehicle. Figure 6(right) illustrates a short-term occupancy grid created 
using  the raw Velodyne lidar illustrated by Figure 6(left).

To produce its output, this module pretends that a lidar unit is located at the origin of the vehicle 
(center of the rear axle), and it then projects a simulated laser ray from the vehicle into the grid 
for each degree of rotation around the vehicle's location. This simulated lidar works like a real 
360° laser range finder, returning the distance to the nearest obstacle; however, because the grid 
is  created  by  multiple  lidar  devices,  the  output  of  this  simulated  lidar  scan is  a  single 
representation that returns the closest obstacles seen by any of the physical lasers in the recent 
past.

Figure 6 - Left: Velodyne lidar snapshot at SW corner of SwRI track. Right: Lidar fusion grid from Velodyne lidar 
information.



 

As a result,  a  nearby obstacle detected by the front SICK lidar,  even if  not  detected by the 
Velodyne, is nevertheless included in the simulated range scan, while obstacles behind (in the 
same direction, within ±0.5°) are not represented. We have introduced logic to prevent the “free” 
evidence of one lidar unit from overwriting the “occupied” evidence of another lidar since, as 
mentioned in Section 1, we prefer false positives to false negatives for safety reasons.

In  addition  to  filtering  noise  and  keeping  around  state,  we  plan  to  extend  our  current 
implementation to also provide height estimates of the obstacles by utilizing the 3D information 
provided by the Velodyne lidar unit. With this information we can estimate both the location and 
height of obstacles, potentially allowing us to tell the difference between cones (small obstacles) 
and the concrete posts (large obstacles), both present at the SwRI track. 

3.4.2 Map Lanes

Initially conceived as a temporary substitute for visual lane recognition and stop line detection, 
the  Map Lanes module has become an important piece of our current software infrastructure. 
Map Lanes is designed to parse an RNDF and to create a lane map in the Cartesian coordinate 
system that the odometry provides (Figure 7). Its purposes are both to create a path for the car to 
follow in the absence of visual lane detection and to distinguish areas in the environment where 
objects detected by the sensors are relevant (within the lanes of the road where the car intends to 
drive) from those areas where objects should be ignored (trees or buildings outside of the lanes), 
no matter how close they are to the vehicle. 

For relatively straight segments, this is simple line fitting with the lane widths defined by the 
RNDF. Map Lanes estimates the locations of lane boundaries along curves by interpolation of the 
location and heading. If RNDF waypoints are located exactly at the beginning and ends of the 
curves, these hypothesized lanes line up with the real world lanes; however, in some scenarios, 
particularly when the lanes swerve irregularly, these curves can vary slightly from the real world 
lane markings.

Though Map Lanes is only a heuristic of where the lanes may be, it is quite useful for filtering 
out the large amounts of lidar data coming into the World Model.  However, it is important to 
note that if the vehicle ignores an obstacle deemed by Map Lanes to be outside the lanes, our 
reactive obstacle avoidance routines will nevertheless prevent collision with the obstacle, should 
it in fact be in the roadway (see Section 3.5.2).

As our vision-based lane detection improves, we will incorporate visual lane detection into the 
World Model using the same interfaces currently defined for Map Lanes. In this case, we plan to 
use Map Lanes as a failsafe for when visual data is unreliable (illumination changes, rain) or 
unavailable (unforeseen hardware failures).

3.4.3 Object Modeling

Using locations of obstacles from the lidar fusion grid, filtered through lane boundaries as given 
by Map Lanes, is useful for reactive, local controllers like  Navigator. However, for high-level 
planning,  we  want  to  have  object  models  to  be  able  to  make  intelligent  decisions.  At  the 
Commander level of control, the robot should know that the lane is blocked by orange cones (re-
planning is necessary), a moving vehicle (queue up behind the vehicle), a stalled vehicle (go 
around), or even people (stop completely if within a safety radius).

Using the  simulated lidar scan from the  lidar fusion module, we are currently producing and 



 

testing code to build dynamic models of the obstacles nearest to the vehicle. We do this by first 
filtering out points that do not fall within lane boundaries as defined by Map Lanes. Next, we 
leverage  the  assumption  that  most  obstacles  are  vehicles  in  order  to  cluster  points  to  fit 
rectangles. With these rectangles, we then have estimates of the size of obstacles, and what lane 
(or  lanes)  these  obstacles  occupy.  We  are  currently  implementing  the  code  to  track  these 
rectangles over time which will allow us to complete the intersection precedence portion of the 
Urban Challenge criteria. Figure 8 illustrates our progress.

                                                                      
Figure 7 - Map Lanes representation of an RNDF 

created at a “Grand Prix” style racetrack in Austin.  

  

Figure 8 - This figure shows our current progress in 
object modeling – clustering lidar data and fitting 

rectangles to clusters that may be vehicles.

3.5 Control

At the highest level of reasoning – taking input from the world model – exists our software 
control  system  consisting  of  three  primary  modules:  Pilot,  Navigator,  and  Commander as 
illustrated in Figures 1 and 3. The modules are defined by their relative level of reasoning about 
the world and the position of the vehicle in it. 

3.5.1 Pilot

The Pilot  is the closest  module to the physical hardware of the vehicle. It  is responsible for 
converting a desired speed and heading into appropriate throttle, brake, and steering corrections 
through adjustments of the actuators of the vehicle. As such, Pilot essentially acts as a single 
interface between our software controllers and our hardware. 

The Pilot  uses a physical model of the vehicle to control its speed and heading. The model 
includes safe operating limits for the braking, acceleration, and steering controls. Using these 
limits,  a  safety check filters  the speed and heading requirements  from the  Navigator  before 
sending them to the PID controller which drives the physical actuators.

3.5.2 Navigator

The Navigator fills a crucial middle ground between high-level reasoning and low-level control. 
It accepts orders from Commander and combines this with local sensory understanding of the 
surroundings of the vehicle - the world model information along with raw range readings from 
the front and rear SICK lidars -  to decide on an appropriate speed and heading for a  given 
situation. 

Navigator implements a collection of behaviors such as ‘Follow Lane’, ‘Stop at Intersection’, 
and  ‘Pass  Left’  from  which  Commander  selects  when  sending  orders.  For  instance,  if 
Commander gives a general  “Follow Lane” instruction, Navigator uses information from the 
world model to maintain the current lane of travel while simultaneously performing any minor 



 

obstacle avoidance within the current lane. Alternatively, if the vehicle detects that the lane is 
blocked ahead, Navigator reduces its speed appropriately, eventually coming to a complete stop 
when necessary. Commander then solves the problem of how to handle this blockage at a higher 
level and issues updated orders to Navigator.

3.5.3 Commander

The Commander module operates at the highest level of reasoning. Navigator and Pilot, then, act 
as implementers of the plan generated by Commander, which includes determining an optimal 
route from the current location of the vehicle to the desired goal, maintaining an awareness of the 
current state of the vehicle, and sending the resulting desired short-term behaviors to Navigator 
as instructions.  In this section, we give an overview of three key Commander functions – large-
scale path planning, behavior selection, and speed control – as well as an example of a higher 
level functionality, namely intersection precedence.

3.5.3.1 Large-scale Path Planning

Commander’s first priority is to plan a distance-optimal route from the robot’s current position to 
the goal position. This is implemented as an A* search in which every waypoint in the RNDF 
acts as a node and the exits between them act as edges. The start  position for the search is 
defined as the last waypoint that the vehicle was near and the goal position is defined as the next 
checkpoint specified in the MDF. The search heuristic is Euclidean distance between the current 
position and the goal position. For efficiency, the route is only re-planned when the vehicle has 
visited one of the nodes along the planned path or when the vehicle’s situation has changed. 
Situation  changes  occur  when a  new behavior  is  necessary,  such  as  the  realization  that  the 
vehicle’s lane is blocked ahead by a stalled vehicle.

3.5.3.2 Behavior Selection

Another of Commander’s responsibilities is the selection of a behavior for Navigator to follow. 
Example behaviors include ‘Follow Lane’, ‘Turn Around’, ‘Stop At Line’, and ‘Park’. A more 
complete list of behaviors is presented in Figure 9.

The behavior selected is a function of Commander’s state and the high-level situation of the 
vehicle. Commander’s states currently include the following:

1) Road – Normal operation.  Road following.

2) Lane Blocked – Our current travel lane is blocked ahead.

3) Dodging Blocked Lane – We are in the process of avoiding a blocked lane.

4) Road Blocked – The entire road is blocked.

The number of states will continue to increase as functionality is added to the vehicle. 



 

Figure 9 - Commander’s interface to Navigator. 

As an example, let us suppose there is a stalled car blocking the vehicle’s lane of travel. Upon 
recognizing the lane blockage, Commander changes its own state to  Lane Blocked and begins 
issuing orders with the ‘Stop Now’ behavior to stop the vehicle as fast as possible. Once the 
vehicle has stopped for an appropriate amount of time, Commander changes its own state to 
Dodging Blocked Lane and plans an alternate route through another available lane. Commander 
then begins issuing orders with the ‘Pass Left’ behavior and specifying high-level waypoints in 
the alternate lane to seed Navigator’s behavior. Once Commander determines that the obstacle 
blocking our original lane is safely behind (Road state), it plans a new route through the original 
lane of travel and orders the ‘Follow Road’ behavior, or perhaps a ‘Merge Right’ behavior if a 
right hand turn must be made soon. Once our vehicle has returned to its original lane of travel, 
Commander resets its own state back to Road and continues on.

This  finite  state  machine  approach  to  a  high-level  control  module  has  advantages  and 
disadvantages.  Advantages  include  high  predictability  and  reliability,  as  well  as  high 
performance since state transitions are well defined and generally easy to compute. The primary 
disadvantage  is  an  inability  to  handle  situations  that  were  not  defined  as  part  of  the  state 
machine.  For  the  Urban  Challenge,  our  state  machine  approach  follows  our  “controlled 
complexity” theme while still allowing the vehicle to complete its mission.

3.5.3.3 Speed Control

The  final  responsibility  of  Commander  is  to  provide  Navigator  with  parameters  controlling 
minimum and maximum speeds. In typical lane-following situations, Commander passes along 
the values defined explicitly in the MDF for the current Segment or Zone. For some situations, 
however, Commander lowers the maximum speed limit to ensure reliable control during higher-
precision maneuvers. For example, when the vehicle is performing a maneuver to dodge a stalled 
vehicle blocking our lane, Commander ensures that we are not moving faster than 5 mph. 

3.5.3.4 Intersection Precedence

At the time of this writing, Commander is capable of performing all basic navigation behaviors 
from the technical evaluation criteria. Our main focus leading up to the site visit is on the basic 



 

traffic functions of queuing at intersections and intersection precedence. Some of the advanced 
navigation and advanced traffic  capabilities,  such as dynamic re-planning by Commander in 
response to blocked roads, are already in place. However most will be the ongoing focus of our 
efforts leading towards the semifinals in October. 

For intersection precedence, the key information is whether there is a car in each lane at the 
moment that we arrive at the stop line (i.e. with no more cars in front of us). Knowing that, the 
precedence algorithm is straightforward: we need to let exactly one car go from each occupied 
lane, and then it is our turn. It doesn't matter if there are any cars left in the other lanes, since 
they  will  have  arrived  after  we  have.   This  will  be  straightforward  to  implement  once  we 
complete our dynamic object modeling (see Section 3.4.3) so that we can recognize vehicles 
stopped at the intersection when we arrive and track them as they traverse the intersection.

4 Results and Performance
Because our system is under continual development with a view towards being complete by the 
NQE  in  October  2007,  performance  evaluation  is  ongoing.  In  this  section  we  summarize 
performance tests done to date of some of the key modules in our system, including analysis of 
their strengths and currently needed directions for improvement. Specifically, we analyze the 
performance  of the  vehicle  hardware,  the  Velodyne  lidar,  the  Applanix,  Map  Lanes,  and 
Commander.

4.1 Vehicle Evaluation

Our core vehicle hardware has logged hundreds of hours of testing over the spring of 2007 
without major problems. Steering, shifting, and throttle have had no electrical or mechanical 
malfunctions. The braking system has had periodic difficulties that were diagnosed as a bad 
electric  motor.  It  has  worked  as  designed  since  the  motor  was  replaced.  The  computers 
underwent a recent OS change – from Fedora Core 3 Linux to Ubuntu Dapper Linux (with a 
custom built kernel that includes a faster clock cycle) – with no adverse effects to the overall 
system.

4.2 Velodyne Evaluation

As discussed in Section 3.3.2.2, in order to integrate the Velodyne into our system in time for the 
site visit and to run it at its full 10Hz capacity, we use it to contribute to the 2D lidar fusion grid 
described in Section 3.4.1.  In this section, we evaluate both the speed of our Velodyne sensor 
processing loop and the effectiveness of our integration of the Velodyne data into our occupancy 
grid representation.

4.2.1 Velodyne Read

Achieving  10Hz  processing  with  the  Velodyne  was  not  as  straightforward  as  expected. 
Specifically, our initial attempt at consuming data from the various lasers revealed that any delay 
in reading the UDP packets sent by the Velodyne quickly caused an overflow of the read buffer 
and thus packet-loss.  As a result, the range data actually processed appeared to be arriving out of 
order.  For example, if an Ethernet packet representing the range-reading at 30 degrees (base 
orientation) was received, the next packet might have a base orientation of 35 degrees, when 
information regarding range at 31 degrees would be expected.  Figure 10(left) illustrates this 
problem by showing the base orientation of processed packets (in radians) plotted as a function 



 

of time when an eight-microsecond sleep is inserted between each packet read. Even such a brief 
pause quickly causes data to be lost.

The  solution  was  to  separate  the  processing  of  Velodyne  data  from  the  input  reading. 
Figure 10(right) illustrates the result of allocating a separate thread for packet input.  In this case, 
we package the 255 packets which compose a full Velodyne revolution as one message, and send 
the resulting information to a processing module.  Using this approach, we are able to process all 
Velodyne input at the full 10Hz.

       
Figure 10 - Left: Graph of the base orientation (radians) of packet data as a function of time. Notice that packets 
are being lost before .5 seconds have past. Right: The same thing (circles replaced by dots for easier viewing) but 

with the processing done in a separate thread, packets are no longer lost.

4.2.2 Velodyne Process

Rather than creating a 3D (X,Y,Z) mesh or voxel-based model  and rather than dealing with 
ground-plane removal, which may not easily generalize to hills or uneven roads that may be 
present in future competitions, instead we take the 3D Velodyne data and, at each cycle (i.e. 
every complete set of 360° data), we create a 2½D “height-difference” map, described in Section 
3.3.2.2.

Results are shown in Figure 11 using one of the data sets used to calibrate the lidar. Notice the 
piece of plywood, in the office hallway. From our “height-difference” map, we get a 2D lidar 
scan that sees only the walls, the vertical plywood, and some carts in the hallway, while ignoring 
the ground and all other non-vertical objects.



 

Figure 11 - Simulated lidar scan (right) created by ray casting in a “height-difference” map, where only vertical  
objects above a predetermined height are considered objects. 

To test our calibration, and to verify Velodyne’s claims of 5cm accuracy, we performed analysis 
of distances to various known obstacles.  The plywood in Figure 11 was measured by hand to be 
exactly 16.22m from the center of the lidar unit.   Figure 12 shows the range readings (after 
distances have been calculated from raw ranges) returned by the 6 lasers that have pitch angles 
within one degree of horizontal.   We can see that  though the readings do underestimate the 
overall location of the object, it is generally within the 5cm error claimed by Velodyne.

Laser 
ID

Pitch Mean 
range

Median Max Min Std. 
deviation

34 0.32° 16.16m 16.16 16.18 16.14 0.01

35 0.66° 16.19m 16.2 16.25 16.01 0.052

56 1.0° 16.15m 16.15 16.18 16.12 0.014

9 -0.7° 16.19m 16.19 16.20 16.17 0.009

62 -0.36° 16.13m 16.13 16.14 16.12 0.007

63 -0.02° 16.25m 16.25 16.29 16.22 0.014

Figure 12 – After calibration using large building at distances above 30m, out unit tends to underestimate closer 
objects; however the error is well within acceptable limits. Left: Recorded distance to obstacle 16.22m away from 6 

near horizontal lasers.  Right: Histogram of the distances calculated from these 6 lasers.

Though in keeping with our principle of “controlled complexity”, reducing the 3D Velodyne 
information to  a  2D representation prevents us from making full  use of the 3D information 
provided by the lidar at this time.  Expanding our use of the 3D information, for instance to 
detect obstacles that are behind other obstacles, while still maintaining a 10Hz processing loop is 
to be a main focus of our efforts between the site visit and the NQE.

4.3 Applanix Evaluation

Along with the Velodyne sensor, the Applanix POS LV is one of the most significant hardware 

Plywood



 

improvements to our vehicle since the 2005 Grand Challenge. When utilizing D-GPS from 6 
satellites, the Applanix returns positions with sub-meter accuracy, and we have observed up to 
0.02° angular accuracy.

To test the performance without the GPS signals, we covered both GPS antennas with aluminum 
foil, and verified that we had no signal.  We then drove the vehicle in both forward and reverse, 
circled around traffic circles, and performed U-turns and three-point turns.  The position was 
estimated with inertial and wheel odometry only (dead reckoning) for 3 minutes before returning 
to the exact starting position.  The reported position was off by only 1 meter.

In  contrast,  before  installation  of  the  Applanix  unit,  localization  accuracy  was  significantly 
worse.  In particular, we observed very noisy angular pose information – heading swings of ±5° 
when accelerating or stopping were not uncommon.  Loss or re-acquisition of GPS satellites 
resulted  in  lateral  position  discontinuities  of  several  meters  and  driving  under  trees  or  an 
underpass always resulted in position discontinuities.  Vertical errors of several thousand feet 
were  also  observed  under  these  conditions!   Thus,  the  Applanix  POS  LV was  an  essential 
upgrade to our vehicle for the Urban Challenge.

4.4 Map Lanes Evaluation

As described in Section 3.4.2, Map Lanes was originally conceived as a temporary placeholder 
for visual lane detection.  However, its effectiveness at providing Navigator and Commander 
with useful lane information has been such that we plan to use it as the default lane modeling 
module.  Vision information, when available and highly reliable, can then be used to fine tune the 
details. 

As an informal evaluation of Map Lanes' effectiveness, we present Figure 13, which overlays its 
output on top of  an aerial  view of  our  site visit  test  course at  Southwest  Research Institute 
(SwRI).  Note that even though its input is a sparse RNDF representation that does not precisely 
model the curves at the corners of the track, the resulting lane markings line up quite closely with 
the actual lanes. 

4.5 Commander Timing Evaluation

In order to react in real time to incoming sensor data, it is important that none of the modules in 
the control loop takes longer than the sensor cycle time.  The undergraduate thesis that focused 
on the creation of our Commander module includes an evaluation of Commander's speed, both 
on average and in the worst case.

Commander's fast execution is a result of its underlying finite state machine implementation. 
State transitions are triggered by simple Boolean expressions representing situations encountered 
by the vehicle. The route adjustment itself is inexpensive computationally since it only requires 
small  modifications  to  the  RNDF  structure  and  an  execution  of  the  A*  path  planner.  A 
performance graph of Commander's execution time is presented in Figure 14.

Analyzing Figure 14, we can confirm several required evaluation criteria. In the graph, the dark 
blue and yellow lines (bottom two lines in the plot) represent the execution time of Commander 
for two consecutive test runs of our vehicle. The turquoise and pink lines (top two lines in the 
plot)  represent  the  execution  time  of  Navigator  for  the  same  two  test  runs.   Observe  that 
Commander operates very quickly under the common case, with most control cycles completing 
in less than 1 ms.



 

             
Figure 13 - An example of our Map Lanes algorithm 
run on the SwRI version 2.2 RNDF. Lane markings 

are overlaid onto an aerial view of the course.

Figure 14 - Performance graph comparing 
Commander to Navigator.  

 

More specifically, we have two main evaluation criteria with regards to Commander timing. 
First, we want to ensure that Commander executes faster than Navigator so that Navigator is 
always  operating  with  up-to-date  situational  information  from  Commander.   Each  test  run 
contains  just  one  time  step  for  which  the  Commander  execution  time  shoots  above  the 
corresponding Navigator execution time, probably due to random processor scheduling. Given 
its rare and temporary nature, this overshoot does not present a significant problem with regards 
to this evaluation criterion. Second, Commander should not spike its execution time above 50 ms 
(the  cycle  rate  of  our  sensors)  so  that  it  can  keep  up  with  incoming  environmental  data. 
Evaluation of this graph shows that even the most extreme spike in execution time was below 
18 ms.

5 Conclusion
As documented throughout, our team has made significant progress towards the Urban Challenge 
goals. Table 1 addresses the status of our work towards each of the technical evaluation criteria, 
including target completion date and the high-level approach for tasks that are in progress or 
completed.  We aim to have all tasks completed by September 1st at the latest in order to leave a 
month and a half for only bug fixes and an emphasis on enabling hundreds of miles of failure-
free driving leading up to the NQE.

In summary, Austin Robot Technology is well along the way towards achieving both of its goals, 
namely  1)  successfully  meeting  the  Urban  Challenge  technical  evaluation  criteria  and 
2) educating new young Computer Science researchers.  With regards to our second goal, we 
have already succeeded significantly by inspiring a class of students to work productively on the 
project and to become involved in the world of academic research.  With regards to our first, and 
primary, goal, our hardware is in place and we have made significant strides in our software 
development.   Following  the  design  principles  of  safety  first,  controlled  complexity,  and 
frequent, incremental testing, we are well-positioned to complete the site visit tasks and are eager 
to continue towards the final Urban Challenge.



 
Task Status Timeline
Basic navigation
Preparation for run Mission/Path Planning reads in RNDF and MDF, plans routes 

between checkpoints.
Completed

Mission start World model determines the position and heading, proceeds to 
the first checkpoint.

Completed

Checkpoints World model determines the position and heading;  Commander 
ensures that a checkpoint can be traversed.

Completed

Stay in lane Using Map Lanes / Using vision Completed / July 1st
Speed limits Commander determines the speed; Pilot enforces the speed limit. Completed
Excess delay Commander maintains timer. Completed
Collisions Lidar detects close obstacles; Pilot avoids immediate collisions; 

Object detection predicts trajectories of self and other vehicles to 
avoid predicted collisions.

Completed
 
July 15th

Stop line World model determines presence at stop line;  Color vision 
verifies.

Completed
July 1st

Vehicle separation Commander issues immediate stop in response to obstacle 
detected in lane.

June 15th

Leaving lane to pass Commander plots extra waypoints to pass. Completed 
Returning to lane after pass Commander plots extra waypoints to return. Completed
U-turn Commander plans for and navigator executes

3-point turns as needed for mission.
Completed.

Basic traffic
Basic navigation See above.
Intersection precedence Object modeling determines presence of other vehicles at 

intersection upon arrival.  World model tracks their passage 
through intersection.  

June 8th

Minimum following distance Navigator dynamically adjusts speed to maintain following 2-3 s 
following distance.

June 15th

Queuing Happens based on vehicle separation and minimum following 
distance.

June 15th

Advanced navigation
Basic traffic See above.
Obstacle field Path Planning determines a route through the field; Immediate 

Collision avoids collisions
Completed.

Parking lot Not started. August 1st
Dynamic re-planning Word model recognizes road blocks; Commander  re-plans. July 15th

Road following Using Map Lanes / Using vision Completed / July 1st
GPS outage Applanix POS LV maintains localization Completed
Advanced traffic
Advanced navigation See above.
Merge Not started. August 15th
Vehicle separation during merge Not started. August 15th
Left turn Not Started. August 1st
Lane changes Commander issues lane change command; navigator plots 

course.
Completed

Vehicle separation during left turn Not started. August 1st
Passing moving vehicles Not started. September 1st

Zones Not started. September 1st
Emergency braking World model recognizes the need to brake; Pilot performs safe 

emergency braking using the E-stop hardware.
Completed

Defensive driving Not started. August 1st
Traffic jam Not started. September 1st

Table 1
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