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Abstract— We employ sequences of high-order motion prim-
itives for efficient online trajectory planning, enabling compet-
itive racecar control even when the car deviates from an offline
demonstration. Dynamic Movement Primitives (DMPs) utilize
a target-driven non-linear differential equation combined with
a set of perturbing weights to model arbitrary motion. The
DMP’s target-driven system ensures that online trajectories
can be generated from the current state, returning to the
demonstration. In racing, vehicles often operate at their han-
dling limits, making precise control of acceleration dynamics
essential for gaining an advantage in turns. We introduce the
Acceleration goal (Acc. goal) DMP, extending the DMP’s target
system to accommodate accelerating targets. When sequencing
DMPs to model long trajectories, our Acc. goal DMP explicitly
models acceleration at the junctions where one DMP meets its
successor in the sequence. Applicable to DMP weights learned
by any method, the proposed DMP generates trajectories with
less aggressive acceleration and jerk during transitions between
DMPs compared to second-order DMPs. Our proposed DMP
sequencing method can recover from trajectory deviations,
achieve competitive lap times, and maintain stable control
in autonomous vehicle racing within the high-fidelity racing
game Gran Turismo Sport. Video available: https://sites.
google.com/berkeley.edu/racingdmp/home

I. INTRODUCTION

Autonomous racing is a complex problem of growing
interest [1]. Recent advances in end-to-end reinforcement
learning (RL) have achieved remarkable success in racing
video games [2]; however, RL can be unstable, sensitive
to tuning parameters, and require extensive environment
interactions. Thus, structured trajectory planning and control
methods are often preferred in real racing vehicles [1].
Online trajectory planning, in contrast to static offline plan-
ning, enhances adaptability and performance by dynamically
adjusting to system changes, planning errors, or disturbances.
Furthermore, control inputs can be optimized using real-
time measurements of the system’s state so the controller
can make the best possible decision at each moment. This
paper explores the topic of computationally efficient, online
trajectory planning. While such online trajectory planning
could benefit many robotic domains, we apply our method
to racing, where precise acceleration and braking are crucial
for vehicles to remain stable, navigate turns, and achieve fast
lap times, all while operating at the limits of handling.
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To ensure safe and reliable control, planned trajectories
should adhere to the system’s actuation limits and dynamic
constraints, but optimizing such trajectories is challenging
for complex systems with real-time computation limits.
Optimization and model-based methods [3]–[5] are capable
of enforcing constraints and computing optimal commands,
but they are computationally expensive and require accurate
system models. While sampling-based methods [6] can avoid
optimization routines by finding the best trajectory from a
selection of potential samples, they may require additional
feasibility checks or incur computational expense when many
samples are needed. In racing trajectory planning, vehicle
dynamics are often simplified or trajectory horizons are kept
relatively short to facilitate real-time planning, but this can
potentially yield sub-optimal solutions.

Motion primitives have addressed such challenges in many
robotic domains by combining pre-defined basic motion pat-
terns for low-computation trajectory generation. Specifically,
Dynamic Movement Primitives (DMPs) generate movements
by integrating a non-linear differential equation [7]. Un-
like other geometric motion primitives [3], [8], [9], DMPs
are composed of two parts: a target-driven system and a
perturbing function. The target-driven system is a goal-
conditioned differential equation that generates a smooth
trajectory from an initial state to a desired end (goal) state.
The perturbing function, or transformation function, provides
flexibility to model state variations or system dynamics by
perturbing the differential equation with a nonlinear function
that is parameterized by a set of weights. While DMP-
based RL has learned DMP weights that produce unseen
trajectories [10], in general these methods do not account
for system constraints such as dynamics and incur additional
computation. Rather, we learn the weights by imitating a
demonstration, since the unique two-part structure of DMPs
can generate efficient trajectories with different initial or
final states that retain much of the original demonstration
dynamics [11].

To apply DMPs to autonomous racing, we propose a
method to imitate a racing demonstration with DMPs, then
plan new trajectories from real-time state measurements
during control. Our approach first segments the long demon-
stration, and each segment is imitated by a DMP, forming a
sequence of DMPs. During online model-predictive control
(MPC), new DMP trajectories are generated starting from the
measured state using the closest primitive in the sequence.
We switch from one DMP to the next after the original
time duration of the first primitive has elapsed. This adapts
the so-called “target crossing” method [7], which is well-

https://sites.google.com/berkeley.edu/racingdmp/home
https://sites.google.com/berkeley.edu/racingdmp/home


suited for racing as it maintains the original duration of the
trajectory and is very efficient to compute. The generated
trajectories start from the most recent state measurement, and
due to the two-part DMP structure, gradually return to the
demonstration while imitating the demonstration dynamics.

Target crossing has only been performed with second-
order DMPs, but these cannot sufficiently model the accel-
eration of a DMP sequence. For instance, in racing, precise
control of lateral forces is essential for maintaining vehicle
stability at the limits of handling. Vehicles can also gain
an advantage in turns by employing a “slow in, fast out”
racing approach, delaying braking until the last moment of
entering the turn and accelerating immediately upon exiting.
Therefore, trajectories that accurately control the acceleration
can result in faster lap times and more stable control.

We propose the Acceleration goal (Acc. goal) DMP,
designed to combine sequences of third-order DMPs using
target crossing to generate near-optimal and near-feasible
trajectories. The Acc. goal DMP extends the capabilities of
a third-order DMP [10] by including the acceleration of the
target state. This improvement allows for explicit modeling
of acceleration at the points where a DMP in a sequence
meets its successor. It is applicable to DMP weights learned
by any method. Our contributions include:

1) The proposed Acc. goal DMP extends the target system
to handle accelerating targets.

2) Our Acc. goal DMP plans trajectories with less aggres-
sive acceleration and jerk when transitioning between
DMPs in sequence compared to second-order DMPs.

3) We generate online DMP trajectories from a sequence
of DMPs for control in Gran Turismo Sport.

4) Our method recovers from starting states where a base-
line controller fails and yields less tracking error, less
aggressive control, and the lowest lap-time compared
to existing, non-RL, methods.

II. ACCELERATION DYNAMIC MOVEMENT PRIMITIVES

To model a trajectory as a sequence of DMPs, a DMP
models the position, p1, and its time derivative(s) of each
trajectory section. In target crossing [7], [12], a new tra-
jectory is generated from the DMP sequence, transitioning
between DMPs based on the time index of the new trajectory.
This is because, at the end of a DMP’s duration, the goal-
driven system has driven the trajectory close to the DMP’s
target state, which serves as the joining point to the next
DMP [12]. Second-order DMPs with a moving target state
can ensure transitions with smooth velocity [12]. We extend
this notion to the target state’s acceleration by reformulating
a third-order DMP [10], allowing us to model sequences of
DMPs with smooth acceleration.

A. Review of Second Order DMPs with Moving Goals
Second-order DMPs [13] model the position, p1, and

scaled velocity, p2, of each degree of freedom as

ṗ2 = ταg

(
βg (gm − p1) +

ġ − ṗ1
τ

)
+ τAf(z) (1a)

ṗ1 = τp2, (1b)

with time constant τ = 1/T . A scaling coefficient A is
linearly scaled with the goal and initial positions [12], and
parameters αg and βg are set so that the system is critically
damped [12]. The phase variable, z, is a first-order system,
ż = −ταzz, with parameter αz set so z(t) decays from
z(0) = 1 to z(T )→ 0.

The first terms of (1a) drive the system toward the goal
position, gm, which moves with constant velocity, ġ:

gm = g0m − ġ
ln z

ταh
. (2)

The parameter αh and initial goal position g0m are set so that
the goal reaches the specified goal position at t = T .

The last term of (1a) represents the parameterized nonlin-
ear system and contains the transformation function f(z):

f(z) = ΣN
i=1ψi(z)θiz

ψi(z) =
exp

(
−hi (z − ci)2

)
∑N

j=1 exp
(
−hj (z − cj)2

) . (3)

The heights, hi, and centers, ci, of the activation functions,
ψi, are spaced evenly in the time domain [11]. The weights,
θi, shape the trajectory and can be learned via imitation learn-
ing or RL [7]. However, the second order formulation above
does not explicitly model the demonstration’s acceleration,
p̈, which can lead to inaccurate accelerations [10].

B. Third Order DMP with Proposed Accelerating Goal

Inspired by (2), we aim to explicitly model the accel-
eration of the target. We start with a third-order DMP
formulation [10], reformulated to be analogous to (1):

ṗ3 =ταp

[
βp

(
γp (gm − p1) +

(ġ − ṗ1)
τ

)
+
−p̈1
τ2

]
+ τAf(z) (4a)

ṗ2 =τp3 (4b)
ṗ1 =τp2, (4c)

with scaled acceleration, p3, and repeated eigenvalues set by
αp, βp, and γp. We name the above formulation Vel. goal
DMP as it employs a constant velocity goal (2). If DMPs
are placed in sequence, the acceleration of joining points is
assumed to be zero. While arbitrarily large θi can overcome
modeling errors if the final state of the demonstration has
non-zero acceleration, this can lead to large acceleration
jumps when transitioning between DMPs in sequence.

We propose the Acc. goal DMP driven towards a constant
acceleration, g̈. The evolution of the goal-driven system to
the accelerating target is adapted by replacing (4a) with

ṗ3 =ταp

[
βp

(
γp (gm − p1) +

(ġm − ṗ1)
τ

)
+

(g̈ − p̈1)
τ2

]
+ τAf(z),

(5)
where the moving target in (2) is replaced by

gm(z) = g0m + 1/2g̈

(
ln(z)

ταh

)2

− ġ0m
(
ln(z)

ταh

)
. (6)



The initial velocity ġ0m and position g0m and parameter αh are
set so that the target reaches the goal position g and velocity
ġ at t = T when moving with constant acceleration g̈. The
Acc. goal DMP can be used with any DMP learning method
to describe trajectories that end in non-zero acceleration.
In Section IV, we join DMPs in sequence by learning θi
from imitation [11] and setting the goal to the final state
of the demonstration segment where it joins the subsequent
segment. In this case, our Acc. goal DMP is uniquely able
to model acceleration at these joining points.

III. RELATED WORK

In this section we compare DMP methods capable of
modeling long trajectories, focusing on those that utilize
primitives with via-points or sequences of multiple motion
primitives. We recognize that in racing, there are often
limited demonstrations, real-time computation constraints,
and significant accelerations that must be considered.

A. Motion primitives with via-points

Via-points Movement Primitives (VMPs) enable primitives
to have multiple via-points by representing the target state
as a function [14]. However, they can introduce large ac-
celerations that may be undesirable for robot [7] or vehicle
motion. Via-points are also possible with Probabilistic Move-
ment Primitives [15] and Kernelized Movement Primitives
(KMPs) [16]; however, sufficient demonstrations are required
to model a probability distribution, and a reasonable covari-
ance matrix on which to condition new via points must be
calculated. Such probabilistic modeling is difficult in racing,
where there is limited access to demonstrations.

B. Sequences of DMPs

Sequences of DMPs join multiple motion primitives in
series to model a full trajectory [12], [17], [18]. The ba-
sis functions overlay sequencing method [7], [18], [19]
combines DMPs using overlapping basis functions and a
sigmoidal phase variable. However, computation time in-
creases with the number of DMPs, and generated trajectories
last longer than demonstrations due to the alternate phase
variable [19], which is unfavorable in domains where time
to complete the trajectory is important (such as racing).
Conversely, the target crossing sequencing method [7], [12],
switches between DMPs when the time reaches the duration
of the original demonstration; this maintains the original
trajectory duration and does not increase computation with
more DMPs in sequence. A constant velocity goal state [12]
joins DMPs at points with non-zero velocity, but the second-
order system may lead to undesirable behavior in domains
requiring precise acceleration control [10].

C. Third Order DMPs

Higher order DMPs can generate more reasonable tra-
jectories than the commonly-used second order system [7].
Nemec and Ube [20] sequenced the third order “acceleration”
DMP [21], which placed a filter on the goal system of a
second order DMP [11]. The formulation produces smooth
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Fig. 1. DMP sections of duration TS for a demonstration trajectory on
Lago Maggiore racetrack; DMP weights, Θj , and goal states, Gj , for the
jth segment are learned via imitation

acceleration when switching between DMPs. However, the
attractor point is restricted by the filter system, so the
formulation does not model sequences connected at points
with arbitrary velocities and accelerations. Another third-
order DMP [10] raised the order of the goal-driven system,
perturbing the jerk instead of the original acceleration [11].
This formulation converges to a constant velocity goal [12]
and has not been used for sequences of DMPs. Our work
extends the goal to move with constant acceleration, enabling
target crossing to sequence DMPs joining at states with non-
zero acceleration.

IV. SEQUENCE OF DMPS TRAJECTORY GENERATION

Our method first learns a sequence of DMPs from a
demonstration, Pd, then generates new trajectories from that
sequence. Our method assumes access to a demonstration,
such as the trajectory in Fig. 1. We compare the trajectories
generated by our Acc. goal DMP (5) to two baselines: the
2nd. order DMP (1) and third order Vel. goal DMP (4).

A. Imitation Learning of the Sequence of DMPs

The demonstration is first imitated with a sequence of
DMPs. The demonstration is divided into segments of equal
duration, TS . The demonstration time is normalized with
respect to each segment, so that for the m-th waypoint, the
time tm ∈ [0, TS) denotes the time since the start of the
segment. Hence each segment starts at tm = 0 and ends at
tm = TS . As shown in Fig. 1, each segment is modeled by
the DMP weights, Θj = ([θ0 . . . θi . . . θN ]T )j , and the DMP
target state Gj = {g, ġ, g̈}, where j is index of the segment,
and N denotes the number of weights per segment per degree
of freedom. The target state, Gj , is set to the final state of the
demonstration segment at tm = TS . For each baseline, the
weights, Θ, are learned via local weighted regression [11].
In the racing example, we divide the demonstration into 10
segments, so that the segment duration, TS = 11.25s, is
long enough to prevent rapid switching between segments
but short enough to accurately model the demonstration.

B. Sequences of DMPs Trajectory Generation Method

Algorithm 1 uses the sequence of DMPs to generate new
trajectories, PG, of duration TG from an initial state, p0.
We determine the index, m, of the closest waypoint in the



Algorithm 1 Sequence of DMPs Trajectory Generation
1: Input: initial state Pi = {pi, ṗi, p̈i}, demonstration
Pd = {Pd,0, . . . , Pd,M}, and time step ∆t

2: Output PG = {pG, ṗG, p̈G} Generated trajectory

3: P t=0
G ← Pi

4: m = argminm∥pd,m − pi∥2
5: j ← j(m), G← Gj , Θ← Θj

6: tm ← t(m) ∈ [0, TS) ▷ Time of demonstration at m
7: for ti = 0, . . . , TG do
8: Calculate Ṗ ti

G (G,Θ, zi) at zi = z(tm + ti) using
DMP equations (i.e. Eqs. 1, 4, or 5)

9: Integrate trajectory P ti+1

G = P ti
G + Ṗ ti

G∆t
10: if ti + tm ≥ TG then ▷ Start next segment
11: G← Gj(m)+1

12: Θ← Θj[i]+1

13: tm ← 0
14: end if
15: end for

demonstration to the initial state (Line 4). This waypoint
corresponds to the j-th segment and time tm. The trajectory
is generated by integrating the DMP equations (Eqns. 1, 4,
and 5) with respect to time starting at tm (Line 8). Sometimes
the initial state is close enough to the end of the j-segment
that during integration the generated trajectory reaches the
end (in time) of this segment. When this occurs (Line 10),
we are inspired by the target crossing method to reset the
time (Line 13) and generate the remainder of the trajectory
with the subsequent DMP’s information (Gj+1 and Θj+1).
For our racing experiments, we set TG = 5s, which provides
ample information about the future trajectory and guarantees
the DMP is switched (Line 10) at most once, since TG < TS .

C. Results: Racing Trajectory Imitation

We first analyze how well each DMP method imitates
a racing demonstration of 6455 waypoints (Fig. 1. It is
generated with an expert RL policy from an agent in Wurman
et al. [2] on the Lago Maggiore GP racetrack and vehicle

TABLE I
SEQUENCE OF DMPS’ IMITATION ERROR TO DEMONSTRATION

Mean (Std. Dev.) of Tracking Error
Primitive Position Velocity Acceleration Jerk

N = 23 weights per DMP segment
2nd ord. DMP 1.05 3.73 35.05 400.24

(1.5) (4.7) (42.4) (502.3)
Vel. goal DMP 1.23 1.41 4.67 43.6

(2.1) (1.9) (5.8) (50.9)
Acc. goal DMP 1.36 1.41 4.13 37.01

(2.0) (1.7) (5.8) (50.6)

N = 184 weights per DMP segment
2nd ord. DMP 0.59 1.25 5.43 78.95

(1.2) (2.4) (8.4) (104.0)
Vel. goal DMP 1.16 1.09 1.82 13.25

(2.0) (1.7) (2.6) (13.3)
Acc. goal DMP 1.16 1.08 1.8 13.05

(2.0) (1.7) (2.6) (13.0)

(a) New trajectory generation from state OFF demonstration

Fig. 2. Trajectory generation for duration of TG = 5 s starting 3 seconds
before switching DMP segments with N = 23 weights per segment;
µ + σ indicates the mean+standard deviation of the magnitude of the
demonstration acceleration and jerk.

equivalent to the Federation Internationale de l’Automobile
(FIA) GT3 class. The sequence of DMPs is determined in
Section IV-A; then trajectories are generated via Algorithm
1 from every point on the demonstration. The demonstration
tracking error is in Table I. We compare different number
of DMP weights per segment, and find that N = 23 models
the demonstration with low enough position, velocity and
acceleration error for control. Our Acc. goal DMP reduces
the tracking error of velocity, acceleration, and jerk with
slightly worse position error than the Vel. goal DMP.

D. Analysis: Trajectory Generation off of Demonstration

A notable advantage of the sequence of DMPs is the ability
to generate trajectories from unseen states that can return
to the demonstration. Fig. 2 shows trajectories generated by
each DMP type from an initial position off of the demon-
stration (the trajectories’ initial velocity and acceleration are
set to those of the closest point on the demonstration.) The
initial position is 3 seconds before the end of the current
segment. Per Algorithm 1, the dynamics of the first DMP
(DMP1) are integrated until 3 seconds has elapsed; then
the weights/goal state of the subsequent DMP (DMP2) are
used to integrate the remainder of the trajectory. The DMPs’
goal-driven system drives the trajectory towards the goal
state, so the generated trajectory returns to the demonstration.
Meanwhile, the DMPs’ transformation function mimics the
original dynamics of the demonstration.

The higher order DMPs (Vel. goal and Acc. goal) reduce
deviation from the demonstration by explicitly modeling
acceleration, in comparison to the 2nd ord. DMP previously
used for target crossing [12]. However, while the Vel. goal
DMP can compensate with arbitrarily large weights at the
end of DMP1, transitioning from DMP1 to DMP2 introduces
a large acceleration and jerk due to the non-zero crossing
acceleration. Our Acc. goal DMP accounts for this non-
zero crossing acceleration, resulting in a smoother trajectory
at the crossing point. In fact, only the Acc. goal DMP’s



acceleration and jerk are comparable in magnitude to those
in the demonstration (mean plus standard deviation of these
values for the demonstration in purple in Fig. 2).

V. REAL-TIME TRAJECTORY PLANNING AND CONTROL

We employ an MPC [22] that observes the most recent
state, x, and minimizes tracking error over a prediction
horizon, TC . However, real-time computation limits TC ,
make it difficult or impossible to find a feasible solution from
distant states if the MPC tracks the offline demonstration.
To address this, our MPC tracks real-time trajectories that
start from the last observed state and gradually return to
the demonstration over a longer horizon TG. These online
MPC reference trajectories are generated using a sequence
of DMPs (Section IV), and these computationally efficient
DMP trajectories permit TG to be much longer than TC .
In this section, we describe the rules for generating DMP
trajectories during control and summarize the MPC.

A. Controller Logic for DMP Trajectory Generation

To ensure stable control and reduce computation, new
MPC references (i.e. DMP trajectories) are not generated
continuously from every observed state. Rather, a new tra-
jectory is only generated when

1) the state is near the end of the MPC reference; i.e. it
has been TG − TC − tb since the last trajectory was
generated, or

2) the state has deviated a large distance D from the MPC
reference.

Condition (1) ensures that the MPC reference (of length TG)
is always longer than the MPC control horizon, TC , including
a small buffer, tb = 1s. Condition (2) provides a new
trajectory whenever the observed state deviates significantly
from the current MPC reference. A DMP trajectory is always
generated from the initial state.

B. Nonlinear Model Predictive Control

The controller minimizes tracking error to the DMP tra-
jectories. A limitation of the DMP trajectories is the lack of
vehicle heading information – only global position and its
derivatives are modeled. A kinematically-constrained DMP
has been proposed [23], but a kinematic model is overly
restrictive for racing vehicles for which a dynamic model
with nonlinear tire dynamics is more accurate [24]. We
compensate for this limitation by using a nonlinear MPC
that constrains the states and controls to obey a nonlinear
dynamic model, xt+1 = f(xt, ut) (Appendix).

The MPC minimizes cost function J(x,u), where x and
u denote the state and control sequences over horizon TC :

J(x,u) =
TC−1∑
t=0

wT
D

[
∥δp∥2t , ∥δṗ∥2t , ∥δp̈∥2t , . . .

v2y,t, u2δ,t, u2th/br,t

]T
,

(7)

where w denotes the cost function weights, p, ṗ, and p̈ denote
2-D position and its time derivatives, and uδ , and uth/br
denote steering angle and throttle/brake input respectively.

The δ(·) function indicates the difference between the state
and the reference, e.g. δp = p − pref . We regularize the
lateral velocity vy calculated by the car model (Appendix)
to stabilize the system by preventing large lateral motion.

As a baseline, we use the offline demonstration as the
MPC reference. Since the demonstration contains vehicle
heading and control information, a fair cost function is

J(x,u) =
TC−1∑
t=0

wT
C

[
∥δp∥2t , δvx,t,

2 . . .

v2y,t, δu2δ,t, u2th/br,t
]T
,

(8)

where vx is longitudinal velocity.
The minimization of J is solved with an iterative linear

quadratic regulator (iLQR) [22], [25]. Jacobians At and Bt

are estimated with tensorflow.GradientTape and the
LQR solution δu∗t is found via the Riccati recursion [25].
MPC’s receding horizon re-calculates the optimal control at
each state and only applies the first step of the solution, u∗0.

VI. CONTROL EXPERIMENTS

We design two experiments to test the efficacy of DMP
trajectories as references for an MPC. The experiments are
conducted in the PlayStation 4 (PS4) game Gran Turismo
Sport (GTS) (https://www.gran-turismo.com/us/), developed
by Polyphony Digital, Inc. with racetrack, vehicle, and
demonstration from Section IV-C. GTS takes two continuous
inputs: throttle/braking and steering. The vehicle positions,
velocities, accelerations, and pose are observed. We compare
four types of MPC references: offline demonstration using
(8) (denoted “Fixed Ref.”) and online DMP trajectories using
(7) and the three DMP methods (2nd. order, Vel. goal, and
Acc. goal DMPs). To tune MPC weights for each method,
an evolutionary algorithm [26] maximizes the total course
progress over 400s in GTS, i.e. maxwD or wC

∑400
t=0 s(t).

Model-free RL has recently achieved super-human perfor-
mance in GTS [2]. While MPC approaches do not currently
reach that level of performance, GTS offers a highly realistic
environment for evaluating DMP trajectories. We discovered
that Algorithm 1 is a reliable method for generating trajec-
tories, even from states off of the demonstration, and our
Acc. goal DMP outperforms the other DMP baselines. More
details can be found in the accompanying video.

A. Experiment 1: Recovering from Initial Deviation

The first experiment tests our trajectory generation method
and assesses if each DMP type can generate MPC references
that enable the car to recover from deviations from the
demonstration. The racetrack is divided into points spaced
evenly in time along the demonstration; at each point, the
initial position of the vehicle is set to the outermost left,
outermost right, or center of the track (Figure 3). Aside from
position, the other initial states (i.e. heading and velocities)
are set to match the states of the point closest to the
vehicle’s initial position on the demonstration. The vehicle
is controlled using the controller in Section V.

We must first define when a car recovers from an initial
deviation from the demonstration. Since the demonstration is



Fig. 3. Initial points of recovery experiment in GTS. Three trials are
conducted from each initial point. Blue indicates initial points where all
methods recover in all three trials. Green indicates initial points where the
MPC recovers using Acc. goal DMP, but Fixed Ref. MPC with offline
demonstration does not. Orange indicates that none of the methods recover.

Fig. 4. Successful recoveries and failed recoveries of the MPC tracking
each reference. Three control trials occur from each initial point (Figure 3);
recovery occurs when ∥p1−pfix,ref∥ ≤ ϵpos for tϵ. Trial fails if vehicle fails
to recover within Ttrial = 14 s.

a nonlinear, time-varying function, we use the settling time,
tset = T − t0, to define this. It represents the time required
for a system that is initially in an equilibrium state and is
disturbed by an input over the interval 0 ≤ t ≤ t0 to return to
within a neighborhood ϵ > 0 of the equilibrium state at time
T [27]. Inspired by this definition, we define a successful
recovery as the controlled vehicle remaining within ϵpos =
1.5 m of the demonstration for at least tϵ = 4 seconds; i.e. if
the position error remains under ∥p1−p1,fix,ref∥ ≤ ϵpos for the
full duration tset ≤ t ≤ tset+tϵ, we say the vehicle recovered
at time tset. Since it is also important that the vehicle
recovers relatively quickly from deviations, we stipulate that
a successful recovery only occurs when tset ≤ tset,max = 10
s, so each trial is conducted for Ttrial = tset,max+ tϵ = 14 s.
The values ϵpos, tϵ, and tset,max are generously chosen based
on preliminary trials to allow each method plenty of time to
return to the demonstration. Three trials for each reference
type are conducted from each starting point in Fig. 3.

B. Experiment 1: Recovery Results

The effectiveness of each trajectory method, across all
trials originating from each point in Fig. 3, is presented in
Fig. 4. Intuitively, as the initial deviation from the demonstra-
tion increases, the MPC tracking the demonstration (Fixed
Ref. MPC) is less likely to recover (16.4% failure rate).
The 2nd ord. DMP is even less likely to recover, but the
third order methods notable reduce the failure rate with

(a) Position and longitudinal velocity errors w.r.t offline demonstration –
terms 1 and 2 in (8), respectively

(b) Magnitude of control commands.

Fig. 5. Distribution of control metrics during Experiment 1. Q1/Q3
represent 25th/75th percentile (box plot); KDE is kernel density estimation
(violin plot)3

statistical significance,1 showing that higher-order DMPs are
essential for generating practical and effective trajectories in
the context of racing. While the Acc. goal DMP tends to fail
less than the Vel. goal DMP (9.3% vs. 10.9%), the variation
in their success rates is not statistically significant.2

C. Experiment 1: Analysis

We employ closed loop control metrics as indicators of
how well-suited the generated trajectories are for control.
For every observed state during Experiment 1, we calculate
the tracking error with respect to the demonstration and the
magnitude of the control commands. For tracking error, we
focus on position and longitudinal velocity error (terms 1
and 2 in Eq. 8), as these are critical for racing performance.

We provide the distribution of the control metrics in Fig.
5 in the form of a violin plot, which is similar to a box plot
with distribution estimation using kernel density estimation
(KDE).3 The distributions of all methods are highly skewed
by instances with unreasonable commands due to large
deviations from which recovery may not be possible (e.g.
starting points with orange crosses in Fig. 3). If a method
fails immediately (crashes into a wall or runs very far off the
track), the 14-second trial is stopped early. So even thought
the Fixed Ref. MPC has marginally smaller tracking error,
instances where the MPC fails immediately are not taken
into account. The Vel. and Acc. goal DMP have much better
recovery performance than the Fixed Ref. MPC at starting

1Measured success rate of Vel. goal DMP compared to Fixed Ref. MPC:
χ2(2, N = 1782) = 11.4, p < .001. Acc. goal DMP vs. Fixed Ref. MPC:
χ2(2, N = 1782) = 19.9, p < .001.

2Acc. vs. Vel. goal DMP success rate: χ2(2, N = 1782) = 1.2, p = .27.
3Refer to matplotlib.pyplot.violinplot.



Fig. 6. Distribution of the magnitude of control commands over the horizon
of each trial in Experiment 1. Q1/Q3 represent 25th/75th percentile.

TABLE II
GT LAP TIMES FOR EACH TRAJECTORY METHOD

Trajectory Method Min # of
with MPC Lap-time Mean (Std.) Laps

MPC + 2nd order DMP 155.733 158.4 (2.18) 4
MPC + Vel. goal DMP 133.95 136.87 (1.34) 28
MPC + Acc. goal DMP 132.966 134.75 (0.85) 29

MPC + Fixed Ref. 130.283 131.87 (0.92) 21
Demonstration Lap-time 114.5

positions away from the demonstration (Fig. 4). At these
difficult starting positions, the recovered paths of the Vel. and
Acc. goal DMP may deviate more from the demonstration
and contribute to the slightly larger tracking error in Fig.
5. Even so, the DMP trajectories produce more reasonable
control commands compared to the Fixed Ref. MPC, and in
particular, the Acc. goal DMP exhibits the smallest tracking
error and smallest control commands. Fig. 6 provides the
distribution of control commands over the 14-second horizon
that the car has to recover. The Fixed Ref. MPC generates
more drastic commands, especially at the beginning of the
control horizon, compared to both Vel. and Acc. goal DMPs.
If the Fixed Ref. MPC recovers, it eventually reduces to more
reasonable commands, but the Vel. and Acc. goal DMPs do
not see this initial spike to unreasonable control values.

D. Experiment 1: Individual Trajectory Analysis

We analyze two initial positions near a corner encoun-
tered during Experiment 1; from one, the car starts near
the demonstration, and for the other, it starts away from
the demonstration. Each method’s best trial (most course
progress) is shown in Fig. 7. When the vehicle starts near
the demonstration (Fig. 7a), the Fixed Ref. MPC has the
most course progress and outperforms MPC+DMP methods
due to the explicit availability of vehicle-oriented states
(Section V-B). However, when the initial position is away
from the demonstration (Fig. 7b), the Fixed Ref. MPC does
not find a reasonable solution within control horizon TC
and fails almost immediately. In contrast, the online DMP
trajectories slowly return to the demonstration over a longer
horizon TG, allowing the MPC to track the more reasonable
trajectory and recover from the deviation to pass through the
corner. Notably, our Acc. goal DMP allows the most progress
through the corner by best modeling acceleration.

E. Experiment 2: Time-trial Track Race

A full-track experiment was also performed in GT, with
the lap-time results in Table II. The state of the vehicle is

(a) Initial position is near demonstration

(b) Initial position is away from demonstration

Fig. 7. Best (most course progress) trial results for each method from
slightly different starting positions near same corner.

initialized to the first state of the demonstration at the start
of the race, and the vehicle is given 400 seconds to complete
as many laps as possible over 11 trials. If the vehicle
spins backwards or goes significantly off-course, the trial is
stopped. The MPC with 2nd ord. DMP trajectories exhibits
the worst performance, as they cannot adequately model
acceleration. This leads to higher lap-times and frequent
spinning out before completing a lap. The Fixed Ref. MPC
achieves the best lap-time and the lowest average lap-time
since it can exploit the knowledge of heading and control
information (8), but it is more prone to losing stability,
resulting in a lower number of completed laps (21 laps). The
higher order DMPs complete the most laps (28 and 29 laps)
and yield lap-times a few seconds slower than the Fixed Ref.
MPC. Our Acc. goal DMP achieves the lowest lap-times of
the DMP methods by generating the most suitable trajectories
for racing (Section IV-D)4.

VII. CONCLUSION

We introduced a DMP with target state acceleration, the
Acc. goal DMP, and combined motion primitives in sequence
to imitate a long, complex racecar demonstration. Our DMP
trajectory generation method produces trajectories suitable
for control that aid an MPC in recovering from deviations

4The difference in mean lap-times between the Acc. goal DMP (M =
134.75, SD = .85) and Vel. goal DMP (M = 136.87, SD = 1.34) was
statistically significant: t(55) = 7.16, p < .001. The 95% confidence inter-
val for the difference in means is µAcc.goal − µV el.goal ∈ [−2.7,−1.5].



from the demonstration. During real-time control in the
complex racing game Gran Turismo Sport, we assess our
method with two experiments designed to test a vehicle’s
ability to recover from deviations and achieve the best lap-
time. An MPC used our DMP trajectories as a reference
to recover from deviations from the demonstration, outper-
forming an MPC using only the offline demonstration. Thus,
the DMPs allow the MPC to be more robust to leaving the
demonstration in states during control.

We note that third order DMPs (Vel. and Acc. goal) were
critical for performance, even though second order DMPs
are most commonly used. Our proposed Acc. goal DMP
explicitly models non-zero acceleration at joining points
in a sequence of DMPs; thus it performs the best of the
DMP methods in terms of recovery, tracking error, and
lap-time. The proposed DMP formulation and trajectory
generation framework allows DMP sequences with non-zero
accelerations at joining points, and thus can imitate complex
racing demonstration. However, DMPs have also been used
widely with RL, and future works will focus on extending
the Acc. goal DMP to learn trajectories that obey additional
constraints, improve performance in closed loop control, or
race against opponents in a multi-agent setting.

APPENDIX: NONLINEAR DYNAMIC CAR MODEL

The model xt+1 = f(xt, ut) estimates the state derivative
ẋt at each time step and updates xt+1 = ẋt∆t. The state, x =[
X Y vx vy ψ ω

]T
, contains the global coordinates

X and Y , longitudinal and lateral velocity vx and vy , and
yaw angle and rate ψ and ω. By the definition ω = ψ̇,
Ẋ = vx cos(ψ)−vy sin(ψ), and Ẏ = vx sin(ψ)+vy cos(ψ).
Equation (1) from [24] is used to calculate v̇x, v̇y , and ω̇.
The steering angle, uδ , and the longitudinal acceleration, ua,
correspond to δ and α in [24], respectively. Lateral tire forces
on the front Fyf and rear Fyr tires are found with a hyper-
bolic tangent function [28] as a function of front and rear
slip angles αf and αr [29] using Fyf = af1µ tanh (af2αf )
and Fyr = ar1µ tanh (ar2, αr). The coefficient of friction
is µ, and af1, af2, ar1 are coefficients. The control input
to the model is u =

[
uδ uth/br

]T
, where uth/br ∈ [−1, 1]

is the scaled throttle opening (uth/br ∈ [0, 1]) or brake
(uth/br ∈ [−1, 0)). We approximate ua = kuuth/br + kV vx,
with coefficients ku and kV . All model parameters are found
by minimizing modeling error to the demonstration.
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