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Abstract— This paper explores general multi-robot task and
motion planning, where multiple robots in close proximity
manipulate objects while satisfying constraints and a given
goal. In particular, we formulate the plan refinement prob-
lem—which, given a task plan, finds valid assignments of
variables corresponding to solution trajectories—as a hybrid
constraint satisfaction problem. The proposed algorithm follows
several design principles that yield the following features: (1) ef-
ficient solution finding due to sequential heuristics and implicit
time and roadmap representations, and (2) maximized feasible
solution space obtained by introducing minimally necessary
coordination-induced constraints and not relying on prevalent
simplifications that exist in the literature. The evaluation results
demonstrate the planning efficiency of the proposed algorithm,
outperforming the synchronous approach in terms of makespan.

I. INTRODUCTION

Developing multi-robot systems to achieve a desired goal
while interacting with objects in the world requires integrated
reasoning about task sequencing, task allocation, and motion
planning. Task and motion planning (TAMP [1]) jointly
addresses the search for a sequence of discrete symbolic
actions, the selection of which object to manipulate, and the
assignment of continuous values to actions, determining how
to execute those actions. However, the TAMP literature has
predominantly focused on single-robot problems.

Another closely related topic is multi-robot motion plan-
ning [2], [3], which aims to find collision-free paths for
multiple robots. In this context, objects are not considered for
manipulation but rather are treated as obstacles. Additionally,
multi-robot motion planning typically addresses individual
motion planning problems, unlike TAMP where a sequence
of motion planning problems is considered. The objective of
this work is to develop a general-purpose multi-robot TAMP
(MR-TAMP) framework that inherits challenges from both
of these perspectives.

In existing MR-TAMP research, two prevalent simplifi-
cations are the pre-discretization of the search space [4],
[5] and synchronous actions [6]–[9], where robots simulta-
neously initiate and complete action execution. While these
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assumptions simplify algorithm design, they can significantly
diminish the space of feasible solutions, potentially prevent-
ing the solution of certain feasible problems and reducing
the diversity of available solution paths.

In this work, our goal is to formulate MR-TAMP problems
that maximize the feasible solution space by avoiding both
of these simplifications. This approach can be viewed as
an extension of the TAMP formulation to MR-TAMP, in-
troducing only the necessary constraints arising from multi-
robot coordination. The formulation essentially represents
a hybrid constraint satisfaction problem (H-CSP [1], [10]),
incorporating both discrete and continuous variables.

To achieve this goal, we address a specific aspect in
this work, referred to as the refinement problem. When a
task plan is provided, specifying the sequences of object
manipulations for all robots, the objective of the refinement
problem is to assign values to all continuous variables that
meet the constraints, in order to find solution paths that the
robots can execute. This direction shows promise, as we can
seamlessly harness state-of-the-art multi-agent task planners
from the AI planning community [11], [12] when developing
the complete framework in the future.

Fig. 1: Example MR-TAMP task showing the initial state. Robots
({r}3r=1), movable objects ({m}4m=1), and workspace regions
({w}4w=1) are depicted in the figure, while fixed objects, corre-
sponding to walls, shelves, table, and cabinet, are not shown. The
goal is to move all movable objects from their initial locations to
the cabinet (i.e., workspace region 4). The given task involves three
robots such that robot 1 moves all movable objects to workspace
region 3, and robots 2 and 3 move them to workspace region 4.

Figure 1 illustrates the type of task we address, wherein
multiple mobile manipulators operate in close proximity,
involving multi-step manipulations such as picking up and
placing multiple objects. The process of solving the proposed
refinement problem, which aims to satisfy the given task plan
and constraints, reveals specific grasp poses, placements,
motions, and action scheduling for the robots.

Our main contributions can be summarized as follows: (1)
the introduction of a general problem formulation for MR-



TAMP that is inherently asynchronous and does not require
complex scheduling, (2) the identification of fundamental
challenges raised by this problem, and (3) the proposal of a
search algorithm that incorporates promising heuristics.

II. THE MR-TAMP REFINEMENT PROBLEM

A. Notations and assumptions
Consider R robots, indexed as {r}Rr=1, manipulating ob-

jects to achieve a goal in a 3D workspace. The workspace
consists of M movable objects, such as cups and plates,
indexed as {m}Mm=1 and F fixed objects, such as tables
and shelves, indexed as {f}Ff=1. We denote W workspace
regions as {w}Ww=1, where movable objects can be placed,
such as the surface of the table and the space on the shelf,
inspired by the work [13].

While our framework is not necessarily restricted to
homogeneous robots (i.e., robots with the same shapes,
degrees of freedom, and abilities to move and manipulate),
in this paper, we consider homogeneous robots for the
sake of notational convenience. Each robot r operates in
a d-dimensional configuration space whose configuration is
represented as qr ∈ Cr ⊂ Rd. The pose of a movable
object m is denoted as pm ∈ Pm ⊂ SE (3). Then, the
composite configuration space for all robots and movable
objects becomes C =

∏R
r=1 Cr ×

∏M
m=1 Pm. We denote the

free space of the composite configuration space as CF, which
represents all possible configurations of robots and movable
objects that are positioned stably and do not collide with each
other and with fixed objects. Correspondingly, the obstacle
space is defined as CO = C \ CF.

We assume quasi-static dynamics in the world, which
implies that movable objects remain stable after being manip-
ulated by robots. Additionally, we assume that each movable
object can be manipulated by a single robot. Furthermore,
we assume deterministic transition effects, full observability,
and lossless communication among robots. While our focus
in this work is on pick-and-place tasks where geometric con-
straints are of major concern, our ultimate aim is to position
this work as a foundational framework in MR-TAMP that
can effectively address a wider range of practical challenges
in the future, including those that relax the assumptions
mentioned in this paragraph.

B. Mode-based abstract actions
We employ the notion of a mode [14]–[17], denoted by

σ, which specifies a constraint submanifold of CF, to define
actions. These modes are determined by the contact points
between the robot and the movable object (e.g., robot r
grasping movable object m), while the remaining objects
remain stationary. We consider two types of modes: a transit
mode σS where a robot moves with an empty hand, and
a transfer mode σF where a robot moves while holding a
movable object. The transition between two adjacent modes
can be facilitated through a transition configuration, which
represents the robot’s grasping or placing configuration.

We define the abstract action based on these two
modes. Let the abstract action be a =

{
σS(r,m,w,w′),

σF(r,m,w,w′)
}

. σS(r,m,w,w′) indicates that robot r

moves from workspace region w to another workspace region
w′ with an empty hand in order to grasp movable object m
located in w′. σF(r,m,w,w′) indicates that robot r, while
already grasping movable object m in workspace region w,
moves and places it in another workspace region w′. These
actions are still abstract because continuous parameters, such
as robot configurations {qr}Rr=1 and object poses {pm}Mm=1,
are not yet specified. Abstract actions may encompass both
arm and base motions, as illustrated in Figure 1.

C. H-CSP for refinement

We formulate the refinement of abstract actions into
fully specified actions that robots can execute as an H-
CSP problem. This problem involves assigning values from
the domains of variables while ensuring that the assigned
values do not violate any constraints. The variable set is
defined as V =

{
{vqr}Rr=1, {vgr}Rr=1, {vpm}Mm=1

}
, where vqr is

a transition configuration variable for robot r, vgr is a grasp
variable for robot r, and vpm is a pose variable for movable
object m. The domains for these variables are defined as
follows: for vqr , Dq

r = Cr; for vgr , Dg
r = ∪M

m=1Gr,m; and
for vpm, Dp

m = Pm. Here, Gr,m ∋ gr,m = (r,m, γr,m)
indicates that robot r grasps movable object m with a
relative transformation γr,m between the pose of the robot
r’s end-effector and the pose of the object pm. The abstract
actions are associated with variables as goal variables, where
σS(r,m,w,w′) includes vqr and vgr , while σF(r,m,w,w′)
includes vqr and vpm.

We present the mode-specific constraints, which are pa-
rameterized, that the assigned values must satisfy as follows:
• Motion

(
qr, q

′
r;Gr = (Vr, Er)

)
represents a reachability

constraint for robot r from a start configuration qr to a goal
configuration q′r. This constraint is verified by applying ex-
isting motion planners. In our case, we utilize probabilistic
roadmap (PRM [18]) planners, which are a well-known
sampling-based motion planner. These planners generate a
roadmap data structure Gr = (Vr, Er), where the vertex
set Vr consists of robot r’s configurations, and the edge
set Er consists of edges (often straight lines in Cr) that
connect pairs of vertices in Vr. The PRM planners assist
in finding a path that connects the start configuration qr
and the goal configuration q′r.

• CFree
(
{qr}Rr=1, {pm}Mm=1, {f}Ff=1

)
ensures that there

are no pairwise collisions among robots at {qr}Rr=1 config-
urations, movable objects at {pm}Mm=1 poses, and fixed ob-
jects {f}Ff=1. Eventually, the tensor product of individual
roadmaps {Gr}Rr=1, as shown in the Motion constraint,
must find R paths corresponding to R robots that satisfy
this CFree constraint.

• Kin(qr, gr,m, pm) guarantees the existence of a kinematic
solution for grasping movable object m at pose pm with
grasp gr,m and robot r’s configuration qr.

• Grasp(gr,m, pm) represents a graspability constraint, in-
dicating that a movable object at pose pm can be grasped
with grasp gr,m.

• Hold(r,m) ensures that movable object m is securely
attached to the hand of robot r. When this constraint



is activated, it affects other constraints in the following
manner. In the CFree constraint, the pose pm of movable
object m is no longer considered directly, but can be
computed based on grasp gr,m and robot r’s configuration
qr. Additionally, the collision detection between robot r
and movable object m is no longer considered in the
CFree constraint. Furthermore, it prevents the activation
of Grasp constraints for other robots besides r, ensur-
ing that the same movable object cannot be grasped by
multiple robots while it is already being held.

• Contain(m,w) constrains that movable object m is
stably placed within workspace region w.
Among the constraints, Motion, CFree, and Kin are

always applied to both types of abstract actions, σS and σF.
Grasp and Contain constraints serve as goals within the
abstract actions. The constraints applied for each type of
abstract action are presented as follows:

• σS: Motion, CFree, Kin, and Grasp.
• σF: Motion, CFree, Kin, Hold, and Contain.
Note that we do not introduce a constraint enforcing the

synchronous start and end of abstract actions for all robots,
characterizing the synchronous approach. Therefore, our
formulation strictly generalizes the synchronous formulation.

D. The proposed problem
In this work, we address a partial problem where ground

abstract actions for all robots are provided, which means
that the arguments r, m, w, and w′ are grounded in all
instances of σS and σF, as well as the ordering among abstract
actions. However, we still need to assign values to the
variables of the corresponding abstract actions that satisfy the
constraints specified in Section II-C. This particular approach
is referred to as the sequence-before-satisfy strategy in the
TAMP literature [1], and our focus is on addressing the
satisfy part, or refinement, assuming that sequencing is given.

Specifically, we are provided with a tuple
〈
{aAr

r }Rr=1,≺
〉
,

where aAr
r represents a set of abstract actions for robot r,

and Ar is an index set specific to robot r, allowing robots
to have different cardinalities of abstract actions. ≺ is a set
of ordering constraints that determine the sequencing of the
provided abstract actions.

It is important to note that these ordering constraints can
apply not only to abstract actions of the same robot but
also to abstract actions of different robots. For instance, if
movable object m is initially placed in workspace region w,
then the refinement of σS(r,m,w′, w′′) for robot r cannot be
carried out until another robot r′ executes σS(r′,m,w,w′),
as the movable object m is not yet located within the
workspace region w′.

Furthermore, ≺ does not specify the ordering between
every pair of abstract actions from {aAr

r }Rr=1. ≺ is minimally
given in the sense that it only specifies the sequence of
workspace regions where each movable object is placed. Any
orderings that require geometric reasoning are not included
and must be determined by solving the refinement problem.
For instance, suppose workspace region w has limited space.
In that case, robot r can only feasibly place movable object

m in workspace region w (e.g., σF(r,m,w′, w)) after another
robot r′ removes another movable object m′ from the same
workspace region (e.g., σF(r′,m′, w, w′)), creating empty
space in workspace region w.

Let s0 =
(
(qr)

R
r=1, (pm)Mm=1

)
represent the initial state,

specifying the initial configurations of all robots and the
initial poses of all movable objects. The refinement problem
is then defined as follows: given a tuple

〈
{aAr

r }Rr=1,≺, s0
〉
,

the goal is to find valid assignments of variables defined in
Section II-C for all abstract actions {aAr

r }Rr=1, potentially in-
troducing additional ordering constraints while respecting the
given ordering constraints and the mode-specific constraints.

III. ALGORITHM

Solving the proposed problem while respecting all the
constraints simultaneously is highly challenging, as even a
single robot TAMP problem is known to be intractable (i.e.,
PSPACE-hard [19]). Additionally, explicitly constructing a
composite roadmap from {Gr}Rr=1 is computationally ex-
pensive, especially considering the exponential increase in
the number of samples required by the motion planner (such
as PRM in our case) to cover the composite configuration
space for all robots (i.e.,

∏R
r=1 Cr). Moreover, the path for an

abstract action and its length can only be determined after it
has been computed by the motion planner, making it difficult
to anticipate in advance when a robot will place a movable
object. Consequently, it is challenging to identify when the
CFree constraints are affected by the Hold constraints
without evaluating all the relevant Motion constraints.

A. Overall framework
We propose a heuristic-based search algorithm to ef-

ficiently solve the refinement problem, incorporating the
following four principles.

(1) Least commitment: We follow the least commitment
principle [20], avoiding the introduction of additional order-
ing constraints unless absolutely necessary. This approach
increases the size of the feasible solution space, leading to a
more diverse set of solutions.

(2) Sequential heuristics: Instead of solving the problem
in one step, we decompose it into a sequence of subproblems.
We relax the problem by neglecting some of the mode-
specific constraints, creating a relaxed problem that serves
as a necessary condition for the subsequent problem in
the sequence. The first subproblem is the most relaxed,
and as we progress through the sequence, the neglected
constraints are reintroduced incrementally. Additionally, the
relaxed problem provides heuristics for guiding the search
in the next subproblem. This decomposition approach is
appealing because it can efficiently find a solution if one
exists or effectively detect infeasibility in the early stage
of the sequence. The flow chart illustrating this process is
depicted in Figure 2.

(3) Implicit time representation: Unlike many existing
multi-robot task planning or TAMP approaches that explicitly
represent time for temporal planning, our formulation and
algorithm do not require explicit time representation. This
approach avoids the complexity of introducing a scheduling



problem and aligns with the observation made by Boutilier
and Brafman [21] that explicit time representation is not
always necessary. In our approach, time is implicitly revealed
as a byproduct of solving the refinement problem.

(4) Implicit composite roadmap construction: As men-
tioned at the beginning of this section, explicit construction
of a composite roadmap from {Gr}Rr=1 is impractical. In-
stead, we employ the concept of implicit composite roadmap
construction, referred to as subdimensional expansion in
the literature [22]–[24]. This approach involves generating
individual roadmaps for each robot independently, ignoring
collisions with other robots. These individual roadmaps are
then combined in a manner that takes into account robot-
robot collisions. The resulting composite roadmap consists
only of explored vertices and edges.

Fig. 2: The overall framework.
In the following subsections, we present each component

of the algorithm depicted in Figure 2.

B. Movable object placements

In this step, we relax most of the mode-specific constraints
and retain only the CFree and Contain constraints in all
abstract actions. Moreover, in the CFree constraint, we dis-
regard the robot configurations from the argument, resulting
in CFree

(
{pm}Mm=1, {f}Ff=1

)
. This step can be seen as the

teleportation of movable objects from one workspace region
to another, excluding any robot involvement. The objective
is to find valid assignments for all the relevant pose variables
vpm present in the given abstract actions {aAr

r }Rr=1 to satisfy
the Contain constraint and, if necessary, introduce addi-
tional ordering constraints to resolve the CFree constraint
with other movable objects.

This subproblem can be effectively solved by further
decomposing it into multiple workspace region-specific prob-
lems since placements in one workspace region are com-
pletely independent of those in other regions. Let’s consider
a specific workspace region w present in the given abstract
actions {aAr

r }Rr=1; we apply the same procedure to other
relevant workspaces. For workspace region w, we find a
set of sequences that specify the ordering of addition (or
placement) and removal operations for each relevant movable
object. Note that this sequence set can be derived entirely
from

〈
{aAr

r }Rr=1,≺
〉
, and that each sequence consists of an

alternating sequence of addition and removal operations.
From the sequence set in workspace region w, we deter-

mine pose variable assignments for the subset of sequences

that involve addition operations. We employ a sampling
strategy by uniformly drawing a predetermined number of
placement samples in workspace region w for each movable
object in the subset.

To avoid unnecessary introduction of additional ordering
constraints, we make the following observation: If we can
solve the most constrained problem, where the CFree
constraint is applied to all movable objects already located
in workspace region w and those that will be added, no
additional ordering constraints will be necessary. Only when
the CFree constraint is violated for some movable objects,
do we introduce additional ordering constraints, ensuring that
one movable object is added after another is removed. This
observation is based on the idea that in spacious workspace
regions, the CFree constraint is mostly satisfied without
the need for additional ordering constraints. However, in
tiny workspace regions, many ordering constraints may be
required.

In this step, for each abstract action under considera-
tion, we store information about the movable objects from
{m}Mm=1 and fixed objects from {f}Ff=1 involved in evalu-
ating collisions with the corresponding movable object. This
cached information will be utilized in the subsequent steps.

If no valid assignments can be found even after evaluating
all possible combinations of the predetermined number of
placement samples, we have two options. First, we can
stop the process and declare the problem as infeasible. In
this case, the next steps do not need to be attempted, as
they rely on finding valid assignments in this subproblem.
Alternatively, we can choose to draw more samples until a
predetermined time limit is reached.

C. Transition configurations
After obtaining valid assignments for all relevant pose

variables associated with abstract actions {aAr
r }Rr=1, our next

step is to find valid assignments for all relevant transition
configuration variables vqr and grasp variables vgr . However,
in this process, we continue to disregard certain mode-
specific constraints, such as Motion and Hold, as well as
the presence of other robots. Instead, we focus on considering
the CFree, Kin, and Grasp constraints. This step aims to
identify feasible transition configurations and grasps for all
given abstract actions {aAr

r }Rr=1 that are compatible with the
movable object poses obtained in the previous step.

We no longer need to take the workspace region-specific
approach as in the previous step. Instead, we address this
subproblem for each pair of abstract actions of the same
robot consisting of σS and σF sequenced by the ordering
constraints ≺. Let’s consider the sequential abstract actions
corresponding to robot r, denoted as σS(r,m,w,w′) and
σF(r,m,w′, w′′). These abstract actions indicate that robot r
grasps movable object m in workspace region w′ and moves
to workspace region w′′ to place the object there. The same
rule is applied to all other pairs of abstract actions of the
same robot sequenced by the ordering constraints ≺.

Instead of considering {qr}Rr=1 as arguments in the CFree
constraint, we only consider robot r’s configuration qr,



ignoring other robots. As for the remaining object-related
arguments, we retrieve the collision information cached in
the previous step, which indicates which objects must be
considered for collision checking. Since collisions among
objects have already been confirmed in the previous step,
we only assess collisions between robot r and the relevant
objects using the CFree constraint.

Since the Grasp constraint is associated with the mode
σS, we first find a valid assignment for the grasp variable
vgr corresponding to the abstract action σS by sampling a
predetermined number of grasps. Once a valid grasp is found,
we compute qr with respect to the grasp gr,m using the Kin
constraint. In the case of a mobile manipulator, as used in
our experiments, computing qr involves determining a base
pose and subsequently solving an inverse kinematic problem
(i.e., Kin) to verify reachability to grasp gr,m [25]. This
computed qr is for the abstract action σS. Similarly, the same
grasp gr,m is used to find another q′r for the corresponding
abstract action σF. The computed configurations qr and q′r
are then used in their respective CFree constraints to ensure
collision-free transition configurations.

If valid transition configurations can be found for all the
abstract actions {aAr

r }Rr=1 from the set of possible grasp
samples, we can proceed to the next step. However, if valid
transition configurations cannot be found, we have three
options. First, we can choose to stop the process as explained
in the previous step, indicating that a solution cannot be
found. Second, we can backtrack to the previous step and
explore unevaluated combinations of placement samples to
potentially find valid transition configurations. To improve
efficiency, we can also inform the previous step about the
cause of failure, allowing suitable ordering constraints to
be added and prevent the same failures in future attempts.
Lastly, we can increase the number of grasp samples and
reevaluate this step to improve the chances of finding valid
transition configurations.

D. Individual motion planning
Even after obtaining feasible transition configurations, as

mentioned in the fourth principle, solving for paths of all
robots simultaneously by explicitly constructing a composite
roadmap is a challenging task. To address this complexity,
we leverage the discrete RRT (dRRT [23], [24]) algorithm,
which is built upon the subdimensional expansion concept.
The dRRT algorithm is specifically designed for solving
single-modal motion planning problems involving multiple
robots. In our algorithm, we extend the capabilities of dRRT
in two aspects: (1) individual motion planning is general-
ized to multi-modal motion planning, considering multiple
abstract actions, and (2) our algorithm accommodates robots
holding objects, which affects the collision-checking process.

In this step, we focus on considering the Motion and
Hold constraints, given feasible transition configurations.
During individual motion planning, we still disregard the
presence of other robots. Furthermore, we assume that all
movable objects, except for the one held by the correspond-
ing robot, have been placed in their respective workspace

regions, as determined in the movable object placement step.
As a result, the CFree constraint still includes the same
arguments as in the previous transition configuration step.
However, the Hold constraint allows for collision between
the robot and the movable object it holds.

Unlike the previous steps, we decompose this subprob-
lem into multiple individual motion planning problems.
Specifically, we can find a sequence of abstract actions for
each robot from

〈
{aAr

r }Rr=1,≺
〉

and apply PRM to each
abstract action in the sequence. In this case, the transition
configurations serve as start and goal configurations, and we
generate a predetermined number of samples in the respective
configuration space Cr. Throughout this process, we apply
the CFree and Hold constraints as mentioned before. This
subproblem can be seen as verifying the reachability from
the start transition configuration of the first abstract action to
the goal transition configuration of the last abstract action.

If valid individual paths can be found for all robots, we
can proceed to the last step. Otherwise, we have the same
three options as in the transition configuration step.

E. Composite motion planning
We are now ready to consider all the intact mode-

specific constraints introduced in Section II-C by merging
the individual paths obtained from the previous step. This
step involves constructing a tensor-product roadmap from
individual roadmaps {GAr

r = (V Ar
r , EAr

r )}Rr=1, where Ar

is the abstract action index set for robot r. We denote the
resulting tensor-product roadmap as G = (V,E). In G, the
set of vertices V is the Cartesian product of the vertices from
{GAr

r }Rr=1, represented as V = {(v1, ..., vr, ..., vR)|∀r vr ∈
V Ar
r }. The set of edges E is defined as E ={(
(v1, ..., vr, ..., vR), (v

′
1, ..., v

′
r, ..., v

′
R)

)∣∣∀i ∃(vr, v′r)
(
(vr,

v′r) ∈ EAr
r ∨ vr = v′r

)}
. Note that in E, the condition vr =

v′r allows some robots to remain stationary. However, since
robot-robot collisions and collisions between robots and
movable objects held by other robots were not considered
in the CFree constraint in the previous steps, some edges
in E may contain collision paths among robots.

Due to limited space, we provide a brief explanation of
how dRRT works and how we modify it for our problem. For
detailed explanations, please refer to the works [23], [24].
dRRT is based on RRT [26] and serves as the underlying
framework for constructing the composite search graph G.
dRRT incrementally builds G by sampling configurations in
the composite configuration space

∏R
r=1 Cr and connecting

them using an oracle function that searches for neighboring
vertices. The oracle function finds the nearest neighbor vertex
vr and another neighbor vertex v′r within the individual
roadmap GAr

r for a given sampled configuration. During the
composite search, the intact CFree and Hold constraints,
as explained in Section II-C, are used to ensure collision-free
and object-holding paths.

During the composite search, when the goal configuration
(i.e., transition configuration) of one robot’s roadmap is
reached, the next roadmap for the same robot is considered.
The ordering constraints ≺ are taken into account in the



composite search, ensuring that no adjacent edges connected
to a goal configuration of the corresponding roadmap are
used until another robot’s roadmap, as determined by ≺, is
reached.

If the modified dRRT algorithm finds a valid composite
path for all robots, we declare that a solution path satisfying
the mode-specific constraints and ordering constraints has
been found, given the input

〈
{aAr

r }Rr=1,≺, s0
〉
. dRRT has its

own time limit, and if this limit is exceeded, we backtrack
to the previous step. Additionally, we set an overall time
limit for the entire process, and if this limit is exceeded, the
algorithm terminates with no solution.

IV. EXPERIMENTS

We perform two sets of experiments in PyBullet [27] to
evaluate the performance of the proposed algorithm. (1) Ab-
lation study: We analyze the effectiveness of decomposition
by comparing planning time with merged hierarchies. (2)
Comparison with the synchronous approach: We evaluate the
makespan (i.e., the execution time of the last robot) of our
algorithm against the synchronous method to highlight our
method’s ability to discover more effective solutions.

All the experiments are conducted using the task shown in
Figure 1. We consider mobile manipulators as our robots with
three and seven-dimensional configuration spaces for base
motion and arm motion, respectively. Each abstract action
consists of a sequence of three motion planning problems:
base motion reaching a desired base position, arm motion
grasping a target object, and arm motion returning to a home
position. Base poses and grasp poses are all sampled, as
is typically done in the literature [16], [25]. Due to the
limited space, we provide the details of the task, such as
specifications of input tuple

〈
{aAr

r }Rr=1,≺
〉
, in the video.

As the task contains 15 abstract actions, there are a total
of 45 individual motion planning problems to solve the task.
We report the results in Table I, where statistics are collected
by solving the problem with 25 different random seeds.

Algorithms Our algorithm MERGE 1&2 MERGE 1–3
Planning time (s) 324.7± 40.2 371.2± 54.6 −

Algorithms Our algorithm Synchronous
Makespan (simulation steps) 5118.3± 148.4 7432.1± 211.8

TABLE I: Experimental results. The numbers represent mean and
95% confidence interval. − implies that all instances take longer
than 10 minutes to solve.

Ablation study: Since the importance of the decompo-
sition between Steps 3 and 4 is emphasized in dRRT [23],
[24], we focus on the importance of decomposition among
Steps 1, 2, and 3. The first ablation is to merge Steps 1 and
2 (i.e., MERGE 1&2), and the second one is to merge Steps
1, 2, and 3 (i.e., MERGE 1–3).

The results in the first row of Table I indicate that
useful heuristics can be found by decomposition, and thus, a
solution is found quickly. MERGE 1–3 takes longer than 10
minutes in all instances due to the generation of unnecessary
motion planning problems in Step 3 that do not lead to a
solution. We observe some differences between our algorithm

and MERGE 1&2, but they are not significant. This implies
that, although MERGE 1&2 had to solve many unnecessary
inverse kinematic problems, the heuristic found by Step 2 is
powerful in solving the rest of the problem, as Steps 3 and
4 consume the majority of planning time.

Comparison with the synchronous approach: In the
synchronous approach, all robots either leave and arrive at
their corresponding transition configurations at the same time
or remain idle during that time period. In tasks where robots
manipulate objects in the same workspace regions (e.g., all
robots converge at workspace region 3), if the planner does
not find feasible transition configurations for all robots, some
robots need to remain idle. Moreover, robots 2 and 3 can only
start moving to workspace region 3 after robot 1 places an
object there.

Makespan results in the second row of Table I support
that our asynchronous algorithm is more execution time
efficient than the synchronous one, which aligns with the
above observations. In any case, the synchronous approach
is impractical; if one of the abstract actions requires a robot
to move a long distance, all the remaining robots must wait.

V. RELATED WORK

In this section, we briefly review existing MR-TAMP
research, in addition to those referred to in the introduc-
tion, which rely on pre-discretization or the synchronous
approach. Various task types have been investigated, such
as assembly [28]–[30] and clutter removal [31]. Challenges
that have not been addressed in this work are discussed in
the context of MR-TAMP, including decentralized commu-
nication [5] and spatial and temporal uncertainty [32].

One distinguishing feature of this work is its implicit time
representation, whereas the majority of existing works [29],
[30], [33], [34] reason about time explicitly, which incurs the
relatively complex overhead of task scheduling.

To solve MR-TAMP problems efficiently, various approxi-
mations have been introduced, including state space decom-
position [34]–[36] and shared space graph [37]. Although
incorporating approximations may lead to a loss of feasibility
guarantees, it is an interesting avenue for future research.

Optimization-based approaches [29], [38] have made
progress in MR-TAMP by leveraging logic-geometric pro-
gramming [39]. The most recent work [29] in this direction
focuses on the assembly task but still relies on explicit time
representations.

VI. CONCLUSION

In this work, we formulate a general MR-TAMP problem
as H-CSP when a task plan is given, which is inherently
asynchronous. We propose a refinement planning algorithm
driven by design principles and evaluate its efficiency and
advantages over the synchronous approach in simulation.

An immediate direction for future work is to develop a
partial-order task planner capable of generating the input
tuple of abstract actions and ordering constraints to complete
the framework. This framework should facilitate bidirectional
communication between the task planner and the proposed
refinement planner to support full integration.
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