Evolutionary AI Research Publications
2025
-
Risi, S., Ha, D, Tang, Y., and Miikkulainen, R. (in press). Neuroevolution: Harnessing
Creativity in AI Model Design. Cambridge, MA: MIT Press.
-
Meyerson, E. and Qiu, X. (2025). Position: Scaling LLM Agents Requires Asymptotic Analysis with LLM Primitives. In Proceedings of the International Conference on Machine Learning (also arXiv:2502.04358).
-
Warner, J. and Miikkulainen, R. (2025). Self-Organizing Models of Brain Wiring: Developmental Programs for Evolving Intelligence. In Proceedings of the Genetic and Evolutionary Computation Conference Companion: Workshop on Evolution and Self-organization.
-
Shahrzad, H. an Miikkulainen, R. (2025). GPU-Accelerated Rule Evaluation and Evolution. In Proceedings of the Genetic and Evolutionary Computation Conference Companion: Workshop on Evolutionary Rule-based Machine Learning (also arXiv:2406.01821).
-
Gonzalez, S. and Miikkulainen, R. (2025). Effective Regularization Through Loss-Function Metalearning. In Proceedings of the 2025 IEEE Congress on Evolutionary Computation (also arXiv:2010.00788).
- Miikkulainen, R., Smith, J., and
Hodjat, B. (2025).
Learning from the Past: How Previous Technological Transformations Can Guide AI Development.
arXiv:1905.13178.
-
Young, D., Francon, O., Meyerson, E., Schwingshackl, C., Bieker, J.,
Cunha, H.,Hodjat, B., and Miikkulainen, R. (2025). Discovering Effective
Policies for Land-Use Planning. Environmental Data Science
4:e30 (also arXiv:2311.12304).
A shorter version appeared in the Proceedings of the NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning.
Best Pathway to Impact Award (at the workshop).
Presentation video (at the workshop).
-
Miikkulainen, R. (2025). Neuroevolution
Insights Into Biological Neural Computation. Science 387, eadp 7478.
-
Lehman, J., Meyerson, E., El-Gaaly, T., Stanley, K. O., and Ziyaee,
T. (2025). Evolution and
The Knightian Blindspot of Machine Learning. arXiv:2501.13075.
2024
-
Havrilla, A., Dai, A., O’Mahony, L., Oostermeijer, K, Zisler, V.,
Albalak, A., Milo, F., Raparthy, S. C., Gandhi, K., Abbasi, B., Phung,
D., Iyer, M., Mahan, D., Blagden, C., Gureja, S., Hamdy, M. Li, W.-D.,
Paolini, G. Ammanamanchi, P. S., Meyerson, E. (2024). Surveying the
Effects of Quality, Diversity, and Complexity in Synthetic Data From
Large Language Models. arXiv:2412.02980.
- Shahrzad, H., Hodjat, B., and Miikkulainen,
R. (2024). EVOTER: Evolution of
Transparent Explainable Rule-sets. ACM Transactions on
Evolutionary Learning and Optimization (also
arXiv:2204.10438).
- Meyerson, E., Francon, O., Sargent, D.,
Hodjat, B., and Miikkulainen,
R. (2024). Unlocking
the Potential of Global Human Expertise. In Proceedings of the
38th Conference on Neural Information Processing Systems (NeurIPS
2024).
Presentation video.
- Qiu, X., and Miikkulainen,
R. (2024). Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space. In Proceedings of the
38th Conference on Neural Information Processing Systems (NeurIPS
2024). (also arXiv:2405.13845).
Presentation video.
-
GPAI (2024).
Pandemic Resilience: Case Studies of an AI-calibrated Ensemble of
Models to Inform Decision Making. Report, November 2024, GPAI:
The Global Partnership on Artificial Intelligence.
- Meyerson, E., Nelson, M. J., Bradley, H.,
Gaier, A., Moradi, A., Hoover, A. K., and Lehman, J. (2024). Language Model
Crossover: Variation through Few-Shot Prompting. ACM Transactions on
Evolutionary Learning and Optimization (also arXiv:2302.12170).
-
Nisioti, E., Glanois, G., Najarro, E., Dai, A., Meyerson, E.,
Pedersen, J. W., Teodorescu, L., Hayes, C.F., Sudhakaran, S., and
Risi. S. (2024). From
Text to Life: On the Reciprocal Relationship between Artificial Life
and Large Language Models. Proceedings
of the 2024 Artificial Life Conference, pp. 39. https://doi.org/10.1162/isal_a_00759
-
Bai, G., Dhillon, N., Felton, C., Meissner, B.,
Saint-John, B., Shelansky, R., Meyerson, E., Hrabeta-Robinson, E.,
Hodjat, B., Boeger, H., Brooks, A. N. (2024). Probing chromatin
accessibility with small molecule DNA intercalation and nanopore
sequencing. bioRxiv
2024.03.20.585815
-
Hodjat, B. (2024). AI and Agents. AI
Magazine 1-3. https://doi.org/10.1002/aaai.12170.
Video
abstract (i.e. a discussion with Risto Miikkulainen)
-
Miikkulainen, R. (2024). Generative AI:
An AI Paradigm Shift in the Making? AI Magazine 1-3. https://doi.org/10.1002/aaai.12155.
Video
abstract (i.e. a discussion with Babak Hodjat)
-
Khanna, A., Francon, O., and Miikkulainen, R. (2024). Optimizing the Design of an Artificial Pancreas to Improve Diabetes Management.
arXiv:2402.07949.
- Liang, J., Shahrzad, H., and Miikkulainen,
R. (2024). Asynchronous Evolution of Deep Neural Network Architectures.
Applied Soft Computing 152:111209 (also arXiv:2308.04102).
- Hodjat, B., Shahrzad, H., and Miikkulainen,
R. (2024). Domain-Independent
Lifelong Problem Solving through Distributed Alife Actors.
Artificial Life 30:259-276.
2023
-
GPAI (2023).
Pandemic Resilience: Developing an AI-calibrated Ensemble of
Models to Inform Decision Making. Report, December 2023, GPAI:
The Global Partnership on Artificial Intelligence.
- Miikkulainen, R. (2023). Evolutionary
Supervised Machine Learning. In W. Banzhaf, P. Machado, and
M. Zhang (editors), Handbook of Evolutionary Machine Learning. Springer, New York.
- Shahrzad, H. and Miikkulainen, R. (2023). Accelerating Evolution
Through Gene Masking and Distributed Search. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2023, Lisbon, Portugal; also
arXiv:2302.06745).
- Qiu, X., and Miikkulainen, R. (2023). Shortest Edit Path Crossover: A
Theory-driven Solution to the Permutation Problem in Evolutionary
Neural Architecture Search. In Proceedings of the International Conference on Machine
Learning (ICML-2023, Honolulu, HI; also
arXiv:2210.14016).
-
Bingham, G. and Miikkulainen, R. (2023). Efficient
Activation Function Optimization through Surrogate Modeling.
In Proceedings of the 37th Conference on Neural Information
Processing Systems (NeurIPS 2023, New Orleans, LA; also
arXiv:2301.05785).
Presentation video.
- Bingham, G. and Miikkulainen,
R. (2023). AutoInit:
Analytic Signal-Preserving Weight Initialization for Neural
Networks. In Proceedings of the 37th AAAI Conference on Artificial
Intelligence (AAAI-2023, Washington, DC; also
arXiv:2109.08958).
Presentation video.
- Gonzalez, S., Kant, M., and Miikkulainen,
R. (2023). Evolving
GAN Formulations for Higher Quality Image Synthesis. In Kozma, R., Alippi, C., Choe, Y., and
Morabito, F. C., Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Second Edition. New York: Elsevier.
(also arXiv:2102.08578).
- Miikkulainen, R., Meyerson, E., Liang,
J., Rawal, A., Shahrzad, H., Fink, D. Francon, O., Raju, B.,
Navruzyan, A., Hodjat, B., and Duffy, N. (2023).
Evolving
Deep Neural Networks. In Kozma, R., Alippi, C., Choe, Y., and
Morabito, F. C., Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Second Edition. New York: Elsevier.
2022
- Miikkulainen, R. (2022).
Neuroevolution.
In Phung, D., Sammut, C. and Webb, G. I. (editors), Encyclopedia of Machine
Learning and Data Science, 3rd Edition. Berlin: Springer.
- Hodjat, B., Shahrzad, H., and Miikkulainen,
R. (2022). DIAS: A
Domain-Independent Alife-Based Problem-Solving System. In
Proceedings of the 2022 Conference on Artificial Life (also
arXiv:2203.06855).
- Meyerson, E, Qiu, X, and Miikkulainen,
R. (2022). Simple
Genetic Operators are Universal Approximators of Probability
Distributions (and other Advantages of Expressive Encodings). In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2022), 739-748 (also arXiv:2202.09679).
Best-paper award in the GA track.
Presentation video.
- Bingham, G. and Miikkulainen,
R. (2022). Discovering
Parametric Activation Functions. Neural Networks
148:48-65 (also
arXiv:2006.03179).
Best-Paper Award for papers published in Neural Networks in 2022.
- Qiu, X. and Miikkulainen,
R. (2022). Detecting
Misclassification Errors in Neural Networks with a Gaussian Process
Model. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI-2022; also
arXiv:2010.02065).
2021
- Miikkulainen, R., Francon,
O. Meyerson, E., Qiu, X., Sargent, D., Canzani, E., and Hodjat,
B. (2021).
From Prediction to Prescription: Evolutionary Optimization of
Non-Pharmaceutical Interventions in the COVID-19 Pandemic. IEEE
Transactions on Evolutionary Computation 25:386--401 (an earlier
version in
arXiv:2005.13766).
- Miikkulainen, R., Meyerson, E., Qiu,
X., Sinha, U., Kumar, R., Hofmann, K., Yan, Y. M., Ye, M., Yang, J.,
Caiazza, D., Manson Brown, S.
(2021). Evaluating
Medical Aesthetics Treatments through Evolved Age-Estimation
Models. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2021), 1009–1017.
Silver Award in the Human-Competitive Results Competition, GECCO-2022.
Presentation video.
- Gonzalez, S. and Miikkulainen,
R. (2021). Optimizing
Loss Functions Through Multivariate Taylor Polynomial
Parameterization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2021), 305-313 (also
arXiv:2002.00059).
Presentation video.
- Liang, J., Gonzalez, S., Shahrzad, H.,, and
Miikkulainen, R. (2021).
Regularized
Evolutionary Population-Based Training. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2021), 323–331 (also
arXiv:2002.04225).
Presentation video.
- Meyerson, E. and Miikkulainen,
R. (2021). The
Traveling Observer Model: Multi-task Learning Through Spatial Variable
Embeddings. In Proceedings of the International Conference on
Learning Representations (ICLR-2021; also
arXiv:2010.02354).
Presentation video.
- Miikkulainen,
R. (2021). Creative
AI Through Evolutionary Computation: Principles and Examples. SN
Computer Science 2:163 (also
arXiv:2008.04212).
- Miikkulainen R. and Forrest, S.
(2021). A Biological Perspective on
Evolutionary Computation. Nature Machine Intelligence, 3:9-15.
2020
- Francon, O., Gonzalez, S., Hodjat, B.,
Meyerson, E., B. Miikkulainen, R., Qiu, X., and Shahrzad,
H. (2020). Effective
Reinforcement Learning through Evolutionary Surrogate-Assisted
Prescription. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2020; also
arXiv:2002.05368).
Best-Paper Award in the GECH track.
Presentation video.
- Bingham, G., Macke, W., and Miikkulainen,
R. (2020). Evolutionary
Optimization of Deep Learning Activation Functions. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2020), 289-296
(also
arXiv:2002.07224).
Presentation video.
- Gonzalez, S. and Miikkulainen, R. (2020).
Improved training
speed, accuracy, and data utilization through loss-function
optimization. In Proceedings of the 2020 IEEE Congress on
Evolutionary Computation (CEC-2020), 1-8 (also
arXiv:1905.11528).
Presentation video.
- Jiang, J., Legrand, D., Severn, R., and
Miikkulainen,
R. (2020). A Comparison
of the Taguchi Method and Evolutionary Optimization in Multivariate
Testing. In Proceedings of the 2020 IEEE Congress on
Evolutionary Computation (CEC-2020; also
arXiv:1808.08347).
Presentation video.
- Qiu, X., Meyerson, E., and Miikkulainen,
R. (2020).
Quantifying
Point-Prediction Uncertainty in Neural Networks via Residual
Estimation with an I/O Kernel.. In Proceedings of the
International Conference on Learning Representations (ICLR-2020; also
arXiv:1906.00588).
Presentation video.
- Miikkulainen R., Brundage M., Epstein
J., Foster, T., Hodjat, B., Iscoe N., Jiang, J., Legrand, D.,
Nazari S., Qiu, X., Scharff, M., Schoolland C., Severn, R., and
Shagrin A. (2020). Ascend
by Evolv: AI-Based Massively Multivariate Conversion
Rate Optimization. AI Magazine 41:44-60
- Rawal, A. and Miikkulainen, R. (2020). Discovering Gated Recurrent Neural Network Architectures. In H. Iba and
N. Noman (editors), Deep Neural Evolution – Deep Learning with
Evolutionary Computation, 233-251. New York: Springer (also
arXiv:1803.04439).
- Shahrzad, H., Hodjat, B., Dolle, C.,
Denissov, A., Lau, S., Goodhew, D., Dyer, J., and Miikkulainen,
R. (2020). Enhanced
Optimization with Composite Objectives and Novelty Pulsation.
In Genetic Programming Theory and Practice XVII. Springer, New
York (also arXiv:1906.04050).
- Miikkulainen,
R. (2020). Creative
AI Through Evolutionary Computation. In Banzhaf et al. (editors),
Evolution in Action---Past,
Present and Future. Springer, New York (also
arXiv:1901.03775).
2019
- Meyerson, E. and Miikkulainen, R. (2019).
Modular
Universal Reparameterization: Deep Multi-task Learning Across
Diverse Domains. In Proceedings of the 33rd Annual Conference on
Neural Information Processing Systems (NeurIPS 2019, Vancouver, Canada; also
arXiv:1906.00097).
- Liang, J., Meyerson, E., Fink, D., Mutch,
K., and
Miikkulainen, R. (2019). Evolutionary
Neural AutoML for Deep Learning. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2019, Prague, Czech
Republic), 401–409 (also
arXiv:1902.06827).
- Johnson, A. J., Meyerson, E., de la
Parra, J., Savas, T. L., Miikkulainen, R., and Harper,
C. B. (2019). Flavor-Cyber-Agriculture:
Optimization of plant metabolites in an open-source control
environment through surrogate modeling.
bioRxiv
424226.
- Stanley, K. O., Clune, J., Lehman, J., and
Miikkulainen R. (2019). Designing
Neural Networks through Evolutionary Algorithms. Nature
Machine Intelligence 1:24-35.
- Qiu, X. and Miikkulainen,
R. (2019). Enhancing
Evolutionary Optimization in Uncertain Environments via Multi-Armed
Bandit Algorithms. In Proceedings of the 31st Innovative
Applications of Artificial Intelligence Conference (IAAI-2019,
Honolulu,
HI; also arXiv:1803.03737).
2018
- Meyerson, E. and Miikkulainen,
R. (2018). Pseudo-task
Augmentation: From Deep Multitask Learning to Intratask Sharing—and
Back. In Proceedings of the International Conference on Machine
Learning (ICML-2018, Stockholm,
Sweden), 739-748 (also arXiv:1803.04062).
- Shahrzad, H., Fink, D., and Miikkulainen,
R.
(2018). Enhanced
Optimization with Composite Objectives and Novelty
Selection. In Proceedings of the 2018 Conference on Artificial
Life (ALife'2018, Tokyo,
Japan; also arXiv:1803.03744).
- Liang, J., Meyerson, E., and Miikkulainen,
R.
(2018). Evolutionary
Architecture Search for Deep Multitask Networks. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2018, Kyoto,
Japan), 466-473 (also arXiv:1803.03745).
- Meyerson, E. and Miikkulainen,
R. (2018). Beyond
Shared Hierarchies: Deep Multitask Learning through Soft Layer
Ordering. In Proceedings of the International Conference on
Learning Representations, (ICLR-2018, Vancouver,
Canada; also arXiv:1711.00108.).
- Miikkulainen, R., Meyerson, E., Liang,
J., Rawal, A., Shahrzad, H., Fink, D. Francon, O., Raju, B.,
Navruzyan, A., Hodjat, B., and Duffy,
N. (2019). Evolving
Deep Neural Networks. In Kozma, R., Alippi, C., Choe, Y., and
Morabito, F. C., Artificial Intelligence in the Age of Neural Networks
and Brain Computing, 293-312. Amsterdam:
Elsevier (also arXiv:1703.00548).
- Miikkulainen, R., Iscoe, N., Shagrin,
A., Rapp, R., Nazari, S., McGrath, P., Schoolland, C., Achkar, E.,
Brundage, M., Miller, J., Epstein, and Lamba, G. (2018).
Sentient
Ascend: AI-Based Massively Multivariate Conversion Rate
Optimization. In Proceedings of the Thirtieth Innovative
Applications of Artificial Intelligence Conference (IAAI-2018, New
Orleans, LA).
IAAI Deployed Application Award.
- Hodjat, B., Shahrzad, H., Miikkulainen, R.,
Murray, L., and Holmes,
C. (2018). PRETSL:
Distributed probabilistic rule evolution for time-series
classification. In Genetic Programming Theory and Practice
XIV. Springer, New York.
2017
- Miikkulainen, R., Shahrzad, H., Duffy,
N., and Long,
P. (2017). How
to Select a Winner in Evolutionary Optimization? In
Proceedings of the 2017 IEEE Symposium Series on Computational
Intelligence. Piscataway, NJ: IEEE.
- Meyerson, E. and Miikkulainen,
R. (2017). Discovering
Evolutionary Stepping Stones through Behavior
Domination. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2017, Berlin,
Germany).
- Miikkulainen, R., Iscoe, N., Shagrin,
A., Cordell, R., Nazari, S., Schoolland, C., Brundage, M., Epstein,
J., Dean, R. and Lamba,
G. (2017). Conversion
Rate Optimization through Evolutionary
Computation. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2017, Berlin,
Germany; also arXiv:1703.00556).
Bronze Medal, Human-Competitive Results Competition.
- Awasthi, P., Balcan M. F., and Long, P. M
(2017).
The
power of localization for efficiently learning linear separators with
noise. Journal of the ACM,
63(6):50:1-50:27.
2016
- Ramamurthy,
V. and Duffy,
N. (2016). L-SR1:
A Novel Second Order Optimization Method for Deep Learning. (+
supplement).
In NIPS 2016 Workshop on Nonconvex Optimization for Machine Learning:
Theory and Practice.
- Legrand, D., Long, P. M., Brundage, M.,
Angelopoulos, T., Francon, O., Garg, V., Mann, W., Ramamurthy, V.,
Saliou, A., Simmons, B., Skipper, P., Tsatsin, P., Vistnes, R., Duffy,
N. (2016). Visual
Product Discovery. In the "Machine Learning Meets
Fashion" Workshop at the 22nd ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (San Francisco, CA).
- Hodjat, B., Shahrzad, H., and Miikkulainen,
R. (2016). Distributed
age-layered novelty search. In Proceedings of the Fifteenth
International Conference on the Synthesis and Simulation of Living
Systems (Alife'16, Cancun, Mexico).
- Shahrzad, H., Hodjat, B., and
Miikkulainen,
R. (2016). Estimating
the advantage of age-layering in evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2016, Denver, CO).
- Hodjat, B. and Shahrzad,
J. (2016). nPool:
Massively distributed simultaneous evolution and cross-validation in
EC-star. In Riolo, R., Worzel, W. P., Kotanchek, M., and Kordon,
A. editors, Genetic Programming Theory and Practice XIII, Genetic and
Evolutionary Computation. Springer, New York.
2015
- Shahrzad, H. and Hodjat,
B. (2015). Tackling
the Boolean multiplexer function using a highly distributed genetic
programming system. In Riolo, R., Worzel, W. P., and Kotanchek,
M., editors, Genetic Programming Theory and Practice XII, pages
167-179. Springer, New York.
2014
- Hodjat, B., Hemberg, E., Shahrzad, H., and
O'Reilly,
U.-M. (2014). Maintenance
of a long running distributed genetic programming system for solving
problems requiring big data. In Genetic Programming Theory and
Practice XI, pages 65-83. Springer, New York.
- Hemberg, E., Veeramachaneni, K.,
Wanigasekara, P., Shahrzad, H., Hodjat, B., and O'Reilly,
U.-M. (2014). Learning
Decision Lists with Lagged Physiological Time Series. In Workshop
on Data Mining for Medicine and Healthcare at the 14th SIAM
International Conference on Data Mining, pages 82--87.
2013
- Hodjat, B. and Shahrzad,
H. (2013). Introducing
an age-varying fitness estimation function. In Riolo, R.,
Vladislavleva, E., Ritchie, M. D., and Moore, J. H., editors, Genetic
Programming Theory and Practice X, pages 59-71. Springer, New
York.
- O'Reilly, U.-M., Wagy, M., and Hodjat,
B. (2013).
EC-Star:
A massive-scale, hub and spoke, distributed genetic programming
system. In Riolo, R., Vladislavleva, E., Ritchie, M. D., and
Moore, J. H., editors, Genetic Programming Theory and Practice X,
pages 73-85. Springer, New York.