
Parallel Systems
Programming Models:
Processes + Threads

Chris Rossbach + Calvin Lin

CS380p

CS380P Processes + Threads 1

Outline for Today

• Parallel programming models
• Processes

• Threads

• Fibers

• pthreads

Acknowledgments: some materials in this lecture borrowed from or built on materials from:

• Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

• Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Processes + Threads 2CS380P

Programming and Machines: a mental model

CS380P Processes + Threads 3

Parallel Machines: a mental model

CS380P Processes + Threads 4

Programming Models for Concurrency

CS380P Processes + Threads 5

Programming Models for Concurrency

• Concrete model:
• CPU(s) execute instructions sequentially

CS380P Processes + Threads 5

Programming Models for Concurrency

• Concrete model:
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

CS380P Processes + Threads 5

Programming Models for Concurrency

• Concrete model:
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Threads/Processes
• Message passing vs shared memory
• Preemption vs Non-preemption

CS380P Processes + Threads 5

Programming Models for Concurrency

• Concrete model:
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Threads/Processes
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

CS380P Processes + Threads 5

Processes and Threads

• Abstractions

• Unit of Allocation/Containment

• State
• Where is shared state?

• How is it accessed?

• Is it mutable?

CS380P Processes + Threads 6

7

Processes
The Process Model

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential processes

• Uniprocessor: Only one program active at any instant

• Multiprocessor: two run in parallel per quantum

CS380P Processes + Threads

8

Threads
The Thread Model

(a) Three processes each with one thread

(b) One process with three threads

CS380P Processes + Threads

9

The Thread Model

CS380P Processes + Threads

9

The Thread Model

• Items shared by all threads in a process

CS380P Processes + Threads

Each thread has
its own stack

9

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

CS380P Processes + Threads

Each thread has
its own stack

9

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

CS380P Processes + Threads

Each thread has
its own stack

9

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?CS380P Processes + Threads

Each thread has
its own stack

9

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?CS380P Processes + Threads

Each thread has
its own stack

9

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?
How can we share mutable state across threads?

How can we share mutable state across processes?
CS380P Processes + Threads

10

Using threads
Ex. How might we use threads in a word processor program?

CS380P Processes + Threads

10

Using threads
Ex. How might we use threads in a word processor program?

CS380P Processes + Threads

11

Thread Usage

A multithreaded Web server

(a) Dispatcher thread

(b) Worker thread

CS380P Processes + Threads

12

Where to Implement Threads:

CS380P Processes + Threads

12

Where to Implement Threads:

User Space Kernel Space

CS380P Processes + Threads

12

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

CS380P Processes + Threads

12

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernelCS380P Processes + Threads

12

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernel

What are some tradeoffs
between user/kernel support

for threads?

CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

13CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

13CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

13CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

13CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running
I/O

13CS380P Processes + Threads

Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running
I/O

13

Stack Management

• Manual
• Inherent in Cooperative

• Changing at quiescent points

• Automatic
• Inherent in pre-emptive

• Downside: Hidden concurrency
assumptions

CS380P Processes + Threads

Fibers

14CS380P Processes + Threads

Fibers

14

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

CS380P Processes + Threads

Fibers

14

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

• Automatic stack management
• most desirable when reading/maintaining code

• Usually associated with threaded (or serial)
programming

CS380P Processes + Threads

Fibers

14

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

• Automatic stack management
• most desirable when reading/maintaining code

• Usually associated with threaded (or serial)
programming

Fibers: cooperative threading
with automatic stack

managementCS380P Processes + Threads

Threads vs Fibers

CS380P Processes + Threads 15

Threads vs Fibers

• Like threads, just an abstraction for flow of control

CS380P Processes + Threads 15

Threads vs Fibers

• Like threads, just an abstraction for flow of control

• Lighter weight than threads
• In Windows, just a stack, subset of arch. registers, non-preemptive

• stack management/impl has interplay with exceptions

• Can be completely exception safe

CS380P Processes + Threads 15

Threads vs Fibers

• Like threads, just an abstraction for flow of control

• Lighter weight than threads
• In Windows, just a stack, subset of arch. registers, non-preemptive

• stack management/impl has interplay with exceptions

• Can be completely exception safe

• Takeaway: diversity of abstractions/containers for execution flows

CS380P Processes + Threads 15

x86_64 Architectural Registers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
CS380P Processes + Threads 16

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

Linux x86_64 context
switch excerpt Complete fiber

context switch on
Unix and Windows

CS380P Processes + Threads 17

x86_64 Registers and Threads

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
CS380P Processes + Threads 18

x86_64 Registers and Threads

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
CS380P Processes + Threads 18

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
CS380P Processes + Threads 19

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
CS380P Processes + Threads 19

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

The takeaway:
• Many abstractions for flows of control
• Different tradeoffs in overhead, flexibility
• Matters for concurrency: exercised heavily

CS380P Processes + Threads 19

Pthreads

• POSIX standard thread model,

• Specifies the API and call semantics.

• Popular – most thread libraries are Pthreads-compatible

CS380P Processes + Threads 20

Preliminaries

• Include pthread.h in the main file

• Compile program with –lpthread
• gcc –o test test.c –lpthread

• may not report compilation errors otherwise but calls will fail

• Good idea to check return values on common functions

CS380P Processes + Threads 21

Thread creation

• Types: pthread_t – type of a thread

• Some calls:
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void * (*start_routine)(void *),

void *arg);

int pthread_join(pthread_t thread, void **status);

int pthread_detach();

void pthread_exit();

• No explicit parent/child model, except main thread holds process info
• Call pthread_exit in main, don’t just fall through;
• Don’t always need pthread_join

• status = exit value returned by joinable thread

• Detached threads are those which cannot be joined (can also set this at creation)

CS380P Processes + Threads 22

Creating multiple threads

CS380P Processes + Threads 23

Can you find the bug here?

CS380P Processes + Threads 24

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.
• use defaults

• Important: Mutex scope must be visible to all threads!

CS380P Processes + Threads 25

Pthread Spinlock

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

CS380P Processes + Threads 26

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_mutex_init(pthread_mutex_t *mutex,…);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Wait…what’s the
difference?

CS380P Processes + Threads 26

Lab #1

• Basic synchronization, prefix sum

• http://www.cs.utexas.edu/~rossbach/cs380p/lab/lab1.html

• Start early!!!

CS380P Processes + Threads 27

http://www.cs.utexas.edu/~rossbach/cs380p/lab/lab1.html

