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People Learn via Curricula

People are able to learn a lot of complex tasks very efficiently
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Example: Quick Chess

* Quickly learn the
fundamentals of chess

5 x 6 board

Fewer pieces per type

No castling

* No en-passant
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Example: Quick Chess
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Task Space

Pawns + King

Pawns only / .
g ~
/, \\\

Target task

,,/ A
Empty task ‘ ‘

One piece per type

* Quick Chess is a curriculum designed for people

* We want to do something similar automatically for autonomous agents
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Thesis Question(s)

* Can reinforcement learning agents benefit from
learning via a curriculum?

* How can we automatically design one tailored to
both the learning agent and task in question?
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Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)
3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing ‘
[IICAI 2017, AAMAS 2019] o

(Chapters 6 & 7) -~

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N |
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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Background

* Reinforcement Learning

* Transfer Learning
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Markov Decision Processes (MDPs)

Model agent’s interaction with a task as an episodic MDP

M= (S, A pr, Asy,Sp) 24

we (I3

we IE3-

S: set of states

A: set of actions

* p:transition function Alilgaifa - il
e r: reward function il & i
A
State i i
m R
i i
DO E & i
Agent Environment
oW

Action
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Markov Decision Processes (MDPs)

e Goalis tolearn an optimal policy m*: S > A that maximizes sum of
rewards

* Learn the optimal action-value function

q«(s,a) =r(s,a) + Zp(s’|s, a) max g« (s’,a’)

S

* Gives the expected return of taking action a in state s, and following t*
after

e Can be learned using methods such as SARSA

q(s,a) < q(s, a) +704["“(8, a) +q(s',a") — q(s, a)’]

learning rate TD error

Act greedily with respect to Q

University of Texas at Austin Sanmit Narvekar
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Transfer Learning

e Key Idea:

e IE3-

B 2

)

Instead of learning tabula rasa on target task, transfer knowledge from a
related source task

* Given a good source and target task, how to transfer knowledge

* Many ways to do this

IE3:

University of Texas at Austin
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Value Function Transfer

* |nitialize Q function in target task using values learned in a source task

qSOUI’CG(SIa)
Source Task Target Task

e Assumptions: Py S
* Tasks have overlapping state and action spaces : ></_

* ORaninter-task mapping is provided = o

* Existing related work on learning mappings - ﬁx T

Image credit: Taylor and Stone, JMLR 2009
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Reward Shaping Transfer

* Reward function in target task augmented with a shaping reward
f:

r'(s,a,s’) =r(s,a,s") + f(s,a,s’)
|

\ J \ )
1 1 1

New Reward Old Reward Shaping Reward

\

* Potential-based advice restricts f to be difference of potential
functions: , , )
f(s,a,5") = (5", m(s")) — O(s, a)
e Use the value function of the source as the potential function:

(s, a) = Qsource(s, a)

University of Texas at Austin Sanmit Narvekar

14



Quantifying Utility of Transfer

e Strong vs weak transfer

Performance

University of Texas at Austin

| Jumpstart

I Asymptotic
] Performance
Time to Threshold ‘ AN

— Transfer
— No Transfer
===+ Threshold Performance

0 20 40 60 80 100

Training Time (sample complexity)
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Quantifying Utility of Transfer

e Strong vs weak transfer

Performance

University of Texas at Austin

Time to Threshold N I
/" Jumpstart
—— Transfer
——— No Transfer
===+ Threshold Performance
0 20 0 60 80 100

Training Time (sample complexity)
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Contributions

1. Problem Formalization

[JMLR 2020] (Chapter 3)

4. Automatic Sequencing ‘
[lJICAI 2017, AAMAS 2019] e

(Chapters 6 & 7) ol

5. Curriculum Adaptation
[ICML WS 2020] (Chapter 8)

University of Texas at Austin

2. Task Generation
[AAMAS 2016] (Chapter 4)

6. Taxonomy of CL

[JMLR 2020] (Chapter 9)
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3. Task Transferability
[AAMAS 2015] (Chapter 5)

7. Empirical Evaluation
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What is a Curriculum?
Rook only

Bishop only
Pawns + King /

Pawns only / ‘
\\
~
\ P ~ .

N \ R Target task

7 ‘ e
Empty task " ‘ p /
\ p . - —

Knight only One piece per type

e RLagents don’t need to train sequentially
e Learn skills simultaneously, then combine

University of Texas at Austin Sanmit Narvekar
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What is a Curriculum?

Sl) all rl) SZ/

S1, d1, M1, Sy, ... ~ N \ ,

/, ‘ "
‘ Sll all rl) 521
A4 of *

Sll all rll SZ;

Sl) all r].l SZ/

* More abstractly, each node is associated with a set of samples derived from the set of tasks
* These samples at nodes may be associated with exactly one task, but this is not necessary

University of Texas at Austin Sanmit Narvekar 19



What is a Curriculum?

Pawns + King

Pawns only / ‘
— ) —
\
\ ol S \\

e N \ R Target task

Empty task " ‘ “ /
\ v b4 A ‘

One piece per type
e Acurriculumis a directed acyclic graph over sets of samples

* This definition encompasses all known CL work
* This thesis will use the most common sequence of tasks representation

University of Texas at Austin Sanmit Narvekar 20



Task = MDP

Curriculum Learning

Environment

Action

Task Creation

Sequencing Transfer Learning

e Curriculum learning is a methodology that ties task creation, sequencing, and transfer learning

* Focus on task creation and sequencing, leveraging existing work on transfer learning

University of Texas at Austin Sanmit Narvekar



Taxonomy of CL Methods + Related Work

* Primary assumptions of curriculum learning: Sequencing Methods

* Environment can be configured to create subtasks of this Thesis
» Agent discovers on its own reusable pieces of knowledge
* Organized methods by the degree to which source tasks can differ 1
Reward and
Sample Sequencin Co-learnin e : No Restrictions
P G 8 & Initial/Terminal State
PER (Schaul et al. 2016) Asymetric Self-Play SAGG-RIAC TSCL (POMDPs)
(Sukhbaatar et al. 2018) (Baranes and Oudeyer 2013) (Matiisen et al. 2017)
HER
(Andrychowicz et al. 2017) AlphaStar (Vinyals et al. 2019) RCG (Florensa et al. 2017) Curriculum Graphs
(Svetlik et al. 2017)
CHER (Fang et al. 2019) Emergent Curricula SAC-X (Riedmiller et al. 2018)
(Baker et al. 2020) Combinatorial Search

(Foglino et al. 2019)

University of Texas at Austin Sanmit Narvekar 22




Quantifying Utility of a Curriculum

e Offset for time spent in source tasks in the curriculum

* Time spent creating curriculum?
* Most work does not, allows comparison of the quality of the curriculum itself
e Can compare with human generated curricula

“— 4 Asymptotic
57 Performance
Time to Threshold  ANN—N

Performance
w -
1 1
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]
]
]
]
]
- s
A\ ' A
\ ]
' '
{ ]
!
|
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R ]
]
]
]
]
[ |
]
]
]
1
]
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1
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i
I
]
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]
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]
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24 /” Jumpstart
| —— Transfer
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===+ Threshold Performance
0 - ! ' ' '
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Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)

4. Automatic Sequencing ‘
[lJICAI 2017, AAMAS 2019] e

(Chapters 6 & 7) -~

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy Of CL
[JMLR 2020] (Chapter 9)

University of Texas at Austin Sanmit Narvekar

3. Task Transferability
[AAMAS 2015] (Chapter 5)

7. Empirical Evaluation
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Task Generation

* Proposed a set of 7 heuristic functions  f : My X X — M,

* Use parameterized model of the domain and observations of the agent
performing the target task to create source tasks

R il Rewards
State/Action Space HNHNE

ik |i|d|i Reward for promotion
ggggi A i|d|i|d
i|i|i|i i M:(SaAaRR,SO,Sf) S
K 20w

&
Transitions ] LQ i GQ\

C

Initial/Terminal State Distributions
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Generated Tasks in 2D Simulated Soccer

Shoot Task Dribble Task

University of Texas at Austin Sanmit Narvekar
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2v2 HFO Results

Various Curricula for 2v2 HFO

0.8 : .
— 2V2
0.7 — dribble -> 2v2
' —— shoot -> 2v2 } TWO Step
—— shoot -> dribble -> 2v2

0.6/| — dribble -> shoot -> 2v2 }
o One step
c
T ‘”‘,
S osl - ‘ |
(7]
kS } Baseline
2 0.4f -
=
8 03
o . I~ -
| .
a.

0.2} |

0.1} |

0.0

0 50000 100000 150000 200000 250000 300000 350000 400000
Game Steps
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2v2 HFO Sample Policies

Baseline

2 step curricula

28



Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)

3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing ‘
[lJICAI 2017, AAMAS 2019] e

(Chapters 6 & 7) -~

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N |
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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Task Transferability

e Given a source task and target task, estimate the expected benefit of transfer
* Represent tasks by a feature descriptor f; € R™ and train regression model
e Can be used for source task selection

6 -
Target Task .. I Asymptotic

o Performance
L et
c
(1]
E 3-
S
)
-
o 4
Q. —— Transfer

1 - JumpSta rt —— No Transfer

=-=-=- Threshold Performance
Source Task 0+

0 2I0 4'0 6'O 8|0 160
Training Time (sample complexity)
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Modeling Task Transferability

31



Source Task Selection Loss

* Trained 2 types of 1400
regression models 1200
% 1000
« Baseline: choose task with s
closest feature vector by T 800
squared distance 3 600
P
S 00
* Loss:

200

loss(M;) = B(M™, Mj) — B(M;, Mj)

|
P

I

[ ILinear Regression
I M5P Model Tree
[ ]Baseline
I Random

jumpstart(w =5) jumpstart(w=15)

University of Texas at Austin Sanmit Narvekar

jumpstart(w=30)

32



Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)
3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing

[JCAI 2017, AAMAS 2019]

(Chapters 6 & 7) ‘
Pl

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N |
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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Automatic Heuristic Sequencing

e Recursive algorithm
* Collect experience samples in target task

* Create source tasks and attempt to solve

* Heuristic: select task that updates the policy the most
on collected samples. Assumes no negative transfer

e Learning a task updates the agent’s policy, leading to
new samples in target task

* Terminates when performance on target task greater R -
than desired performance threshold RA rn

University of Texas at Austin Sanmit Narvekar @ 34



Return

Experimental Results

* Created curricula for 3 different agents with different sensing/action abilities

* Curriculum tailored for agent in green

* |In all cases, tailored curriculum is better than no curriculum and other agent

1500

1000}

—500}
—-1000
—1500}

—2000
0

curricula

I — basic curriculum

Basic Agent

M == no curriculum

action dependent curriculum |
------ rope curriculum

5000 10000 15000 20000

Game Steps

University of Texas at Austin

Return

1000
P =\
500} § oo A st R, E A
' Kbd ‘ll"':‘:‘:::x:f‘""a“:’”’“'"‘.?”’:""::-’:"':"”:‘:"“'.-"""‘-e‘v'~w~."'~"w~"“’~‘" G
A o
ol (l ‘l'
' ;
4
7
’
-500
-1000}
—1500¢ --  no curriculum
i — action dependent curriculum
—2000r basic curriculum
------ rope curriculum
-2500 ‘ ‘
0 5000 10000 15000 20000

Action-Dependent Agent

Game Steps
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2000

1000}

—1000}

Return

—3000}

—4000}

—5000}

Rope Agent

—2000

- - no curriculum
— rope curriculum
basic curriculum
------ action dependent curriculum ||
—— random curriculum

—6000
0

10600 15600 20600 25000
Game Steps
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Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)
3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing

[IJCAI 2017, AAMAS 2019]

(Chapters 6 & 7) ‘
Pl

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N |
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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Why Sequencing is Hard

* Possible sequences

A 1!
AB, BA 21=2
ABC, ACB, BAC, BCA, CAB, CBA 31=6
ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, ... 41=24
10! = 3.6M
* Even more if in advance or
in a task is (environment + exploration)
* Learning in a task affects in the

a curriculum is

¢
¢
¢

b

5

A
A

with number of source tasks

, B
, B, C, AB, AC, BA, BC, CA, CB



Sequencing using Learning

Previous Method This Method
* Used a for sequencing * Uses to how to sequence
of curricula

* Assumed generated source tasks

were to target task on of source

* |.e. no tasks

, but more sensitive - but more robust



Sequencing as an MDP

Curriculum Task

Curriculum

Curriculum Action

v

Agent

el

Task 1

State

i State
Reward Action

Reward

Environment

Task 2 Task N

State

Action Reward

Environment Environment

Action

\ 4

Curriculum

Curriculum State
Curriculum Reward

University of Texas at Austin

Environment

Sanmit Narvekar
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Sequencing as an MDP

' 011 S
s’ ~
,/’ M R4,4 =
e
' e G L
---------- R
Ros i My =77

-
-

State space S¢: All policies 7; an agent can represent

Action space A¢: Different tasks M, an agent can train on (e.g. to convergence)

Transition function p¢(s¢,a“): Learning task a¢ transforms an agent’s policy s¢

Reward function r¢(s¢,a¢): Cost in time steps to learn task a¢ given policy s¢

University of Texas at Austin Sanmit Narvekar
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Sequencing as an MDP

* A policy ¢ S¢ > AC on this curriculum MDP (CMDP) specifies which task to
train on given learning agent policy T,

* Essentially training a teacher
* How to learn a curriculum policy over this CMDP?

* How does CMDP change when transfer method or evaluation metric changes?

University of Texas at Austin Sanmit Narvekar



Learning in Curriculum MDPs

[1,3,4,...0] @ M [1,2,3,...0]
~-~~-~~~3
-~ Riz ™
,/’ R =~ [1,2,3,9]

0,1 ~~o
ol Ryq "~

Extract Raw CMDP | Function Approximation
: Extract Features > :
State Variables and Learning

\ 4

* Express raw CMDP state using the weights of base agent’s VF/policy

* Extract features so that similar policies (CMDP states) are “close” in feature
space

University of Texas at Austin Sanmit Narvekar
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Example: Discrete Representations

State 1
State 2
State 3
State 4

CMDP State 1

Left Right
0.3 0.7
0.1 0.9
0.4 0.6
0.0 1.0

Policy
9

v vV

State 1
State 2
State 3
State 4

CMDP State 2
Left Right
0.2 0.8
0.2 0.8
0.2 0.8
0.3 0.7

Policy
9

v VoV

State 1
State 2
State 3
State 4

CMDP State 3

Left Right  Policy
0.7 0.3 <
0.9 0.1 <
0.6 0.4 <
0.0 1.0 >

CMDP states 1 and 2 encode very similar policies, and should be close in
CMDP representation space

* Then they will have similar action values/probabilities

University of Texas at Austin
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Example: Discrete Representations

State 1 State 2 CMDP State 1
1 1

<——Tiling #1 <—Tiling #1 LEft nght POllcy
Tiling #2 Tiling #2 State 1 03 07 9
n(State 1, Left) n(State 2, Left) mEmEmEEE
State 3 0.4 0.6 -2
0 ! 0 1 State4 0.0 1.0 >
n(State 1, Right) n(State 2, Right)
0.7 0.9

One approach: use tile coding

Lays a grid of overlapping tilings over subsets of state variables

Each tile in tiling associated with a weight

Activated tiles in each tiling contribute equally to the output

Create a separate tiling on a state-by-state level

University of Texas at Austin Sanmit Narvekar 44



Example: Discrete Representations

State 1 State 2 CMDP State 1

—Tiling #1 ——Tiling #1 Left nght POl ICy
Tiling #2 Tiling #2 State 1 03 07 9
n(State 1, Left) n(State 2, Left) mEmEEEEE
0.3 : 0.1 - State2 0.1 0.9 >
0.2 0.2 State3 0.4 0.6 >
State4 0.0 1.0 >
n(State 1, Right) n(State 2, Right)
0.7 0.9
0.8 0.8
CMDP State 2
* The more similar the policies are in a primitive state, the more Left  Right  Policy
common tiles will be activated Statel 0.2 0.8 >
State2 0.2 0.8 >
State3 0.2 0.8 >
* The more primitive states that are common, the more similar the State4 0.3 0.7 =

output action value/probability will be

University of Texas at Austin Sanmit Narvekar 45



Continuous CMDP Representations

* In continuous domains, weights
are not local to a state

* Needs to be done separately for
each domain
* Neural networks
* Tile coding
* Etc...

* If the base agent uses a linear
function approximator, one can
use tile coding as before, creating
a separate tiling for each weight
variable

University of Texas at Austin

Action values/
probabilities

tput layer

hidden layer 1 hidden layer 2

:
%o

Weights of
VF or policy

A\

'\!’»
5
® ot
W4
R
&

/¢

=

input layer

~<——Tiling #1 <——Tiling #1

<— Tiling #2 <— Tiling #2

Multiple tilings over different subsets of weights

Sanmit Narvekar 46



Changes in Transfer Algorithm

/’,, M R4'4 -
G oy T
_________ R
Ro3 2 My =77

* Transfer method directly affects CMDP state representation and transition function

 CMDP states represent “states of knowledge”

* Knowledge can be represented in terms of the student’s policies/value functions, but also
in the reward function by transferring a shaping reward

University of Texas at Austin Sanmit Narvekar
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Changes in Transfer Algorithm

* Transfer shaping reward by:

* Use value function learned in sources to create potential functions
* Potential function used to generate shaping reward in next task
* Potentials are accumulated over the course of curriculum

» Similar process as before since potentials are parameterizable

University of Texas at Austin Sanmit Narvekar
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Optimizing Different Metrics

Change reward function r¢(s%, a“) based on metric to optimize:

Performance

Asymptotic
. 4 Performance

* Time to threshold: Cost in time steps to learn task a¢ given policy s¢

* Asymptotic performance: Reward transitions to terminal states by final performance

* Jumpstart: Reward transitions to terminal states by increase in performance

University of Texas at Austin

Sanmit Narvekar

4
/
/| Jumpstart —— Transfer
1/ — No Transfer
I -==- Threshold Performance
0 20 40 60 80 100
Training Time (sample complexity)
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Experimental Results

e Evaluate whether curriculum
policies can be learned

e Grid world
* Multiple base agents

* Multiple CMDP state
representations

e Pacman

* Multiple transfer learning
algorithms

* How long to train on sources?




Grid world Setup

Agent Types

* Basic Agent
» State: Sensors on 4 sides that measure distance to keys, locks, etc.
* Actions: Move in 4 directions, pickup key, unlock lock

* Action-dependent Agent
e State difference: weights on features are shared over 4 directions

* Rope Agent
* Action difference: Like basic, but can use rope action to negate a pit

CMDP Representations

* Finite State Representation
* For discrete domains, groups and normalizes raw weights state-by-state to form CMDP features

* Continuous State Representation
* Directly uses raw weights of learning agent as features for CMDP agent

University of Texas at Austin Sanmit Narvekar 51



CMDP Curves

CMDP Episodes

-100 -
f"u’ 2200
2 300
v Y
0 400
(o) Q
g € 500
o g 600 Task 1
g g
o -700 Task 2
2 = 300
o
O 900 Task 3

Task 4
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Basic Agent Results

—5000

—10000

—15000

—20000 .

— no curriculum
—25000 — Narvekar et al. (2017) .
— finite state representation

—— continuous state representation

Cost to Learn Target Task

—30000 _ , -
— naive length 2 representation
naive length 3 representation
_35000 ] ] ] ]
0 100 200 300 400 500

CMDP Episodes
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Action-Dependent Agent Results

—5000 |

—10000 |-

—15000 |

—20000 |§ —— : u
— no curriculum

— Narvekar et al. (2017)

— finite state representation

—— continous state representation
—30000 — naive length 2 representation
naive length 3 representation

—25000

Cost to Learn Target Task

_35000 ] ] ] I
0 100 200 300 400 500

CMDP Episodes
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Rope Agent Results

—2000 T T T T

—4000

—-6000

—8000

—10000

| no curriculum
r — Narvekar et al. (2017)

— finite state representation
—— continuous state representation
—14000 — naive length 2 representation [
naive length 3 representation

—12000

Cost to Learn Target Task

_16000 ] ] ] I
0 100 200 300 400 500

CMDP Episodes
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Pacman Setup

Agent Representation

* Action-dependent egocentric features

CMDP Representation

* Continuous State Representation
* Directly uses raw weights of learning agent as features for CMDP agent

Transfer Methods
e Value Function Transfer

e Reward Shaping Transfer

How long to train on a source task?



Pacman Value Function Transfer

_50000 T T T I I I I

—100000

—150000

—9200000 —— no curriculum 1

Cost to Learn Target Task

— continuous state representation
— naive length 1 representation

—— naive length 2 representation

_250000 Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700

CMDP Episodes
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Pacman Reward Shaping Transfer

O I I I I

—500

——

— no curriculum
— Svetlik et al. (2017)
—— continuous state representation

I I I
- pen P
M Ad B ind v Lomafhe o W er ey ) o Mo g

—1000 |
—1500 H

—2000

—2500

Cost to Learn Target Task

—3000

—— naive length 2 representation

_3500 Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700

CMDP Episodes
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How long to train?

e Return-based

* Train until convergence to a
specified return

* Small-fixed
* Train 5 episodes at a time

* Upshot: curriculum policy
learns how long to spend
on each task

University of Texas at Austin

-100000

-200000 §

-300000

-400000

Cost to Learn Target Task

reward shaping (return-based)
reward shaping (small fixed)
value function (return-based)
value function (small fixed)

-500000 } *
0

Sanmit Narvekar

100

200

300 400

CMDP Episodes
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CMDP Results Key Takeaways

1. Curriculum policy learns a curriculum that improves over time

2. This curriculum learns at least as fast/good or better than several
baseline methods

3. Robust to CMDP state representation and transfer method

4. Learns how long to spend on source tasks

University of Texas at Austin Sanmit Narvekar 60



Contributions

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)
[JMLR 2020] (Chapter 3)
3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing .
[lJICAI 2017, AAMAS 2019] e

(Chapters 6 & 7) -

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N |
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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Curricula in RL SN2 1

e ——

v ——— -

Elllﬂ;l!l!l!l

Florensa et al. (2018) Svetlik et al. (2017) Narvekar & Stone (2019)

* Curricula must be recreated from scratch for each new task or agent

* Generating curricula independently for each agent can be expensive

University of Texas at Austin Sanmit Narvekar
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Curricula in Human Learning

* Curricula are used to teach many people, many different tasks

e Can we use knowledge gained about learning a curriculum for
one task to speed up learning of a curriculum for a new task?
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Combining CMDPs with UVFAs

* Value Function (undiscounted settings)

vr(s) =E

e Learn value function that

University of Texas at Austin

(©.@)
> (st ar, seq1)|so = 8]

t=0

v(s)
i

Function
‘/Approximator

(linear, neural net, etc.)

S

Sanmit Narvekar

 Universal Value Function

Approximators (UVFAs) generalize
over states s and goals g

Vr(s,9) =E

§ g
Schaul et al. (2015)
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Combining CMDPs with UVFAs

* What is a goal?

* A waypoint, or more simply a terminal state

* What does this mean in a CMDP?

Represent goals by a parameterized representation of their task
* Navigational tasks, represented by start/end coordinates

/,, 0,1 Ssq
,z/ M R4’4 ~
: Ny P T —
_________ Rz
Ro S My
e M, @— Rs4
~~~"s M3 —"' S M
Rop "~ —— -7 TTm== 6
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Experimental Results

* Evaluate whether curriculum policies
learned for one set of tasks can generalize
to a novel set of unseen tasks

 Domain where easy to create many task
variations

* Navigational tasks
e Start x
e Starty
* End x
* Endy

e 9900 distinct possible tasks

University of Texas at Austin Sanmit Narvekar 66



Source Tasks

8 Static 1 Dynamic
Navigate to adjacent room Navigate to goal in room

Target Task
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A Natural Curriculum

* Navigate to correct room using static tasks
* Navigate to goal using dynamic task
 Combine into target task

Target Task

Target Task
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Network Architecture ew

CMDP Action Values @
c/.Cc .C C
‘ amn ‘ qﬂ' (S ,a ,g )

s g

Hidden Layer

(128 units) Schaul et al. (2015)

Hidden Layer
(128 units)

Hidden Layer Hidden Layer

(128 units) (128 units)
\ J \ J
Y i
Agent Knowledge Features Task Features
Weights of student RL agent [Start_x, Start_y, End_x, End _y]
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Interpolation Experiments

CMDP Episodes

Randomly shuffle all tasks

Present tasks one by one

Each task seen is novel, though
similar tasks might have been
seen previously

_ [ Curriculum Agent
Over time, learn to produce

better curricula for new tasks / /

[Curriculum lJ {Curriculum ZJ 000 [Curriculum NJ
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Interpolation Results

* Learns to interpolate
between tasks

* After seeing about 220 tasks,
produces curricula that are
better than training tabula
rasa

University of Texas at Austin

Sanmit Narvekar
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Extrapolation Experiments

* Evaluate ability to generalize to tasks
that need a new curriculum

Training Set
Target Tasks
 Split tasks into train/test set
e Test set tasks start in top left room and
end in bottom right
* Optimal test set curricula not seen in
training set
Test Set
Target Tasks

Target Task
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Extrapolation Results

* Train on tasks in training set
for 200 episodes

* Evaluate on tasks in test set

* Learns to extrapolate to
unseen types of tasks

University of Texas at Austin
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Can reinforcement learning agents benefit from learning via a curriculum?

How can we automatically design one tailored to both the learning agent
and task in question?

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)

[JMLR 2020] (Chapter 3)

3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing
[IICAI 2017, AAMAS 2019]
(Chapters 6 & 7) -~

— -

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N .
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation

University of Texas at Austin Sanmit Narvekar
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Summary

* Many popular recent RL successes have used CL as a key component
* Training on target task directly is too hard to make progress!

B A ARE AL u
- B
3 | ° by I | & | MIR1g
.ALPHAGO ,“ > A 7 i
00:40:24 PR [ o [ LEESEDOL
[ ] . ++000:01:00
O 1 V| vy
! li & St é= b D>
B b 1 ;

, , Reward and .
Sample Sequencing Co-learning Initial/Terminal State No Restrictions

» | expect future RL successes could be a result of research in this area
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Future Work

e Human Studies
e CMDP Extensions

* End-to-end Deep CL

University of Texas at Austin

Sanmit Narvekar

input layer

hidden layer 1

hidden layer 2

hidden layer 3
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Human Studies

This thesis: Inspired by human learning, design curricula for artificial agents

e Can we use these ideas to design curricula for humans in motor learning tasks?

Directly learn a curriculum by replacing RL agent with human student

Adapt curriculum learned by RL agent to humans

Score: 0 Time: O

o Ghonasgi et al.
Web camera View Player Screen View [|ROS WS 2020]
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CMDP Extensions

=
®
=

e Extend to non-navigational tasks, where a
more general representation for tasks is

needed

* Language-based interaction tasks ///%‘?"\\\

/

* Extend to settings where it is too expensive

or unable to access the agent’s vector of

parameters iy
B

“Pick up the red key”

« Use a “test” to evaluate agent’s knowledge on Faa

a set of important states

D\l
\\\\\&\;\\\“\‘HH‘I‘!///////W/ d
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Deep Curriculum Design
* Alternative model for curriculum design

Task Creation + Sequencing

Task Creation ‘
A < S
~
* @ e ;o
b 4
<l ta ‘ /,‘ ‘\
‘ ‘ ‘"N ;”' 1 p "
- - S
<S -

Sequencing Transfer Learning

Transfer Learning

* Directly create next source task in curriculum given target
task and agent’s policy

University of Texas at Austin Sanmit Narvekar
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Deep Curriculum Design

e Generate tasks using Generative Adversarial Networks (GANs)

 Existing work [Held et al. 2017] has shown GANs can create
tasks that modify the reward function for intrinsic motivation

* More ambitious in that we want to modify the whole MIDP

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

—
= —

< < < O

-,

= = > output layer

Agent Knowledge X
Target Task

Next Source Task

XX X
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Thank You!

Learning Agents Research Group

The University of Texas at Austin
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Can reinforcement learning agents benefit from learning via a curriculum?

How can we automatically design one tailored to both the learning agent
and task in question?

2. Task Generation
1. Problem Formalization [AAMAS 2016] (Chapter 4)

[JMLR 2020] (Chapter 3)

3. Task Transferability
[AAMAS 2015] (Chapter 5)

4. Automatic Sequencing
[IICAI 2017, AAMAS 2019]
(Chapters 6 & 7) -~

— -

5. Curriculum Adaptation

[ICML WS 2020] (Chapter 8) 6. Taxonomy of CL N .
[JMLR 2020] (Chapter 9) 7. Empirical Evaluation
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