
Copyright

by

Sanmit Narvekar

2020

The Dissertation Committee for Sanmit Narvekar

certifies that this is the approved version of the following dissertation:

Curriculum Learning in Reinforcement Learning

Committee:

Peter Stone, Supervisor

Scott Niekum

Raymond Mooney

Emma Brunskill

Curriculum Learning in Reinforcement Learning

by

Sanmit Narvekar

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2020

To my parents, Santosh and Smita, and my brother Neel,

for always believing in me

Acknowledgments

This thesis would not have been possible without the support of many people. First, I would

like to thank my advisor Peter Stone for giving me the opportunity, support, and guidance

to pursue research in this area. Despite having so many students and other commitments,

Peter is always able to find time to meet and discuss ideas and potential next steps. He

is supportive, encouraging, and the strongest advocate for all of his students, and I could

not be more grateful to have him as my advisor. I also want to thank my other committee

members Scott Niekum, Raymond Mooney, and Emma Brunskill for their valuable advice

and feedback on this thesis.

My time at UT has led to a lot of personal and professional growth. This is in large

part due to my labmates in the Learning Agents Research Group (LARG) who have always

been there to bounce ideas, share a meal, or play soccer. I was also fortunate to be able

to participate in the Standard Platform League competition as a part of UT Austin Villa,

which was the source of many sleepless nights but also great joy when things finally worked

on the robots. And of course, both of these were part of the broader Computer Science

Department at UT, which fostered friendships across labs. Among the people I would like to

thank are Michael Albert, Stefano Albrecht, Shani Alkoby, Samuel Barrett, Sid Desai, Ishan

Durugkar, Katie Genter, Keya Ghonasgi, Harsh Goyal, Josiah Hanna, Justin Hart, Matthew

Hausknecht, Eddy Hudson, Elad Liebman, Yuqian Jiang, Haresh Karnan, Josh Kelle, Piyush

Khandelwal, Brad Knox, Matteo Leonetti, Bo Liu, Shih-Yun Lo, Patrick Macalpine, William

Macke, Bharath Massetty, Jake Menashe, Reuth Mirsky, Aishwarya Padmakumar, Bei Peng,

Ashay Rane, Guni Sharon, Jivko Sinapov, Matthew Taylor, Jesse Thomason, Faraz Torabi,

Daniel Urieli, Garrett Warnell, Nick Wilson, Xuesu Xiao, Zifan Xu, Harel Yedidsion, Ruohan

v

Zhang, and Shiqi Zhang.

I want to give a special shout out to my “theoretical bros” Elad and Ishan. Your

friendship over the years, those late nights and early mornings scrambling to put together

the vision systems for Robocup, and our random conversations made grad school much more

enjoyable. That coauthored publication did not end up coming together so far, but who

knows, maybe this could be the year! Thank you – I couldn’t imagine grad school without

you guys.

When I first moved to Austin, I never thought it would feel like home the way Cali-

fornia did. I would like to thank Hien Nguyen-Phuoc, Sherry Reynolds, Felipa Mendez, and

Arianna Mahan for filling my time outside the lab with memories and friendships I never

expected. Whatever the future holds, I will always remember your kindness, generosity, and

passion. Meeting you all was truly a gift.

I would like to thank my undergraduate advisor Valentino Crespi at Cal State LA

for strongly influencing my decision to pursue graduate school in computer science, and for

his time and mentorship in cultivating my interest in machine learning. I would also like

to thank my friends from my undergraduate years – Michael Levitin, Charissa Kim, and

Catrina Chitjian – who I’ve been fortunate to keep in sporadic contact with as we navigated

life from middle school to full grown adults.

And finally, I would like to thank my parents Santosh and Smita, and my brother

Neel, for believing in me – even more than I do in myself. You all have been part of this

rollercoaster of a journey from the beginning, and I would not be who I am today without

your love and support.

Sanmit Narvekar

The University of Texas at Austin

December 2020

vi

Curriculum Learning in Reinforcement Learning

Sanmit Narvekar, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Peter Stone

In recent years, reinforcement learning (RL) has been increasingly successful at solving

complex tasks. Despite these successes, one of the fundamental challenges is that many RL

methods require large amounts of experience, and thus can be slow to train in practice.

Transfer learning is a recent area of research that has been shown to speed up learning

on a complex task by transferring knowledge from one or more easier source tasks. Most

existing transfer learning methods treat this transfer of knowledge as a one-step process,

where knowledge from all the sources are directly transferred to the target. However, for

complex tasks, it may be more beneficial (and even necessary) to gradually acquire skills over

multiple tasks in sequence, where each subsequent task requires and builds upon knowledge

gained in a previous task. This idea is pervasive throughout human learning, where people

learn complex skills gradually by training via a curriculum.

The goal of this thesis is to explore whether autonomous reinforcement learning agents

can also benefit by training via a curriculum, and whether such curricula can be designed

fully autonomously. In order to answer these questions, this thesis first formalizes the con-

cept of a curriculum, and the methodology of curriculum learning in reinforcement learning.

vii

Curriculum learning consists of 3 main elements: 1) task generation, which creates a suitable

set of source tasks; 2) sequencing, which focuses on how to order these tasks into a curricu-

lum; and 3) transfer learning, which considers how to transfer knowledge between tasks

in the curriculum. This thesis introduces several methods to both create suitable source

tasks and automatically sequence them into a curriculum. We show that these methods pro-

duce curricula that are tailored to the individual sensing and action capabilities of different

agents, and show how the curricula learned can be adapted for new, but related target tasks.

Together, these methods form the components of an autonomous curriculum design agent,

that can suggest a training curriculum customized to both the unique abilities of each agent

and the task in question. We expect this research on the curriculum learning approach will

increase the applicability and scalability of RL methods by providing a faster way of training

reinforcement learning agents, compared to learning tabula rasa.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Overview . 5

2 Background 9

2.1 Reinforcement Learning . 9

2.1.1 Markov Decision Processes . 10

2.1.2 Function Approximation . 11

2.2 Transfer Learning . 13

2.2.1 Methods . 14

2.2.2 Evaluation Metrics . 17

2.3 Summary . 18

3 The Curriculum Learning Method 19

ix

3.1 Curricula . 20

3.2 Curriculum Learning . 22

3.3 Evaluating Curricula . 24

3.4 Summary . 26

4 Task Generation 27

4.1 A Space of Tasks . 28

4.2 Methods . 29

4.2.1 Task Simplification . 29

4.2.2 Promising Initializations . 30

4.2.3 Mistake-Driven Subtasks . 31

4.2.4 Option-based Subgoals . 33

4.2.5 Task-based Subgoals . 34

4.2.6 Composite Subtasks . 35

4.3 Ms. Pac-Man Experiments . 36

4.3.1 Maze Simplification Task . 38

4.3.2 Avoiding Ghosts Task . 39

4.4 Half Field Offense (HFO) Experiments . 40

4.4.1 Space of Tasks . 43

4.4.2 Manual Sequencing Process . 44

4.4.3 2v2 HFO Curriculum . 44

4.4.4 Extension to 2v3 HFO . 47

4.5 Summary . 48

5 Measuring Inter-task Transferability 50

5.1 Modeling Task Transferability . 51

5.1.1 Notation and Problem Formulation 51

x

5.1.2 Predicting the Benefit of Transfer . 52

5.1.3 Evaluation . 53

5.2 Experimental Domain and Methodology . 54

5.3 Experimental Results . 57

5.3.1 The Transferability Matrix . 59

5.3.2 Regression Model Performance . 61

5.3.3 Source Task Ranking and Selection 63

5.3.4 Multi-stage Transfer . 64

5.4 Summary . 65

6 Heuristic-based Approaches for Sequencing 68

6.1 Method Intuition and Overview . 69

6.2 Algorithm Details . 71

6.3 Experiments . 75

6.3.1 Learning Agent Descriptions . 76

6.3.2 Curriculum Generation and Results 78

6.4 Summary . 79

7 Learning-based Approaches for Sequencing 82

7.1 Curriculum Generation as an MDP . 83

7.2 Representing CMDP State Space . 86

7.2.1 Discrete State Representations . 87

7.2.2 Continuous State Representations . 89

7.3 Experimental Setup . 90

7.4 Gridworld Experiments . 91

7.4.1 CMDP Description . 92

7.4.2 CMDP State Space Representations 93

xi

7.4.3 Results and Discussion . 94

7.5 Ms. Pac-Man Experiments . 95

7.5.1 Learning Agent Description . 97

7.5.2 CMDP Description . 97

7.5.3 CMDP State Space Representations 99

7.5.4 Results and Discussion . 99

7.6 Summary . 101

8 Generalizing Curricula 103

8.1 Curriculum Generalization . 104

8.1.1 CMDP States and Goals . 104

8.1.2 Architecture . 105

8.2 Gridworld Navigation Domain . 106

8.3 Teacher (CMDP) Agent Description . 106

8.4 Experimental Results . 110

8.5 Summary . 112

9 Taxonomy of CL Methods and Related Work 115

9.1 Dimensions of Categorization . 116

9.2 Task Generation . 119

9.3 Sequencing . 122

9.3.1 Sample Sequencing . 122

9.3.2 Co-learning . 127

9.3.3 Reward and Initial/Terminal State Distribution Changes 130

9.3.4 No Restrictions . 134

9.3.5 Human-in-the-Loop Curriculum Generation 140

9.4 Transfer Learning . 144

xii

9.5 Related Paradigms in Reinforcement Learning 151

9.6 Curricula in Supervised Machine Learning 153

9.7 Algorithmically Designed Curricula in Education 156

9.8 Summary . 159

10 Conclusion and Future Work 161

10.1 Contributions . 162

10.2 Future Work . 164

10.2.1 Human Studies . 164

10.2.2 Fully Automated Task Creation . 167

10.2.3 Transferring and Combining Different Types of Knowledge 168

10.2.4 Generalizing Curricula to Different Agents 168

10.2.5 Extending CMDPs to Black Box Agents 169

10.2.6 Sim-to-Real Curriculum Learning . 170

10.2.7 Combining Task Generation and Sequencing 171

10.2.8 Theoretical Analysis . 171

10.3 Concluding Remarks . 172

A Acronyms 173

Bibliography 175

List of Tables

4.1 The Reward Structure of the Ms. Pac-Man Domain 37

4.2 Reward structure in HFO . 41

4.3 Feature space for the player with the ball in HFO. We index offensive players

by their distance to the ball. Thus, the player with the ball is O1 and its

teammates are O2, O3, . . . Om. 42

4.4 Half Field Offense degrees of freedom . 43

5.1 The task features that were known to the agent 58

5.2 Regression Model Performance measured by Correlation Coefficient 62

7.1 Properties of tasks in the gridworld experiments. “Rope required” indicates

tasks where a pit blocks direct paths from the agent to the goal, necessitating

a rope action. When a lock is not present, the episode terminates when all

keys are picked up. 93

7.2 Properties of source tasks in the Ms. Pac-Man experiments. “Num Junctions”

indicates how many maze positions had 3 or more direction actions possible.

Note that some tasks have similar properties; however, the layout of the maps

in these tasks differed. See the code release from Svetlik et al. [123] for more

details. 98

xiv

9.1 The papers discussed in Section 9.2, categorized along the dimensions pre-

sented in Section 9.1. Bolded values under evaluation metric indicate strong

transfer. 121

9.2 The papers discussed in Section 9.3, categorized along the dimensions pre-

sented in Section 9.1. Bolded values under evaluation metric indicate strong

transfer. 124

9.3 The papers discussed in Section 9.4, categorized along the dimensions pre-

sented in Section 9.1. Bolded values under evaluation metric indicate strong

transfer. 146

xv

List of Figures

1.1 Different subgames in Quick Chess . 2

1.2 A visual illustration of how the chapters in this thesis depend on each other.

Arrows denote that one chapter should be read before another. 6

2.1 Tile coding over 2 dimensions of state variables. Image from Taylor and Stone

[126]. 13

2.2 An inter-task mapping from states and actions in the target task to states

and actions in a source. Image from Taylor and Stone [127]. 16

2.3 Performance metrics for transfer learning using (a) weak transfer and (b)

strong transfer with offset curves. 18

3.1 Examples of structures of curricula from previous work. (a) Linear sequences

in a gridworld domain [83], where the goal of the agent is to pick up a key and

use it to unlock a lock. Based on the agent’s sensing and action capabilities,

the curriculum sequentially teaches skills such as navigating to keys and locks

while avoiding pits. (b) Directed acyclic graphs in block dude [123], where

to goal is to build a staircase of blocks that allow the agent to reach the exit

door. In a graph form, a curriculum allows different skills to be learned in

parallel and then combined. 24

xvi

4.1 Examples of tasks in Ms. Pac-Man. (a) Maze 1 (b) Maze 2 (c) Maze 3 (d)

Maze 4 . 37

4.2 Results of TaskSimplification applied to the Ms. Pac-Man domain. Dashed

lines indicate standard error. 39

4.3 Results of MistakeLearning applied to the Ms. Pac-Man domain. See

Section 4.3.2 for details. Dashed lines indicate standard error. 40

4.4 Examples of tasks in Half Field Offense. (a) HFO initial configuration and 2v2

dribble task (b) 2v2 shoot task. Offensive players are colored yellow, defensive

players are blue, and the goalie is pink. The ball is shown by the white circle. 41

4.5 Goal scoring accuracy on 2v2 HFO for agents following different curricula.

Standard error (not shown to avoid clutter) ranged from 0.015 to 0.027 over

the last 200 episodes for all curves. 46

4.6 Goal scoring accuracy on 2v3 HFO for agents following different curricula.

Standard error (not shown to avoid clutter) ranged from 0.010 to 0.039 over

the last 200 episodes for all curves. 48

5.1 An example baseline test for one of the 192 tasks. The dark line indicates

the reward averaged after 10 different runs (shown as the lighter lines), each

starting with a different random seed. In this example, the policy converged

after about 700 episodes. 54

5.2 An example transfer result for a given target task and two potential source

tasks. Task A is clearly the better source task, resulting in a large positive

transfer. 59

xvii

5.3 An example transferability matrix computed for each pair of the 192 tasks

considered in our experiments. In this matrix, the entry at i, j amounts to

the resulting jumpstart(30) measure after transferring the policy learned on

task Mi to task Mj. Light values indicate high jump start while black values

indicate low (possibly negative) jump start. 60

5.4 Example histograms of the jump start measures for two randomly chosen tar-

get tasks (i.e., a histogram over the values in a given column of the transfer-

ability matrix). For the first target task (top histogram), virtually all source

task result in positive transfer, while for the second, there are a large number

of source tasks that induce negative transfer. 61

5.5 Source Task Selection loss for three transferability measures. The two regres-

sion models were compared with the baseline source task selection model and

with random source task selection. 62

5.6 Evaluation of source task ranking using the learned regression model and the

baseline case-based reasoning approach. The ranking was evaluated using the

Normalized Discounted Cumulative Gain (DCGp) and the jumpstart(w = 5)

measure (the results were similar for the remaining values of w used in this

study). The value for p, the number of elements to be considered in the

ranking (starting at position 1) was set to 20. 64

5.7 Performance on the target task using one and two-stage transfer. Note that

the transfer curves are offset to reflect time spent training in their source

tasks. In this example, all methods of transfer result in jump start but there

is no benefit of two-stage transfer relative to single-stage transfer 66

6.1 (a) Grid world target task (b) Sample curricula generated for each of the

agents. Each one ends in the target task. 75

xviii

6.2 Performance on the target task by the basic agent after training using various

curricula. Each curve was averaged over 500 runs, and is offset to reflect time

spent training in source tasks. The basic curriculum is statistically signifi-

cantly better than the other curricula until game step 12292, using a 2-tail

t-test with p < 0.05. 79

6.3 Performance on the target task by the action-dependent agent after training

using various curricula. Each curve was averaged over 500 runs, and is offset to

reflect time spent training in source tasks. The action dependent curriculum

is statistically significantly better than the other curricula between game steps

2809 and 4258, using a 2-tail t-test with p < 0.05. 80

6.4 Performance on the target task by the rope agent after training using various

curricula. Each curve was averaged over 500 runs, and is offset to reflect time

spent training in source tasks. The rope curriculum is statistically significantly

better than the other curricula until game step 12510, using a 2-tail t-test with

p < 0.05. 80

7.1 A simple 4 state task MDP, and 3 examples of CMDP states over this task.

Each CMDP state corresponds to a different policy over the task MDP. Val-

ues under the “Left” and “Right” columns are weights (such as q-values or

probabilities) for taking those actions in a primitive state in the task MDP,

and correspond to θ from Equation 7.1. CMDP states 1 and 2 have similar

policies. Therefore, we want them to be close in the featurized CMDP state

space. In contrast, CMDP state 3 has a more different policy, and should be

farther away in CMDP state space. 88

xix

7.2 An example of how tile coding can be used to create CMDP features for the

4 state MDP from Figure 7.1. In this case, |S| = 4 for the 4 primitive states,

and |A| = 2 for the left and right primitive actions. We treat the raw state

variables θ in Figure 7.1 as q-values and normalize them before applying the

tilings. 89

7.3 CMDP learning curves for the basic agent using different curriculum design

approaches and CMDP state space representations. The y-axis represents

the cost (i.e., negative of the time needed) to reach a performance of 700 on

the target task, following the curriculum policy at episode X. All curves are

averaged over 500 runs. Each curriculum method was statistically significantly

better than no curriculum using a 2 tail t-test with p < 0.05. 95

7.4 CMDP learning curves for the action-dependent agent using different curricu-

lum design approaches and CMDP state space representations. The y-axis

represents the cost (i.e., negative of the time needed) to reach a performance

of 700 on the target task, following the curriculum policy at episode X. All

curves are averaged over 500 runs. Each curriculum method was statistically

significantly better than no curriculum using a 2 tail t-test with p < 0.05. . . 96

7.5 CMDP learning curves for the rope agent using different curriculum design

approaches and CMDP state space representations. The y-axis represents

the cost (i.e., negative of the time needed) to reach a performance of 700 on

the target task, following the curriculum policy at episode X. All curves are

averaged over 500 runs. Each curriculum method was statistically significantly

better than no curriculum using a 2 tail t-test with p < 0.05. 96

xx

7.6 CMDP learning curves on the Ms. Pac-Man target task, using value function

transfer. All curves are averaged over 500 runs and cost is measured in game

steps. Each curriculum method was statistically significantly better than no

curriculum at convergence. These were tested using a 2-tail t-test with p <

0.05. 100

7.7 CMDP learning curves on the Ms. Pac-Man target task, using transfer with

reward shaping. All curves are averaged over 500 runs, and cost is measured in

episodes. Each curriculum method was statistically significantly better than

no curriculum at convergence. In addition, the CMDP-based approaches were

statistically better than Svetlik et al. [123]. These were tested using a 2-tail

t-test with p < 0.05. 100

7.8 A CMDP learning curve comparison between the continuous representations

for value function and reward shaping transfer, using different criteria to de-

termine when to stop training on source tasks. All curves are averaged over

500 runs and cost is measured in game steps. The “small fixed approaches

were statistically better than their corresponding “return-based methods at

convergence. These were tested using a 2-tail t-test with p < 0.05. 102

8.1 Examples of tasks in the gridworld environment. The red arrow is the agent,

and the green circle is the goal. (a) An example of a target task. (b) An

example of a dynamic source task for the target task in (a). 107

8.2 The 8 static source tasks, that teach an agent to navigate to an adjacent

room. They are shown grouped by the agent’s room for clarity, but each task

is independent. 108

xxi

8.3 The two-stream network architecture used for the teacher CMDP agent. The

agent knowledge features sC are the weights θ of the student agent’s action-

value function. The task features is the length 4 vector corresponding to the

start and end coordinates of the task as described in Section 8.1. 110

8.4 CMDP learning curves for the interpolation experiments. The x-axis repre-

sents CMDP episodes, where each episode is an entire run of a curriculum.

The y-axis is the cost of that curriculum in game steps. The curriculum

curve converges to a cost that is statistically signficantly better than the no

curriculum curve, using a 2-tail t-test with p < 0.05. 111

8.5 Examples of target tasks in the training and test sets for the extrapolation

experiments. 112

8.6 CMDP learning curves for the extrapolation experiments. The x-axis repre-

sents a CMDP episode, where each episode is an entire run of a curriculum.

The y-axis is the cost of that curriculum in game steps. Taking all the points

along the curve, the curriculum curve was statistically significantly better

than no curriculum, using a 2-tail t-test with p < 0.05. 113

8.7 Examples of curricula seen in the (a) training set and (b) test set. Tasks in

the test set were the only ones that benefitted from a curriculum that directed

the agent from the top left room to the bottom right. All other combinations

of start and end rooms were seen in the training set. 113

9.1 One example of curricula designed by human users. (a) Given final task. (b)

A curriculum designed by one human participant. 142

xxii

1. Introduction

In recent years, autonomous reinforcement learning (RL) agents have successfully solved

increasingly complex problems. For example, they have been used to play Atari games with

human-level performance [77], have bested the world’s top professional Go player [110], and

have also “solved” variants of poker [14]. However, training agents and systems like these

typically require collecting massive amounts of training experience, which may not always be

possible, especially in time-limited scenarios. Transfer learning [66, 127] is one recent area

of research that seeks to speed up learning on a target problem by transferring knowledge

from one or more related source problems. Most existing transfer learning techniques have

treated this procedure as a one-shot process, where an agent trains on one or more source

problems, and directly transfers the knowledge gained to the target problem. However, they

have stopped short of asking whether those source problems themselves could benefit from

training on even simpler subproblems. This breakdown could be necessary when solving a

source problem depends on having learned other behaviors as prerequisites.

One source of inspiration for this idea can be found in human learning. Humans

learn to solve complex problems by incrementally acquiring and building the necessary skills

via a curriculum. Such curricula are present throughout early human development, formal

education, and life-long learning all the way to adulthood. Whether learning to play a

sport, or learning to become an expert in mathematics, the training process is organized

and structured so as to present new concepts and tasks in a sequence that leverages what

has previously been learned. In a variety of human learning domains, the quality of the

curricula has been shown to be crucial in achieving success. Curricula are also present in

animal training, where it is commonly referred to as shaping [89, 113].

1

Figure 1.1: Different subgames in Quick Chess

As a motivating example, consider the game of Quick Chess1 (Figure 1.1). Quick

Chess is a game designed to introduce human players to the full game of chess, by using a

sequence of progressively more difficult “subgames.” For example, the first subgame is a 5x5

board with only pawns, where the player learns how pawns move and about promotions. The

second subgame is a small board with pawns and a king, which introduces a new objective:

keeping the king alive. In each successive subgame, new elements are introduced (such as

new pieces, a larger board, or different configurations) that require learning new skills and

building upon knowledge learned in previous games. The final game is the full game of chess.

This thesis explores the extent to which similar ideas can be used to improve the

learning ability of autonomous reinforcement learning agents. Specifically, the goal of this

thesis research is to answer the following question:

Can reinforcement learning agents benefit from learning via a curriculum, and how can an

autonomous curriculum design agent automatically create a curriculum tailored to both the

abilities of individual learning agents and the task in question?

1http://www.intplay.com/uploadedFiles/Game Rules/P20051-QuickChess-Rules.pdf

2

1.1 Contributions

This thesis answers this question by making the following contributions to the field of cur-

riculum learning in reinforcement learning:

1. Problem Definition

This thesis formalizes the concept of a curriculum, and the method of curriculum

learning in the context of reinforcement learning. It describes curriculum learning and

each of its components, and also defines metrics to quantify the utility of a curriculum.

These ideas are discussed in Chapter 3.

2. Methods for Creating Source Tasks

In order to create a curriculum, a curriculum designer must first be able to create a

space of source tasks that would form components of a curriculum. This thesis presents

a series of methods to create source tasks relevant for an agent by using knowledge

of the domain, and also by observing the agent’s learning progress on the target task.

These methods are discussed in Chapter 4.

3. Method to Evaluate Task Transferability

In order to determine how to sequence tasks into a curriculum, we need to know

how useful learning one task will be to bootstrap learning of another. This thesis

presents an approach that uses parameterized representations of tasks to learn a task-

transferability model, which can be used to predict the utility of a source task for a

target task, in Chapter 5.

4. Methods for Sequencing Tasks into a Curriculum

The core question in curriculum learning is how to best sequence a set of potential

source tasks into a curriculum. This thesis proposes algorithms to automatically create

a curriculum in Chapters 6 and 7.

3

In real world domains, different robots/agents may be called upon to perform a task

(for example, due to availability), where each has its own sensing and acting capa-

bilities. These differences suggest each agent would benefit from an individualized

curriculum. Therefore, the sequencing methods this thesis presents will also produce

curricula tailored to the individual abilities of each agent.

5. Methods for Adapting a Curriculum Created for one Task to a Different

Task

Many existing curriculum learning methods for RL agents generate curricula indepen-

dently for each agent and target task. This process can be very expensive, especially if

there are multiple target tasks or agents that require curricula. Therefore, this thesis

proposes algorithms to reuse this knowledge, so that a curriculum generated for one

task can be adapted for another. These ideas are presented in Chapter 8.

6. A Taxonomy of Curriculum Learning Approaches for RL

Over the past few years, several different methods for curriculum learning in reinforce-

ment learning have been devised. Each of these methods makes different assumptions

about the way tasks in the curriculum are generated, sequenced, and evaluated. These

design choices affect the types of settings each method can be applied in. This thesis

presents a taxonomy of these methods in Chapter 9, highlighting common themes of

approaches thus far, which is designed to inform future research in this area.

7. Empirical Validation

This thesis evaluates the above contributions in both a simple domain that allows

prototyping and ablation analysis of the different elements involved in generating a

curriculum, as well as a more complex domain that will test the ability of the methods

to scale up. These experiments appear in Chapters 4 to 8, for Contributions 2 to 5 as

described above.

4

Curriculum learning is a method to improve the efficiency of RL agents. Taken to-

gether, the contributions of this thesis make advances in each of the core components of

curriculum learning, providing methods to both generate and sequence tasks into a curricu-

lum. This thesis also formalizes the curriculum learning method and situates it with respect

to related reinforcement learning work, providing a common basis to discuss and advance

ideas in this area.

1.2 Thesis Overview

The rest of this thesis is organized as follows. Although the chapters of this thesis are written

to be read in order, doing so is not required. Figure 1.2 specifies the dependencies between

chapters.

• Chapter 2 - Background. This chapter provides the necessary background to un-

derstand the rest of this thesis. Here, I review the basics of reinforcement learning in

Markov Decision Processes with function approximation. I also review transfer learning

methods, and how they are evaluated.

• Chapter 3 - The Curriculum Learning Method. In this chapter, I formalize the

concept of a curriculum and the methodology of curriculum learning. I also discuss how

curricula can be evaluated by extending the metrics devised for single stage transfer

learning. This chapter addresses Contribution 1 of this thesis.

• Chapter 4 - Task Generation. In this chapter, I introduce a set of methods to

semi-automatically create relevant source tasks for a given target task. These methods

use a parameterized model of the domain, and observations of the agent interacting in

the target task to create useful source tasks. This chapter addresses Contribution 2 of

this thesis.

5

Figure 1.2: A visual illustration of how the chapters in this thesis depend on each other.
Arrows denote that one chapter should be read before another.

6

• Chapter 5 - Measuring Inter-task Transferability. In this chapter, I present a

method to model the inter-task transferability of a source task for a target task; i.e.,

how much benefit (evaluated by the jumpstart metric) one can expect when transfer-

ring from a specified source task to a specified target task. This chapter addresses

Contribution 3 of this thesis.

• Chapter 6 - Heuristic-based Approaches for Sequencing. In this chapter, I

present a heuristic method to automatically sequence tasks into a curriculum. The

method uses samples of the agent’s behavior on the target task to select the next

source task in the curriculum. It relies on the task generation methods from Chapter

4, and produces individualized curricula for different agents. This chapter addresses

Contribution 4 of this thesis.

• Chapter 7 - Learning-based Approaches for Sequencing. In this chapter, I

present a learning-based method to automatically sequence tasks into a curriculum.

It formulates curriculum generation as an interaction between a student and teacher

MDP, and learns a curriculum policy, which is a mapping from the student’s knowledge

to what task it should learn next. Like in the method from Chapter 6, the resulting

curriculum is tailored to each agent. This chapter addresses Contribution 4 of this

thesis.

• Chapter 8 - Generalizing Curricula. In this chapter, I discuss an approach to

generalize the model described in Chapter 7 over different target tasks. This process

allows the method to produce curricula for novel, unseen target tasks. This chapter

addresses Contribution 5 of this thesis.

• Chapter 9 - Taxonomy of CL Methods and Related Work. In this chapter,

I present a taxonomy for curriculum learning methods, and provide a detailed survey

addressing each of the elements of curriculum learning. I also describe how curriculum

7

learning relates to other ideas in reinforcement learning, and how curriculum learning

has been used in supervised learning and human education. This chapter addresses

Contribution 6 of this thesis.

• Chapter 10 - Conclusion and Future Work. In this chapter, I conclude by giving

a recap of the work presented in previous chapters. I also describe some ongoing work

connecting the methods devised in this thesis back to human learning, and present

ideas for future work.

8

2. Background

Curriculum learning in reinforcement learning builds upon two key fields of study. In this

chapter, I provide the necessary background information on these fields and introduce the

notation that will be used throughout this thesis. The first field is reinforcement learning,

which frames decision making problems as a Markov Decision Process (MDP) and is con-

cerned with how to act to maximize an environmental reward signal. The second is transfer

learning, which studies how an agent can reuse knowledge acquired in one task to improve

performance on another task, and forms the basis for curriculum learning.

Throughout this thesis, I will use the following conventions for notation (adapted from

Sutton and Barto [121]). Any exceptions to these conventions will be noted by footnotes in

the thesis:

Sets will be denoted using capital caligraphic letters (e.g., S).

Random variables will be denoted with capital letters (e.g., Rt is the reward observed at

time t)

Elements of sets, instantiations of random variables, functions, and constants will

be denoted by lowercase letters (e.g., s ∈ S for an element of the state space S).

Vectors will be indicated in bold (e.g., θ)

2.1 Reinforcement Learning

Reinforcement learning is a branch of machine learning that considers how an agent should

act in an environment. Unlike other branches of machine learning such as supervised learning,

9

the agent is given a delayed (and possibly sparse) numeric reward signal, rather than explicit

labels on each step indicating whether the action taken was correct or not. The goal of

the agent is to learn through interaction which actions to take in order to maximize the

cumulative rewards from the signal over time.

2.1.1 Markov Decision Processes

We can formalize the interaction of an agent with its environment (i.e. a task) as a Markov

Decision Process (MDP). In this work, we restrict our attention to episodic MDPs:

Definition 2.1. An episodic MDP M is a 6-tuple (S,A, p, r,∆s0,Sf), where S is the set of

states, A is the set of actions, p(s′|s, a) is a transition function that gives the probability of

transitioning to state s′ after taking action a in state s, and r(s, a, s′) is a reward function

that gives a scalar reward for taking action a in state s and transitioning to state s′. In

addition, we shall use ∆s0 to denote the initial state distribution, and Sf to denote the set

of terminal states. In some situations, instead of referring to an initial state distribution, we

will instead refer to a set of initial states S0. In this case, it is implied that the initial state

distribution is uniform over the set of initial states.

We consider time in discrete time steps. At each time step t, the agent observes its

state and chooses an action according to its policy π(a|s). The goal of the agent is to learn an

optimal policy π∗, which maximizes the expected return Gt (the cumulative sum of rewards

R) until the episode ends at a terminal state on timestep T :2

Gt =
T−t∑
i=1

Rt+i

There are two main classes of methods to learn π∗: value function approaches and

policy search approaches. In value function approaches, a value vπ(s) is first learned for each

2We use a capital T here to match conventional notation even though it is a constant

10

state s, representing the expected return achievable from s by following policy π. Through

policy evaluation and policy improvement, this value function is used to derive a policy

better than π, until convergence towards an optimal policy. Using a value function in this

process requires a model of the reward and transition functions of the environment. If the

model is not known, one option is to learn an action-value function instead, qπ(s, a), which

gives the expected return for taking action a in state s and following π after:

qπ(s, a) =
∑
s′

p(s′|s, a)[r(s, a, s′) + qπ(s′, a′)] , where a′ ∼ π(·|s′)

The action-value function can be iteratively improved towards the optimal action-

value function q∗ with on-policy methods such as SARSA [121]. The optimal action-value

function can also be learned directly with off-policy methods such as Q-learning [140]. An

optimal policy can then be obtained by choosing action argmaxaq∗(s, a) in each state. If

the state space is large or continuous, the (action-)value function can be approximated

as a function of state features φ(s) and a weight vector θ. We discuss several common

representations for function approximation using such vectors in the next section.

In contrast, policy search methods directly search for or learn a parameterized pol-

icy π(a|s,θ), without using an intermediary value function. Typically, the parameter θ is

modified using search or optimization techniques to maximize some performance measure

J(θ)3. For example, in the episodic case J(θ) could correspond to the value of the policy

parameterized by θ from the starting state s0: vπθ(s0). One example of a policy search

method is Proximal Policy Optimization (PPO) [108].

2.1.2 Function Approximation

There are many different types of functions we can use to represent a value function or policy.

I will ground the discussion below by considering function approximation for estimating the

3We use capital J to match convention even though it is a function

11

value function. However, the function can also be used to approximate an action-value

function or policy as well.

In value function learning without function approximation, a separate entry in a

lookup table is maintained for each state s, that represents the current estimate of the value

of that state v̂(s). With function approximation, we instead approximate the value of state

s using an approximate value function v̂(s,θ) that is parameterized by a weight vector θ.

There are many types of functions we can use to approximate v̂. For example, one common

approach is a linear function approximator [121]. In this case, the value is represented as

the inner product of the weight vector θ and a feature vector φ(s) derived from the state s:

v̂(s,θ) = θTφ(s) =
∑
i

θiφi(s) (2.1)

where φi(s) is the number corresponding to feature i in state s, and θi is the corresponding

weight for that feature. There are many options for extracting and representing features

φ(s) for a state: common choices include radial basis functions, polynomial basis functions,

and tile coding [121].

As we use tile coding for encoding features in some experiments in later chapters, I

briefly describe it here. Tile coding is a way of representing a continuous feature space by

overlaying several overlapping tilings over subsets of state variables (see Figure 2.1). The

value of the state variable is used to determine which tile is activated in each tiling, and

each activated tile contributes a weighted value to the output for a given state. Increasing

the number of tilings or their size allows the encoding to generalize better, while decreasing

it allows better representation of finer details.

Another option for function approximation is to use a nonlinear function approxima-

tor, such as a neural network. Recently, deep neural networks have become a popular choice,

as they are able to learn complex nonlinear policies and can be trained end-to-end from raw

state input. Reinforcement learning algorithms using deep nets for function approximation

12

Figure 2.1: Tile coding over 2 dimensions of state variables. Image from Taylor and Stone
[126].

have been successful at achieving human or better than human level performance in Atari

games [77] and the ancient Chinese game of Go [110].

The right function approximator to use very much depends on the domain. The

methodology we develop throughout this thesis is designed to be independent of the type of

function approximator used; we indicate in the experimental section of each chapter which

type was used.

2.2 Transfer Learning

Let the task the agent must learn be denoted as the target task. In the standard reinforcement

learning setting, an agent usually starts with a random policy, and directly attempts to learn

an optimal policy for the target task. When the target task is difficult, for example due to

adversarial agents, poor state representation, or sparse reward signals, learning can be very

slow.

Transfer learning is one class of methods and area of research that seeks to speed up

13

training of RL agents. The idea behind transfer learning is that instead of learning on the

target task tabula rasa, the agent can first train on one or more source task MDPs, and

transfer the knowledge acquired to aid in solving the target. This knowledge can take the

form of samples [67, 68], options [114], policies [29], models [25], or value functions [126].

Some of these methods assume that the source and target MDPs either share state

and action spaces, or that a task mapping [128] (see Figure 2.2) is available to map states

and actions in the target task to known states and actions in the source. Such mappings

can be specified by hand, or learned automatically [4, 129]. Other methods assume the

transition or reward functions do not change between tasks. The best method to use varies

by domain, and depends on the relationship between source and target tasks. While most

methods assume that knowledge is transferred from one source task to one target task, some

methods have also been proposed to transfer knowledge from several source tasks directly

to a single target [123]. See Taylor and Stone [127] or Lazaric [66] for a survey of transfer

learning techniques.

Curriculum learning utilizes transfer learning as a component to transfer information

acquired in tasks of a curriculum, as we discuss in Chapter 3. The methods we propose

are designed to be general enough to work with any type of transfer learning method used.

However, in the next section I describe two specific transfer learning methods that we used

as part of the methods devised in this thesis.

2.2.1 Methods

In this section, I provide background on two types of transfer learning methods used in the

methods of this thesis: value/policy transfer and transferring a shaping reward.

14

Value Function and Policy Transfer

The first type of transfer learning method we use in this thesis is value function transfer [128].

In value function transfer, the parameters of an action-value function qsource(s, a) learned in

a source task are used to initialize the action-value function in the target task qtarget(s, a).

This process biases exploration and action selection in the target task based on experience

acquired in the source task. Closely related to this idea is policy transfer, where instead

of transferring the weights of the action-value function, we instead transfer the weights of

the parameterized policy. In the context of deep learning and neural networks, this idea is

commonly referred to as finetuning.

These types of transfer typically assume that the source and target MDPs either share

state and action spaces (such that a policy derived from the source task can be directly

applied to the target task), or that a task mapping [128] is available to transform states and

actions in the target task to states and actions in the source. In this work, the representation

either does not change between tasks, or we use egocentric feature spaces that scale in size

and pad the extra dimensions. For example, a more difficult task may have additional

objects or opponents; weights for features for these extra objects are initialized to 0 (this is

commonly referred to as padding). Thus the mapping is available (as part of the transfer

learning method, which we treat as a black box) if necessary to facilitate transfer.

Reward Shaping

Reward shaping is a method where the reward function in the target task MDP is augmented

by adding an additional shaping reward f , that is derived from the source tasks. When the

target task is difficult due to sparse rewards, adding a shaping reward can provide more

dense feedback, and allow an RL algorithm to learn faster. The new reward function in the

15

Figure 2.2: An inter-task mapping from states and actions in the target task to states and
actions in a source. Image from Taylor and Stone [127].

target task MDP thus becomes:

r′(s, a, s′) = r(s, a, s′) + f(s, a, s′) (2.2)

In order to prevent this process from changing the optimal policy, we use potential-

based advice [144], which restricts the form of f to be a difference of potential functions:

f(s, a, s′) = Φ(s′, π(s′))− Φ(s, a) (2.3)

where Φ is a potential function. Choosing shaping rewards of this form is both necessary

and sufficient to guarantee that adding f to the reward does not change the optimal policy

[85]. In order to use shaping rewards for transfer, we follow the work of Svetlik et al.

[123], where the value function learned in a source task is used as the potential function:

Φ(s, a) = qsource (s, a). When multiple source tasks are present, as will be the case in

curriculum learning, the potential function is composed as the sum of value functions from

16

the set of sources D:

Φ(s, a) =
∑
i∈D

qi(s, a) (2.4)

2.2.2 Evaluation Metrics

There are several metrics to quantify the benefit of transferring from a source task to a

target task [127]. Typically, they compare the learning trajectory on the target task for

an agent after transfer, with an agent that learns directly on the target task from scratch

(see Figure 2.3a). One metric is time to threshold, which computes how much faster an

agent can learn a policy that achieves expected return G0 ≥ δ on the target task if it

transfers knowledge, as opposed to learning the target from scratch, where δ is some desired

performance threshold. Time can be measured in terms of CPU time, wall clock time,

episodes, or number of actions taken. Another metric is asymptotic performance, which

compares the final performance after convergence in the target task of learners when using

transfer versus no transfer. The jumpstart metric instead measures the difference between

the initial performance after transfer and the initial performance without transfer. Finally,

the total reward ratio compares the total reward accumulated by the agent during training

up to a fixed stopping point, using transfer versus not using transfer. For more details on

these metrics, see Taylor and Stone [127].

An important evaluation question is whether to include time spent learning in source

tasks into the cost of using transfer. The transfer curve in Figure 2.3a shows performance

on the target task, and starts at time 0, even though time has already been spent learning

one or more source tasks. Thus, it does not reflect time spent training in source tasks before

transferring to the target task. This situation is known in transfer learning as the weak

transfer setting, where time spent training in source tasks is treated as a sunk cost. On the

other hand, in the strong transfer setting, the learning curves must account for time spent

in all source tasks. One way to account for this cost is to offset the curves to reflect time

17

(a) (b)

Figure 2.3: Performance metrics for transfer learning using (a) weak transfer and (b) strong
transfer with offset curves.

spent in source tasks, as shown in Figure 2.3b. Another option is to freeze the policy while

learning on source tasks, and plot that policy’s performance on the target task.

2.3 Summary

In this chapter, I introduced the notation that will be used throughout this thesis, as well

as provided background on reinforcement learning and transfer learning. These two ideas

form the basis for this thesis, as it considers how to use curriculum learning in reinforcement

learning domains, leveraging existing ideas from transfer learning. In Chapter 3, I will

specifically formalize how these ideas fit into the curriculum learning framework. Together,

these two chapters will form the foundation for the rest of the ideas explored in this thesis.

18

3. The Curriculum Learning Method

The idea of using a curriculum to train artificial agents can be traced back at least as far

as Elman [24] in 1993. Over the years, curricula have been used to train agents on complex

reinforcement learning tasks in areas such as robotics [6, 71] and games [147]. These curricula

were often manually defined using expert knowledge of the problem domain.

Very recently, several research groups have begun examining how such curricula can

be designed automatically. The recent spark of interest has been a result of two phenomena:

1) the problems we hope to solve have become increasingly complex and 2) prerequisite

fields for curriculum learning, such as transfer learning, have sufficiently matured. However,

what exactly constitutes a curriculum and what precisely qualifies an approach as being an

example of curriculum learning is not clearly and consistently defined in the literature.

A curriculum has been represented in many ways: for example, the most common

way is as an ordering of tasks. At a more fundamental level, a curriculum can also be

represented as an ordering of individual experience samples. In addition, a curriculum does

not necessarily have to be a simple linear sequence. One task can build upon knowledge

gained from multiple source tasks, just as courses in human education can build off of

multiple prerequisites.

In this chapter, I formalize the concept of a curriculum, with a definition that is

broad enough to encompass many of the ideas and methods present in the literature. I

also formalize the methodology of curriculum learning, which focuses on how to create a

curriculum, and describe how to evaluate the costs and benefits of training reinforcement

learning agents using this methodology. This chapter is based on work that was published in

the Journal of Machine Learning Research [84] and addresses Contribution 1 from Chapter

19

1 of this thesis.

3.1 Curricula

A curriculum is a general concept that encompasses both schedules for organizing past

experiences, and schedules for acquiring experience by training on tasks. As such, we first

propose a fully general definition of curriculum, and then follow it with refinements that

apply to special cases common in the literature.

We assume a task is modeled as a Markov Decision Process, and define a curriculum

as follows:

Definition 3.1 (Curriculum). Let T be a set of tasks, where Mi = (Si,Ai, pi, ri,∆si0 ,Sif)

is a task in T . Let DT be the set of all possible transition samples from tasks in T : DT =

{(s, a, r, s′) | ∃Mi ∈ T s.t. s ∈ Si, a ∈ Ai, s′ ∼ pi(·|s, a), r ← ri(s, a, s
′)}. A curriculum C =

(V , E , g, T) is a directed acyclic graph, where V is the set of vertices, E ⊆ {(x, y) | (x, y) ∈

V ×V ∧x 6= y} is the set of directed edges, and g : V → P(DT) is a function that associates

vertices to subsets of samples in DT , where P(DT) is the power set of DT . A directed edge

〈vj, vk〉 in C indicates that samples associated with vj ∈ V should be trained on before

samples associated with vk ∈ V . All paths terminate on a single sink node vt ∈ V .4

A curriculum can be created online, where edges are added dynamically based on

the learning progress of the agent on the samples at a given vertex. It can also be designed

completely offline, where the graph is generated before training, and edges are selected based

on properties of the samples associated with different vertices.

Creating a curriculum graph at the sample level can be computationally difficult for

large tasks, or large sets of tasks. Therefore, in practice, a simplified representation for a

curriculum is often used. There are 3 common dimensions along which this simplification

4In theory, a curriculum could have multiple sink nodes corresponding to different target tasks. For the
purpose of exposition, I assume a separate curriculum is created and used for each task.

20

can happen. The first is the single-task curriculum, where all samples used in the curriculum

come from a single task:

Definition 3.2 (Single-task Curriculum). A single-task curriculum is a curriculum C where

the cardinality of the set of tasks considered for extracting samples |T | = 1, and consists of

only the target task Mt.

A single-task curriculum essentially considers how best to organize and train on expe-

rience acquired from a single task. This type of curriculum is common in experience replay

methods [106].

A second common simplification is to learn a curriculum at the task level, where

each vertex in the graph is associated with samples from a single task. At the task level, a

curriculum can be defined as a directed acyclic graph of intermediate tasks:

Definition 3.3 (Task-level Curriculum). For each task Mi ∈ T , let DTi be the set of all

samples associated with task Mi: DTi = {(s, a, r, s′) | s ∈ Si, a ∈ Ai, s′ ∼ pi(·|s, a), r ←

ri(s, a, s
′)}. A task-level curriculum is a curriculum C = (V , E , g, T) where each vertex is

associated with samples from a single task in T . Thus, the mapping function g is defined as

g : V → {DTi |Mi ∈ T }.

In reinforcement learning, the entire set of samples from a task (or multiple tasks) is

usually not available ahead of time. Instead, the samples experienced in a task depend on

the agent’s behavior policy, which can be influenced by previous tasks learned. Therefore,

while generating a task-level curriculum, the main challenge is how to order tasks such that

the behavior policy learned is useful for acquiring good samples in future tasks. In other

words, selecting and training on a task M induces a mapping function g, and determines the

set of samples DTi that will be available at the next vertex based on the agent’s behavior

policy as a result of learning M . The same task is allowed to appear at more than one vertex,

similar to how in Definition 3.1 the same set of samples can be associated with more than

21

one vertex. Therefore, tasks can be revisited when the agent’s behavior policy has changed.

Several works have considered learning task-level curricula over a graph of tasks [71, 123].

An example can be seen in Figure 3.1b.

Finally, another simplification of the curriculum is the linear sequence. This is the

simplest and most common structure for a curriculum in existing work:

Definition 3.4 (Sequence Curriculum). A sequence curriculum is a curriculum C where the

indegree and outdegree of each vertex v in the graph C is at most 1, and there is exactly

one source node and one sink node.

These simplifications can be combined to simplify a curriculum along multiple dimen-

sions. For example, the sequence simplification and task-level simplification can be combined

to produce a task-level sequence curriculum. This type of curriculum is the one we primarily

consider in this thesis, and can be represented as an ordered list of tasks [M1,M2, ...Mn]. An

example can be seen in Figure 3.1a [83].

A final important question when designing curricula is determining the stopping cri-

teria: that is, how to decide when to stop training on samples or tasks associated with a

vertex, and move on to the next vertex. In practice, typically training is stopped when

performance on the task or set of samples has converged. Training to convergence is not

always necessary, so another option is to train on each vertex for a fixed number of episodes

or epochs. Since more than one vertex can be associated with the same samples/tasks, this

experience can be revisited later on in the curriculum.

3.2 Curriculum Learning

Curriculum learning is a methodology to optimize the order in which experience is accumu-

lated by the agent, so as to increase performance or training speed on a set of final tasks.

Through generalization, knowledge acquired quickly in simple tasks can be leveraged to re-

22

duce the exploration of more complex tasks. In the most general case, where the agent can

acquire experience from multiple intermediate tasks that differ from the final MDP, there

are 3 key elements to this method:

• Task Generation. The quality of a curriculum is dependent on the quality of tasks

available to choose from. Task generation is the process of creating a good set of

intermediate tasks from which to obtain experience samples. In a task-level curriculum,

these tasks form the nodes of the curriculum graph. This set of intermediate tasks may

either be pre-specified, or dynamically generated during the curriculum construction

by observing the agent. This thesis will present methods to generate tasks both offline

before curriculum construction, as well as methods that produce tasks based on a

dynamic analysis of the agent’s progress on a task (Chapter 4).

• Sequencing. Sequencing examines how to create a partial ordering over the set of

experience samples D: that is, how to generate the edges of the curriculum graph.

Most existing work has used manually defined curricula, where a human selects the

ordering of samples or tasks. However, recently automated methods for curriculum

sequencing have begun to be explored. This thesis will present several methods for

sequencing, each of which make different assumptions about the tasks and transfer

methodology used. These ideas will form the core of this thesis (Chapters 5 to 8).

• Transfer Learning. When creating a curriculum using multiple tasks, the intermedi-

ate tasks may differ in state/action space, reward function, or transition function from

the final task. Therefore, transfer learning is needed to extract and pass on reusable

knowledge acquired in one task to the next. Typically, work in transfer learning has

examined how to transfer knowledge from one or more source tasks directly to the

target task. Curriculum learning extends the transfer learning scenario to consider

training sessions in which the agent must repeatedly transfer knowledge from one task

23

(a) (b)

Figure 3.1: Examples of structures of curricula from previous work. (a) Linear sequences in
a gridworld domain [83], where the goal of the agent is to pick up a key and use it to unlock
a lock. Based on the agent’s sensing and action capabilities, the curriculum sequentially
teaches skills such as navigating to keys and locks while avoiding pits. (b) Directed acyclic
graphs in block dude [123], where to goal is to build a staircase of blocks that allow the agent
to reach the exit door. In a graph form, a curriculum allows different skills to be learned in
parallel and then combined.

to another, up to a set of final tasks.

3.3 Evaluating Curricula

Curricula can be evaluated using the same metrics as for transfer learning (cf. Chapter 2),

by comparing performance on the target task after following the complete curriculum, versus

performance following no curriculum (i.e., learning from scratch). If there are multiple final

tasks, the metrics can easily be extended: for example, by comparing the average asymptotic

performance over a set of tasks, or the average time to reach a threshold performance level

over a set of tasks.

Similarly, it is possible to distinguish between weak and strong transfer. However, in

curriculum learning, there is the additional expense required to build the curriculum itself,

in addition to training on intermediate tasks in the curriculum, which can also be factored

24

in when evaluating the cost of the curriculum. As in the transfer learning case, cost can be

measured in terms of wall clock time, or data/sample complexity.

Most existing applications of curricula in reinforcement learning have used curricula

created by humans. In these cases, it can be difficult to assess how much time, effort, and

prior knowledge was used to design the curriculum. Automated approaches to generate a cur-

riculum also typically require some prior knowledge or experience in potential intermediate

tasks, in order to guide the sequencing of tasks. Due to these difficulties, these approaches

have usually treated curriculum generation as a sunk cost, focusing on evaluating the per-

formance of the curriculum itself, and comparing it versus other curricula, including those

designed by people.

The best set of evaluation criteria to use ultimately depends on the specific problem

and settings being considered. For example, how expensive is it to collect data on the final

task compared to intermediate tasks? If intermediate tasks are relatively inexpensive, we can

treat time spent in them as sunk costs. Is it more critical to improve initial performance, final

performance, or reaching a desired performance threshold? If designing the curriculum will

require human interaction, how will this time be factored into the cost of using a curriculum?

Many of these questions depend on whether we wish to evaluate the utility of a specific

curriculum (compared to another curriculum), or whether we wish to evaluate the utility of

using a curriculum design approach versus training without one.

In this thesis, I will be evaluating methods using the asymptotic performance (Chapter

4), jumpstart (Chapter 5), and time to threshold metrics (Chapter 6). In these chapters,

strong transfer will be shown by accounting for time spent training in source tasks of the

curriculum, but will not account for time spent generating the curriculum. In Chapters 7

and 8, I will then present methods that produce strong transfer while accounting for time

spent both generating the curriculum and time spent in source tasks of the curriculum, using

the asymptotic performance and time to threshold metrics.

25

3.4 Summary

In this chapter, I formalized the concept of a curriculum as a directed acyclic graph over sets

of experience samples. This definition is able to represent many types of curricula present in

the literature, including linear sequences, curricula over sets of tasks, and their combinations.

After that, I presented the methodology of curriculum learning, which consists of 3 parts –

task generation, sequencing, and transfer learning – and discussed how these approaches can

be evaluated. In the next few chapters of the thesis, I will discuss methods we have designed

to address the task generation and sequencing components of curriculum learning. These

methods will utilize existing methods for transfer learning.

26

4. Task Generation

In this chapter, I consider the problem of how to generate a space of source tasks for use

in a curriculum. This problem is a crucial part of any curriculum sequencing approach that

builds on experience through multiple tasks, since the size and quality of the tasks available

to choose from will affect the speed and quality of the resulting curriculum. In existing

curriculum learning work, source tasks have often been manually hand-crafted by domain

experts independently and tailored for each problem. To the best of my knowledge, very

limited work (see Chapter 9) has been dedicated to formally studying domain-independent

methods to address this subproblem.

In this chapter, I present an approach for semi-automatically creating an appropriate

space of source tasks that can be used in both an online and offline fashion. Our approach

relies on 2 key ideas. 1) Tasks should be created using some knowledge of the domain. In

this work, we assume this knowledge comes from a parameterized model of the domain. 2)

Tasks should be tailored to the abilities and progress of the agent over the course of its

learning cycle. We do this tailoring by collecting and analyzing experience trajectories from

the agent as it interacts with different tasks.

The approach consists of a series of methods that create tasks using these two ideas by

altering different aspects of the target task MDP, such as the state space, action space, initial

and terminal state distributions, reward function, and/or transition function. This chapter

is based on work that was published in the proceedings of the Autonomous Agents and

Multi-agent Systems (AAMAS) conference [82] and addresses Contribution 2 from Chapter

1 of this thesis.

27

4.1 A Space of Tasks

Before I define methods to generate source tasks for a particular target task, I first define

the domain D, which forms the space of all possible tasks that could be created from the

target task:

Definition 4.1. A domain D is a set of MDPs that can be expressed by varying a set of

degrees of freedom, and applying a set of restrictions.

The degrees of freedom f of a domain are a vector of features [f1, f2, . . . fn] that

parameterize the domain. For example, in the Quick Chess domain (see Chapter 1), possible

degrees of freedom could be the size of the board, the number of each type of piece, or

whether special rules such as castling or en passant are allowed. Each fi ∈ f has a range

of values Rng(fi) that represents the possible values that feature can take. Furthermore, we

assume there is an ordering defined over each Rng(fi) that corresponds to task complexity.

Collectively, the ordering over these degrees of freedom encodes our domain knowledge of

the task.

An instantiation of f in D results in a specific task (an MDP). We assume we have a

generator τ that can create tasks given a domain and degree of freedom vector:

τ : D × f 7→M

By restrictions, we mean the set of tasks that can be formed by eliminating certain

actions or states, modifying the transition or reward function, or changing the starting or

terminal distributions of MDPs generated by τ .

Informally, D captures the universe of possible source tasks for use within the cur-

riculum and could be potentially infinite in size. The goal is to create a subset of tasks in

D that might be suitable for learning a given target task, using knowledge of the domain

(specified by the ordering over the degrees of freedom), and tailored to the performance and

28

abilities of the learning agent (by observing the agent learning on a task).

Formally, given a target task MDP Mt and trajectory samples X consisting of tuples

(s, a, s′, r) from following some policy πt on Mt, the goal is to create suitable source tasks

Ms ∈ D that will lead to a policy in Mt that is better than πt. Specifically, we want functions

c of the following form:

c : Mt ×X 7→Ms

In the next section, I describe several methods that can serve as c to create suitable

source tasks for a target task.

4.2 Methods

Intuitively, there are many different ways in which a task could be a useful source for transfer

to Mt: it could have a smaller or more abstract state space; it could have some actions

removed; it could focus on a useful subgoal; or it could drill a common mistake. Some of

these source tasks could be generated by simply manipulating the degrees of freedom f , and

indeed we consider that case first. However, in the rest of the section, I define additional

domain-independent instantiations for c that modify particular aspects of the target task

MDP based on the agent’s experience in the target task.

4.2.1 Task Simplification

The first method we propose, TaskSimplification (Algorithm 1), simplifies a task using

knowledge of the domain’s parameterization. Here, Simplify is a function that changes one

of the degrees of freedom fi ∈ f to a new f ′i ∈ Rng(fi), in order to make the task smaller

or easier. In many domains, there is a natural interpretation for Simplify. For example, in

Quick Chess, we could reduce the value of parameters such as the size of the board or the

number of specific pieces. In multiagent settings, we can add cooperative agents or remove

29

adversarial ones.

Algorithm 1 Task Simplification

1: procedure TaskSimplification(M,X,D,f , τ)
2: f ′ = Simplify(f)
3: M ′ ← τ(D,f ′)
4: return M ′

TaskSimplification transforms the state, action, transition, and reward functions

of an MDP simultaneously, in a domain-specific way.

4.2.2 Promising Initializations

The second method is designed for tasks that have a sparse reward signal. In many RL

problems, positive outcomes can be rare, especially at the onset of learning. An agent may

have to reach the goal randomly or through some exploration scheme many times before the

policy stabilizes. PromisingInitializations creates a task that initializes an agent near

states that were found to have high reward.

Algorithm 2 Promising Initializations

1: procedure PromisingInitializations(M,X, d, δ, ρ)
2: Y ← {(s, a, s′, r) ∈ X : r ≥ ρth percentile of all rewards in X}
3: M ′ ←M
4: S ′0 ← {}
5: for (s, a, s′, r) ∈ Y do
6: S ′0 ← S ′0 ∪ FindNearbyStates(s,X, d, δ)

7: M ′.S0 ← S ′0
8: return M ′

Here, the parameter ρ ∈ [0, 100] is a percentile that defines the fraction of rewards

an agent has seen in its experience trajectory X that it should consider to be positive out-

comes. FindNearbyStates is a domain-dependent function that returns a set/distribution

of states that are close to a given state, using either a distance metric d : S × S 7→ R or

a pseudo-distance based on steps away in a trajectory. The exact form depends on the

30

representation used for the MDP.

If the state space is factored, we can perturb the state vector by some amount δ such

that the distance from the original state to the perturbed state (measured by d) is less than

δ. In our Quick Chess example, if the state space consists of the positions of all pieces on

the board, we can use a distance metric that measures the least number of “moves” needed

to transform one board configuration to another. FindNearbyStates would return all

configurations that are δ steps away. If the state space is not factored (for example, in a

tabular representation), then we can use the trajectory samples X to find states that are at

most δ steps away from a high reward state, and explore these further.

As I discuss in the related work (Chapter 9), ideas based on PromisingInitializa-

tions have subsequently been used to perform sequencing, such as the Reverse Curriculum

Generation approach by Florensa et al. [32].

4.2.3 Mistake-Driven Subtasks

The next set of methods we introduce here create subtasks to help an agent avoid and correct

its mistakes. In principle, a mistake is any action or sequence of actions (e.g., an option [122])

taken in a state that deviates from the optimal policy.

In practice, the agent does not know the optimal policy while learning, so we propose

3 alternative characteristics to automatically identify mistakes. The first is any action that

leads to unsuccessful termination of an episode, such as not reaching a goal state. Second

is any action that results in no change in state. Finally, a mistake could be any action

that incurs a large negative reward. In the following methods, I use IsMistake to denote

whether a mistake was detected, using these criteria.

31

Action Simplification

The first mistake-driven subtask generation method I propose, ActionSimplification,

prunes the action set to create a subtask where mistakes are less likely. Action set pruning

is especially useful in settings where actions have preconditions for success. For example, a

robot must grasp an object before manipulating it. An autonomous car must be standing

still before opening the doors. However, it is also useful when the agent has more abili-

ties/behaviors than are necessary to complete the target task or subtask. Algorithm 3 shows

a simple example of ActionSimplification that removes actions which commonly cause

mistakes. The parameter α ∈ Z is a threshold on the number of times an action should lead

to a mistake before it is pruned. In practice, it may be useful to set these thresholds so that

only one action is eliminated at a time, or only eliminated in certain states.

Algorithm 3 Action Simplification

1: procedure ActionSimplification(M,X,α)
2: M ′ ←M
3: count(a) = 0,∀a ∈ A
4: Y ← {(s, a, s′, r) ∈ X : IsMistake(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: count(a)+ = 1

7: A′ = {a ∈ A : count(a) > α}
8: M ′.A = M ′.A \ A′
9: return M ′

Mistake Learning

In contrast, the second method, MistakeLearning (Algorithm 4), directly tries to correct

mistakes by rewinding the game back some number of steps, and having the agent learn a

revised policy from there. Intuitively, focusing training on areas of the state space where the

agent made a “mistake,” gives access to this experience much faster, allowing the agent to

also learn to correct itself much faster.

The question of how far back in the trajectory to rewind is an interesting challenge

32

Algorithm 4 Mistake Learning

1: procedure MistakeLearning(M,X, ε)
2: M ′ ←M
3: S ′0 ← {}
4: Y ← {(s, a, s′, r) ∈ X : IsMistake(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: S ′0 ← S ′0 ∪Rewind(X, s, ε)

7: M ′.S0 ← S ′0
8: return M ′

in and of itself. For now, Rewind is a simple method that looks back ε steps from S in

trajectory X, and returns the found state. However, in principle it could be more complex,

based on the type of mistake made or the situation where it was made. In our example of

Quick Chess, we could rewind the game to determine what should have been done differently

to avoid a checkmate.

4.2.4 Option-based Subgoals

The next method creates subtasks for learning subgoals. The options literature [122] iden-

tifies many approaches to finding subgoals. Many take a state-based approach, where the

learner tries to find states that may have strategic value to reach. For example, McGovern

and Barto [75], identify subgoals as states that occur frequently in successful trajectories.

Menache et al. [76] try to find “bottleneck” states. Simsek and Barto [111] seek to create

subgoals for “novel” states, since they facilitate exploration of regions of the state space that

the agent normally does not reach. Finally, graph-based approaches such as Mannor et al.

[73] identify states by clustering over a state-transition map.

OptionSubGoals (Algorithm 5) is designed to take any option discovery method

(FindOption) to create a subtask. Specifically, it creates a task to learn an option given

the option’s termination set Sf and a pseudo-reward function r for completion. Since an

option typically only involves a subset of the task’s complete state space, this subtask allows

quick learning of how to reach important states. For example, in Quick Chess, capturing the

33

queen would be an example of a useful subgoal.

Algorithm 5 Option Sub-goals

1: procedure OptionSubGoals(M,X, V, φ)
2: M ′ ←M
3: (Sf , r)← FindOption(M,X, V, φ)
4: M ′.Sf = Sf
5: M ′.r = r
6: return M ′

Since my work takes place in the context of transfer learning, I introduce one ad-

ditional option discovery method, FindHighValueStates (Algorithm 6), that uses high

value states learned in a previous task as a subgoal. Specifically, it checks whether any of

the learned values V (s) for states encountered in our trajectory X exceed a threshold φ.

Algorithm 6 Find High Value States

1: procedure FindHighValueStates(M,X, V, φ)
2: Sf ← {}
3: r ←M.r
4: for (s, a, s′, r) ∈ X do
5: if V (s) > φ then
6: Sf ← Sf ∪ s
7: r(s, a, s′) = V (s)

8: return (Sf , r)

Instead of using trajectory samples X, we can also extract high value states directly

from the value function. For example, with a tabular representation, we can simply lookup

states of high value. With function approximation, an optimization routine would be used

to solve for high value states.

4.2.5 Task-based Subgoals

An alternative to creating subgoals within an MDP is to create them directly at the task

level. Specifically, we set the termination set Sf of the input MDP to be the initiation set

S0 of some other subtask, as shown in Algorithm 7:

34

Algorithm 7 Link Subtask

1: procedure LinkSubTask(M,Ms, V)
2: M ′ ←M
3: for s′ ∈Ms.S0, s ∈M.S, a ∈M.A do
4: M ′.r(s, a, s′) = V (s′)

5: M ′.Sf ←Ms.S0
6: return M ′

For example, we can create a subtask that terminates where PromisingInitializations

starts as follows:

M1 = PromisingInitializations(Mt, X, C, δ, ρ)

Ms = LinkSubTask(Mt,M1,M1.V)

Applied to Quick Chess, this would create a task to reach configurations that are

likely to lead to checkmate. The reward for reaching this terminal set is the value of the

state in the subsequent task. This idea is similar to skill chaining [65], except that instead

of learning options linking target regions to initiation sets, we link directly on tasks.

4.2.6 Composite Subtasks

Lastly, each of the previous subroutines c takes as input an MDP Mt and trajectory samples

X, and returns a modified task MDP Ms. By passing the samples and resulting Ms as input

to another function c, we can chain together arbitrary many subroutines to compose new

source tasks.

Mathematically, let b and c be any two functions above. Assume we are given a

target task MDP Mt and trajectory samples X from it. Then, the composite task (b ◦

c) = b(c(Mt, X), X), where for ease of exposition, we’ve left out the task specific threshold

parameters.

Most of the domain-independent functions described previously make specific modifi-

35

cations to a particular part of the target task MDP. In contrast, TaskSimplification can

potentially make changes to the state and action space, as well as the transition and reward

functions all at once. Thus, in practice, tasks should be composed using TaskSimplifica-

tion first, followed by the others.

4.3 Ms. Pac-Man Experiments

We evaluated the ability of these heuristic methods to create useful source tasks for curricula

in two challenging multi-agent domains – Ms. Pac-Man and Half Field Offense – to show the

domain-independent applicability of these methods. In this section, we first demonstrate the

effectiveness of domain-dependent and domain-independent subtasks in a simple one-stage

curriculum (i.e. classic transfer learning paradigm) applied to Ms. Pac-Man.

Ms. Pac-Man (see Figure 4.1) is a game in which the agent’s goal is to traverse a

maze and earn points by eating edible items such as pills, while avoiding ghosts. The game

typically starts with a large number of pills, four power pills located near each corner, and

four ghosts that are initially placed in a lair that is inaccessible to Ms. Pac-Man. Shortly

after the game starts, the ghosts leave their lair and may either chase Ms. Pac-Man or move

about randomly. If a ghost catches Ms. Pac-Man, the game is over (we did not model the

number of lives that are typically available to a human player). Whenever the agent eats

one of the four power pills, the ghosts themselves become edible by Ms. Pac-Man for a short

amount of time and their speed is reduced. If a ghost is eaten during that time, Ms. Pac-Man

earns points and the ghost is sent back to the lair for a fixed amount of time, after which

it starts to operate as normal. The agent’s action space consists of four actions – up, down,

left, and right – though not every action is available in every state. Ms. Pac-Man eats pills,

power pills, and ghosts (when edible) whenever she gets within a small distance threshold of

the object. Table 4.1 lists the rewards Ms. Pac-Man can get for different events in the game.

The game ends when all the pills are gone, Ms. Pac-Man is eaten by a ghost, or 2000 time

36

Table 4.1: The Reward Structure of the Ms. Pac-Man Domain

Event Reward (points)

Ms. Pac-Man eats a pill 10

Ms. Pac-Man eats a power pill 50

Ms. Pac-Man eats a ghost 200

Ms. Pac-Man eats an additional
ghost while they are still edible

Apply a multiplier of 2 to the usual
reward for each additional ghost
that is eaten

Ms. Pac-Man is eaten by a ghost Game Over

steps pass.5

(a) (b) (c) (d)

Figure 4.1: Examples of tasks in Ms. Pac-Man. (a) Maze 1 (b) Maze 2 (c) Maze 3 (d) Maze
4

We used the Ms. Pac-Man implementation described in Taylor et al. [130]. The raw

state space of the game is high dimensional and also specific to each maze: there are over

1200 unique positions in the maze, and a complete state consists of the locations of Ms. Pac-

Man, the ghosts, the pills, the power pills, each ghost’s previous move, and whether or not

each ghost was edible. These features make it unsuitable for learning. Therefore, in practice

the state space in the Ms. Pac-Man game is typically represented by a set of local features

5A game play video (not associated with our work) can be found at http://youtu.be/c4n_6NFYvLY

37

http://youtu.be/c4n_6NFYvLY

that are ego-centric with respect to Ms. Pac-Man’s position on the board (see [16, 99, 124] for

a representative sample of approaches). In this work, we used 7 heavily-engineered features

from Taylor et al. [130]. These features were chosen because they were already defined in

existing work, and were more suitable for transfer than using the raw state representation of

the game. In particular, these features calculate properties such as the safety of junctions,

and scores for the amount of pills and ghosts that could potentially be eaten along a certain

direction (see Taylor et al. [130] for full details on these features). Learning was done using

Q-learning [121], and transfer via value function transfer. The action-value function was

represented by a simple linear function approximator over those 7 features. This domain is

also used for experiments in Chapters 5 and 7.

4.3.1 Maze Simplification Task

The first experiment is an application of the TaskSimplification method. The domain of

Ms. Pac-Man comes with four different maze levels, some of which are easier for the agent

to learn than the others. Thus, intuitively, one way to apply the TaskSimplification

method is to train an agent on an easier maze and transfer the learned policy to a harder

one. The results of such an application are shown in Figure 4.2. Here, the target task was

maze level four (Figure 4.1d). The TaskSimplification principle was used to generate a

source task by changing the maze level from four to one (Figure 4.1a). The transfer curve

shows the effects of learning for 5 episodes on the source task and then learning for an

additional 20 episodes on the target task. The baseline curve in contrast shows the result

of learning for 25 episodes directly on the target task. Both curves are averaged over 20

runs. The results clearly show that applying TaskSimplification results in jumpstart and

substantial improvement in the expected reward over the first 25 episodes.

38

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Episodes

E
x

p
e

c
te

d
 R

e
w

a
rd

 (
p

o
in

ts
)

baseline

transfer

Figure 4.2: Results of TaskSimplification applied to the Ms. Pac-Man domain. Dashed
lines indicate standard error.

4.3.2 Avoiding Ghosts Task

Next, we illustrate the use of an agent-specific source task, MistakeLearning, in the

Ms. Pac-Man domain. We consider a mistake to be the event where Ms. Pac-Man is eaten

by a ghost, which is a terminal non-goal state. Whenever a mistake occurrs, we spawn the

following task:

Mmistake = MistakeLearning(Mt, Xt, ε)

This call creates a subtask that rewinds ε = 50 game steps from the moment the

episode was terminated. The agent subsequently trains for 5 episodes in the generated

subtask, after which training in the target task is resumed. The result of this test is shown

in Figure 4.3. For this experiment, we measured the agent’s performance as a function of

the number of game steps, since episodes spent on learning in the generated subtasks were

much shorter. Results are averaged over 20 trials. The plot shows that the application of

MistakeLearning results in much faster learning when compared to the baseline approach

of restarting each episode from the initial configuration upon episode termination.

39

0 0.5 1 1.5 2

x 10
5

0

500

1000

1500

2000

2500

Game Steps

E
x

p
e

c
te

d
 R

e
w

a
rd

 (
p

o
in

ts
)

baseline

mistake learning

Figure 4.3: Results of MistakeLearning applied to the Ms. Pac-Man domain. See Section
4.3.2 for details. Dashed lines indicate standard error.

4.4 Half Field Offense (HFO) Experiments

In this section, we evaluate the ability of the methods to create tasks in a different domain,

and also empirically evaluate their usefulness as tasks in a manually sequenced curriculum.

The results show that the order of tasks in the curriculum has a significant impact on final

performance.

Half field offense [59] is a subtask of Robocup simulated soccer in which a team of m

offensive players tries to score a goal against n defensive players while playing on one half

of a soccer field. The domain poses many challenges, including a large, continuous state

and action space, coordination between multiple agents, and multi-agent credit assignment.

Each of these difficulties makes learning hard, especially early on when goal scoring episodes

can be rare.

Each HFO episode starts with the ball and offensive team placed randomly near the

half field line. Likewise, the defensive team is randomly initialized near the goal box. A

sample starting configuration can be seen in Figure 4.4a. The goal of the offensive team is

to move the ball up the field while maintaining possession, and take shots to score on goal.

40

Event Reward

Goal 1.0
Ball out of bounds -0.1
Ball with offense 0

Ball captured by defense -0.2
Ball captured by goalie -0.1

Episode times out -0.1

Table 4.2: Reward structure in HFO

An episode ends when either (1) a goal is scored, (2) the ball goes out of bounds, (3) the

defense captures the ball, or (4) the episode times out. The reward structure of the domain

is shown in Table 1.

(a) (b)

Figure 4.4: Examples of tasks in Half Field Offense. (a) HFO initial configuration and 2v2
dribble task (b) 2v2 shoot task. Offensive players are colored yellow, defensive players are
blue, and the goalie is pink. The ball is shown by the white circle.

As done by Kalyanakrishnan et al. [59], we focus on learning behaviors for the player

with the ball. The player with the ball has to choose one of the following actions:

• Pass k: A direct pass to the teammate that is k-th closest to the ball, where k =

2, 3, . . . ,m.

• Dribble: A small kick in the cone formed between the player and the goalposts, that

maximizes its distance to the closest defender also in the cone.

41

• Shoot j: A full power kick towards one of j evenly spaced points on the goal line.

Offensive players without the ball follow one of several fixed formations to provide

support. The agent’s state space consists of distances and angles to points of interest, such

as other players, the goal posts, the ball, etc. These are listed in Table 4.3. We used CMAC

tile coding for function approximation, Sarsa for the learning algorithm [121], and value

function transfer to transfer knowledge (see Chapter 2 for a review).

Feature Description

dist-to-goalie Distance from O1 to the goalie
dist-to-defender-in-cone Distance from O1 to the closest defender in the dribble

cone
dist-to-teammatei Distance from O1 to each teammate Oi, for i =

2, 3, . . .m
dist-teammatei-to-closest-
defender

For each Oi, the distance to its closest defender, i =
2, 3, . . .m

dist-teammatei-pass-
intercept

For each Oi, the shortest distance between a defender
and the line between O1 and Oi, i = 2, 3, . . .m

min-ang-teammatei-
defender

For each Oi, the smallest angle between Oi, O1, and a
defender, i = 2, 3, . . .m

dist-to-shot-targeti Distance from O1 to location i on the goal line, i =
1, 2, . . . j

dist-goalie-to-shot-targeti Distance from goalie to location i on the goal line, i =
1, 2, . . . j

dist-shoti-intercept Shortest distance between a defender and the line be-
tween O1 and location i on the goal line, i = 1, 2, . . . j

ang-goalie-shot-targeti Angle between goalie, O1, and location i on the goal
line, i = 1, 2, . . . j

ang-defender-shot-targeti Smallest angle between a defender, O1, and location i
on the goal line, i = 1, 2, . . . j

Table 4.3: Feature space for the player with the ball in HFO. We index offensive players
by their distance to the ball. Thus, the player with the ball is O1 and its teammates are
O2, O3, . . . Om.

42

Parameter Range

Number Offense Players {0, 1, . . . 4}
Number Defense Players {0, 1, . . . 5}

Defense Behavior {Agent-2D, Helios, WrightEagle}
Formation Type { Flat, Box, Trapezoid}

Field Width 20 – 68
Field Length 20 – 52.5

Max ball speed 0 – 5
Max player speed 0 – 1

Wind Noise 0 – 1

Table 4.4: Half Field Offense degrees of freedom

4.4.1 Space of Tasks

Half field offense has a number of degrees of freedom that allow creating many different types

of tasks. We list some of the relevant degrees of freedom in Table 4.4. In addition to these,

various aspects of the field (such as the size of the goals, the goal box, etc.), the players

(such as visibility, stamina, etc.), and the world physics can also be changed.

These degrees of freedom allow us to quickly create many domain-specific source tasks,

using the TaskSimplification rule. For example, we can add more teammates or reduce

the number of defenders to give the offense more options. We can change the defensive

team behavior to train against opponents of varying difficulty. We could also change various

aspects of the world size and physics to make scoring and movement easier.

However, we can also create agent-specific source tasks by observing the behavior of

the agent on the target task. For example, after observing generally unsuccessful trajectories

on the target task, we could use MistakeLearning to recreate situations where the agent

lost the ball or failed to score, in order to learn how to avoid or resolve them. Another

option would be to build upon successful trajectories using PromisingInitializations,

which would create tasks that initialize the offense at different positions near the goal,

allowing them to drill on how to shoot.

43

4.4.2 Manual Sequencing Process

In this work, we stopped short of automatically sequencing tasks into a curriculum. The

overall process we proposed was an incremental development of subtasks culminating in a

full curriculum: an agent first tries learning Mt, but gets stuck at suboptimal policy πt.

Experience tuples X are generated from πt, and used to generate a space of possible source

tasks tailored for this agent at this particular point in its learning process. Here, we assumed

a separate process (specifically, a human) was available to select a suitable source task Ms

from this space. The whole procedure then repeats, with Ms possibly becoming the new

Mt, until a curriculum emerges. In later chapters of this thesis, we will discuss ways this

sequencing procedure can be automated (Chapters 6 to 8).

In the next sections, we illustrate the formal specification of tasks and creation of

curricula that we found to be useful for 2 scenarios in half field offense.

4.4.3 2v2 HFO Curriculum

We first consider the target task of 2v2 half field offense, where 2 attackers must score against

1 defender and 1 goalie. We used agents from the released binaries of the Helios team to

form the defensive team [1]. Helios and WrightEagle consistently place among the top teams

in the annual Robocup 2D Simulation League tournament, making even this small version

of half field offense a challenging task.

Let M2v2 denote the target task’s MDP, and X2v2 be a set of (presumably generally

unsuccessful) samples collected from M2v2. We can generate this task M2v2 = τ(D,f2v2),

using the following instantiations for the degree of freedom vector (the order of parameters

is the same as in Table 4.4):

f2v2 = [2, 2,Helios, flat, 68, 52.5, 2.7, 1, 0.3]

44

The following are specific subtasks that could be created using the methods from Section

4.2.

Shoot Task

One useful skill to learn is where a goal can be scored from. After having obtained some

experience in the target task with at least a few goals, it is very likely that similar scenarios

are also possible to score from. We can gradually expand this set of states that lead to a high

reward termination using PromisingInitializations, where we use a Euclidean distance

metric d over the agent’s relative distances and angles to other players, to measure state

proximity:

Mshoot = PromisingInitializations(M2v2, X2v2, d, δ, ρ)

A sample scenario can be seen in Figure 4.4b. Essentially, this task creates different

configurations of players near the goal, and drills shooting. In our experiments, we set δ = 3

and ρ = 0.10.

Dribble Task

Initially while exploring, the agent takes many shots on goal from far away, which are unlikely

to score. A skill the agent needs is the ability to move the ball up the field, maintaining

possession away from defenders, until the agent reaches a state that it can score from. This

can be accomplished by chaining ActionSimplification with Mshoot using LinkSubTask:

M1 = LinkSubTask(M2v2,Mshoot, Vshoot)

Mdribble = ActionSimplification(M1, X2v2, α)

LinkSubTask creates a subtask M1 where the goal is to reach situations that the

agent is likely to score from, as learned in Mshoot. ActionSimplification prevents the

45

agent from taking shots on goal from far away, since these actions usually lead to defense

captures, and adds this restriction to M1. An example of the initial configuration for the

dribble task is shown in Figure 4.4a. In our experiments, we set α = 100.

2v2 Curriculum Results

Figure 4.5 shows the performance on the target task of 2v2 HFO for learners following various

curricula composed of the 2 tasks above. For each curriculum, we trained on sub tasks until

convergence. Offsets in the curves represent time spent training in source tasks. Labels

indicate the curricula used; baseline is learning on the target task without transfer.

The teams of agents were evaluated on their goal scoring ability: the fraction of times

they are able to score a goal. Since each episode results in binary goal or no goal scored

result, we used a sliding window of 200 episodes around each point to determine the average

goal-scoring rate at each time step. All results are averaged over 25 trials. From Figure 4.5,

it is clear to see that using a sequence of tasks from the space created significantly improves

the final aymptotic performance, even when accounting for time spent training in source

tasks.

0 50000 100000 150000 200000 250000 300000 350000 400000
Game Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or
in
g
Ac

cu
ra
cy

Various Curricula for 2v2 HFO
baseline
dribble
shoot
shoot -> dribble
dribble -> shoot

Figure 4.5: Goal scoring accuracy on 2v2 HFO for agents following different curricula. Stan-
dard error (not shown to avoid clutter) ranged from 0.015 to 0.027 over the last 200 episodes
for all curves.

46

4.4.4 Extension to 2v3 HFO

In this section, we describe results extending the problem to the harder task of 2v3 half field

offense, where there are now 2 defenders and a goalie. 2v3 is fundamentally harder than 2v2,

since the additional defender means both attackers can now be marked. We can generate

this target task M2v3 = τ(D,f2v3) using the following degree of freedom vector:

f2v3 = [2, 3,Helios, flat, 68, 52.5, 2.7, 1, 0.3]

This time, we can use TaskSimplification to simplify the degree of freedom vector

to recreate the 2v2 task from the last section, allowing us to use it as a source for 2v3:

M2v2 = TaskSimplification(M2v3, X2v3,D,f2v3, τ)

Doing this simplification also allows us to utilize the dribble and shoot tasks, since

they are derived from M2v2. Thus, we now consider 3 possible source tasks for a curriculum:

Mdribble, Mshoot, and M2v2. Results of various curricula composed of these source tasks can be

seen in Figure 4.6. Again, using a multistage sequence of tasks provides better asymptotic

performance than a curriculum composed of a subset of its source tasks. Interestingly, we

also find that the most effective curriculum in 2v2 HFO is a subset of the best curriculum in

2v3 HFO when considering this space of tasks. This observation suggests that an automated

procedure to create curricula could be designed recursively.

47

0 100000 200000 300000 400000 500000 600000 700000 800000
Game Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or
in
g
Ac

cu
ra
cy

Various Curricula for 2v3 HFO

baseline
dribble -> shoot
shoot -> dribble
dribble -> 2v2
shoot -> 2v2
shoot -> dribble -> 2v2
dribble -> shoot -> 2v2

Figure 4.6: Goal scoring accuracy on 2v3 HFO for agents following different curricula. Stan-
dard error (not shown to avoid clutter) ranged from 0.010 to 0.039 over the last 200 episodes
for all curves.

4.5 Summary

Task generation is the problem of creating tasks that could serve as suitable components of

a curriculum for a target task. This subproblem is an important component of the overall

methodology of curriculum learning (see Chapter 3), because it defines the space of curricula

that can be considered.

In this chapter, I defined a space of possible tasks, and presented several functions that

could create suitable source tasks for a given target task. The methods can be categorized

into two types: the first allows for task creation using domain knowledge. The others are

largely domain-independent, and rely directly on trajectory samples in the target task to

create agent-specific tasks tailored for an agent at a particular point in its learning process.

We claim that the functions outlined are broadly and generally useful. However, they are not

the only possible methods; nor would every method apply to every domain. Nonetheless,

the experiments showed that these methods could be applied to 2 complex RL domains.

Furthermore, I showed that they could be used to successfully create curricula that provide

a higher asymptotic performance than training without one, and that the order of tasks in

such a curriculum is important.

48

In this chapter, the curriculum was sequenced manually. In subsequent chapters of

this thesis, the methods described in this chapter will be used to form the space of tasks that

will be used in a curriculum, and I will describe automated approaches towards sequencing

(Chapters 6 to 8).

49

5. Measuring Inter-task Transferability

In this chapter, I consider the problem of source task selection: how to choose a good source

task for transfer to a specified target task. Source task selection is a simplified version of the

sequencing subproblem of curriculum learning; specifically, it evaluates how good a single

source task is for transfer to a single target task, and does not explicitly consider the effect

or selection of a chain of multiple source tasks (i.e., a curriculum). It also assumes the set

of sources is given beforehand.

While many source task selection methods use samples or a model of the target task to

aid in task selection [3, 68, 86], in this work we take a different approach, and try to predict

task transferability using only a task descriptor for each task. This task descriptor is an

instantiated vector of the degrees of freedom from Chapter 4. We use these task descriptors

to train a regression model that predicts the benefit of transfer between source-target task

pairs, and produces a transferability matrix that gives the expected benefit between any

pair of tasks. We quantify the benefit of transfer using the jumpstart metric from Chapter

2, though other metrics could also be used, and evaluate our approach in a large-scale

experiment involving 192 different variations of the game of Ms. Pac-Man.

As a first step towards multi-stage sequencing, we also evaluate using the transfer-

ability matrix to chain source tasks together into a curriculum. We do this evaluation by

recursively finding an appropriate source task for the target task, and then finding an ap-

propriate source task for the previous source task. While this process is a naive “one-step”

approach that ignores possible overlaps and interactions between sources, it simplifies the

otherwise combinatorial search for a curriculum.

The ideas in this chapter are based on work that was published in the proceedings of

50

the Autonomous Agents and Multi-agent Systems (AAMAS) conference [112] and address

Contribution 3 from Chapter 1 of this thesis.

5.1 Modeling Task Transferability

In this section, I introduce our proposed framework for modeling inter-task transferability.

First, in Section 5.1.1 I introduce notation specific to this setting, and formulate the problem.

Next, in Section 5.1.2 I discuss the main idea of how we will predict the benefit of transfer

from one task to another. Finally, in Section 5.1.3 I discuss how this approach will be

evaluated.

5.1.1 Notation and Problem Formulation

Let M be the set of possible tasks. Let Msource ⊂M be a set of tasks for which the agent

has learned a policy and let Mtarget ⊂M be another set of tasks that represents the set of

target tasks to be learned by the agent. For each task Mi ∈ M, let fi ∈ Rn be a feature

descriptor for the task that is known to the agent (as in Chapter 4).

Given a target task Mj ∈Mtarget, the goal of the agent is to select a task Mi ∈Msource

such that Mi serves as an effective source for learning Mj. Thus, given a task pair, Mi and

Mj, let B(Mi,Mj) ∈ R denote the benefit of transferring the policy learned in Ni to the task

Mj, where B(Mi,Mj) > 0 indicates positive transfer, while B(Mi,Mj) < 0 indicates negative

transfer. In this work, the transfer benefit is estimated using the jump-start measure defined

in Chapter 2, though in principle, other measures can be appropriate as well.

We assume that for each pair of source tasks (Mi,Mj) such that Mi,Mj ∈ Msource,

the agent has a reliable estimate for B(Mi,Mj). Next, we describe how the agent can use

these estimates to predict the expected transfer benefit between tasks in Msource and tasks

in Mtarget.

51

5.1.2 Predicting the Benefit of Transfer

Here, the task of the agent is to learn a function which, given two arbitrary tasks Mi and

Mj from M, can predict whether Mi is a good source task for Mj. More specifically, the

function should produce the estimate B̂(Mi,Mj), i.e., the expected benefit of transferring

from Mi to Mj. Since B(Mi,Mj) ∈ R, a natural solution for modeling the transferability

between two tasks is to train a regression model.

Let fi = [fi,1, fi,2, . . . , fi,n] and fj = [fj,1, fj,2, . . . , fj,n] be the features for a pair of

tasks (Mi,Mj). To train a regression model on task pairs, a third feature vector is computed,

Zij, such that it captures some aspects of how the two feature vectors fi and fj are related.

The feature vector Zij was computed such that each element zijk is defined by:

zijk =
fi,k−fj,k
max(fi,k,ε)

where ε is a very small number to avoid divisions by 0. In other words, the vector represents

the change along the n-dimensional features space relative to the feature values of the first

task in the pair.6 The function that computes how two tasks are related was designed to be

sensitive to the order of the tasks in the pair since preliminary experiments suggested that

task transferability is not always symmetric.

Given this representation and a dataset {Zij}Mi,Mj∈Msource , a regression model Y is

trained such that:

Y (Zij) ≈ B(Mi,Mj)

Once trained on pairs of tasks fromMsource, the regression model is subsequently used

to select source tasks for the tasks inMtarget. Given a target task Mj, the task Mi ∈Msource

that maximizes Y (Zij) is selected as the source task. Next, we describe the performance

measures that were used to evaluate the framework proposed here.

6Other representations for the vector Zij were explored as well, including raw difference (i.e., fi,k − fj,k)
as well as ratio (i.e., fi,k/fj,k). Representations that captured the absolute or squared distance between fi
and fj did not perform as well as they were not sensitive to the order of the tasks in the pair.

52

5.1.3 Evaluation

For each target Mj ∈Mtarget, the best possible source task is defined by:

M∗ = arg maxMi∈Msource B(Mi,Mj)

Let Mi be the source task selected by the model. To compare the model’s choice for

a source task to the optimal source task, we define the loss as:

loss(Mi) = B(M∗,Mj)−B(Mi,Mj)

We also evaluated the ranking of source tasks induced by the regression model. For

a given target task Mj, let Oj = [M{1},M{2}, . . . ,M{P}] be the ranked list of source task

according to the learned regression model, i.e., B̂(M{k},Mj) ≥ B̂(M{k+1},Mj). For each

position k in the ranking, let relk = B(M{k},Mj) be a measure of the relevance of the result

at that position. A common measure to evaluate the quality of a ranking is the Discounted

Cumulative Gain (DCG) [57]:

DCGp(Oj) = rel1 +

p∑
k=2

relk
log2(k)

where p ≤ P . The normalized DCG (NDCG) is computed by
DCG(Oj)

DCG(Obestj)
where Obest

j is the

true (i.e., best possible) ranking of source tasks. A normalized DCG of 1.0 would indicate a

perfect ranking.

For a baseline comparison, we consider the naive approach of selecting the most similar

task according to the feature vectors used to describe the tasks. In other words, given target

task Mj, the naive method would select the source task Mi that minimizes the squared

distance between fi and fj. The baseline approach does not perform any learning but

nevertheless, we hypothesize that it will perform better than randomly selecting a source

task.

53

Figure 5.1: An example baseline test for one of the 192 tasks. The dark line indicates the
reward averaged after 10 different runs (shown as the lighter lines), each starting with a
different random seed. In this example, the policy converged after about 700 episodes.

5.2 Experimental Domain and Methodology

To evaluate the proposed framework, we conducted a large-scale experiment in the Ms. Pac-

Man domain (described previously in Section 4.3). The agent was trained using Sarsa [121].

We generated 192 variations of the Ms. Pac-Man task by varying several parameters

that dictate the dynamics of the game:

• Maze: each game was played on one of four different mazes, shown in Figure 4.1.

• Number of ghosts: the number of ghosts present in the game was varied from 1 to

4.

• Ghost slowdown: when Ms. Pac-Man eats a power pill, the ghosts become edible

and their movement speed is reduced. The ghost-slowdown parameter specified the

amount of speed reduction and varied from 1 to 4, in increments by 1. When the

Ghost slowdown is set to n, then the ghosts remain stationary every nth game step

when they are edible. Thus, a lower value makes the ghosts move slower.

54

• Ghost type: the ghosts behaved according to one of three different modes: Standard,

Random, and Chaser

The three different ghost behaviors are as follows: (1) Standard ghosts chase Ms. Pac-

Man 80% of the time and move randomly the other 20%. When Ms. Pac-Man eats a power

pill, the ghosts start moving away from the agent and eventually revert to their original

behavior once they are no longer edible; (2) Random ghosts choose a random direction

when reaching a junction 100% of the time. This makes it easier for Ms. Pac-Man to avoid

them, but harder for Ms. Pac-Man to catch consecutive ghosts after eating a power pill.

(3) Chaser ghosts have the same behavior as the Standard ghosts when inedible. However,

after Ms. Pac-Man eats a power pill, they continue moving towards Ms. Pac-Man instead of

fleeing. This makes it easy for Ms. Pac-Man to learn to eat ghosts (sometimes also too easy,

since Ms. Pac-Man can learn to just stay in place and let the ghosts come to it, which does

not transfer well to the normal setting).

Varying the four parameters resulted in 4 × 4 × 4 × 3 = 192 versions of the game.

These 192 tasks constituted the full set of tasksM. To compute transferability for all pairs

of tasks, the agent first learned to play each task from scratch for 2, 500 episodes (the number

of total episodes was chosen such that the agent’s policy converged on each of the 192 tasks).

Each episode consisted of playing a full game of Ms. Pac-Man. After each episode, the policy

was frozen and the agent played an additional 10 games to compute a reliable estimate for

the expected reward at each point during training. This procedure was repeated 10 times

for each task in order to account for the stochastic nature of the domain. Thus, the agent

played a total of 192× 2, 500× (1 + 10)× 10 = 50, 800, 000 games to compute the baseline

performance reward curves. Figure 5.1 shows an example baseline test for one of the 192

tasks. The bold line indicates the average reward curve from the 10 different runs.

Once the baseline curves were computed, the benefit of transfer was estimated for

all task pairs. To do so, for each of the 36, 672 pairs of tasks (Mi,Mj) in M, the agent

55

learned on task Mj for 30 episodes starting with the policy learned on task Mi (i.e., the

agent transferred the policy from source task Mi to target task Mj). This process was

repeated 10 times for each pair, such that in each run, a different one of the 10 policies

computed during the baseline run was used as a starting point. Thus the agent played

36, 672×30× (1 + 10)×10 = 120, 101, 760 games. The average reward with transfer and the

average baseline reward over the first 30 episodes were then used to compute the jump start

measure (see Chapter 2). Specifically, let Gbaseline ∈ RK be the return curve after learning

the target task for K episodes such that Gbaseline
k ∈ R is the expected return after learning

for k episodes. Similarly, let Gtransfer ∈ RK be the return curve for learning the target task

after transferring a policy from the source task. The jump start metric can then be defined

by:

jumpstart(w) =

∑w
k=1(G

transfer
k −Gbaseline

k)

w
(5.1)

The parameter w determines the size of the temporal window which is used to compute

the jump start after the onset of training on the target task. We chose to use the jump start

measure because of the large-scale nature of our experiment, and because computing it

requires a relatively small number of training episodes on the target task. We computed the

jump start measure for w = 1, 3, 5, 10, 15, and 30.

All told, to compute both the baseline reward curves as well as the transfer reward

curves, the agent had to play over 170 million games. This type of an experiment would be

next to impossible on a single computer and therefore, we used our department’s Condor

Cluster system [37]. A learning episode typically took about 0.5− 0.75 seconds, though this

duration could vary depending on the cluster machine being used. Based on logged data,

the experiment took over 2,300 hours of compute time spread over 192 individual machines.

The framework for learning task transferability proposed in Section 5.1.2 requires

that the agent has access to a task descriptor vector that describes each task. Table 5.1

56

shows the task features that were used in our experiments. All of the features, except

for ghost-type, are numeric. The ghost-type feature was originally nominal and therefore

was converted into 3 different binary features, one for each type of ghost behavior. Thus,

fi ∈ R17. The features that were used to describe the tasks corresponded to the parameters

used to generate the tasks, as well as to graph-based features induced by the maze in each

task. The features were not specifically selected or tuned to maximize performance. The

graph-based features included domain-specific attributes (e.g., the distance between Ms. Pac-

Man’s starting position and the Ghosts’ lair) as well as general graph-based features such as

eccentricity as well as a histogram of the nodes’ degrees (the last three features in the Table

5.1).

In our experiments, we explored two different implementations for the regression model

Y described in section 5.1.2: 1) Linear Regression, and 2) M5 Model trees [91]. Linear

Regression was selected due to its simplicity, while the M5 Model tree was selected as it

is able to handle non-linear problems. Both implementations can be found in the WEKA

machine learning library [48]. The WEKA implementation uses a modified version of the

original tree induction algorithm, called M5P [139] which added pruning as a part of the

training stage.

5.3 Experimental Results

We evaluated our task transferability approach to evaluate its utility in selecting good source

tasks, and the ability of those tasks to be chained into a multi-stage curriculum. To do this

evaluation, in Section 5.3.1, we first compute a ground truth transferability matrix for all

pairs of tasks, that gives the true jumpstart for each pair of tasks. Then in Section 5.3.2,

we partition the set of tasks in this matrix to train a regression model as described in

Section 5.1.2. Next, in Section 5.3.3, we evaluate how well the learned regression model

performs compared to the ground truth jumpstart metrics. Finally, in Section 5.3.4, we

57

Table 5.1: The task features that were known to the agent

Feature Description

number-of-

ghosts

The number of ghosts in the game (1 to 4)

ghost-

slowdown

The amount of speed reduction that the ghost undergoes when Ms. Pac-Man

eats a power pill. The values ranged from 1 to 4.

ghost-type The behavior of the ghosts. There are three possible values: Random, Stan-

dard, and Chaser.

num-nodes The number of nodes in the maze graph

num-pills The number of regular pills in the maze

distance-to-

ghost

The distance between Ms. Pac-Man and the ghosts at the start of the game

distance-

power

The average distance between power pills

distance-lair The average distance between the ghost lair and the power pills

junctions-

between-

junctions

The average number of junctions that lie on the shortest path between any

pair of junctions

eccentricity The average eccentricity of nodes in the graph. The eccentricity for a node

u is defined as e(u) = max{d(u, v) : v ∈ V } where d is the shortest-path

function for a pair of nodes and V is the total set of nodes in the graph.

eccentricity-

junction

The average eccentricity of junctions (i.e., nodes with more than 2 neighbors).

The eccentricity for a junction node u is defined as e(u) = max{d(u, v) : v ∈
J} where J ⊂ V is the set of nodes that are junctions.

graph-

diameter

The diameter of the graph is defined as diam(G) = max{e(u)|u ∈ V }.

num-nodes-

d2

Number of nodes with 2 neighbors

num-nodes-

d3

Number of nodes with 3 neighbors

num-nodes-

d4

Number of nodes with 4 neighbors

58

Figure 5.2: An example transfer result for a given target task and two potential source tasks.
Task A is clearly the better source task, resulting in a large positive transfer.

explore whether the task selection method derived from the transferability matrix can be

used to chain multiple tasks into a task-level sequence curriculum.

5.3.1 The Transferability Matrix

Figure 5.2 shows an example transfer result for a target task and two different source tasks.

In this case, transferring the policy from one of the source task to the target task results

in positive transfer, while the other source task induces negative transfer. Figure 5.3 shows

the whole transferability matrix computed for the set of 192 tasks considered in our experi-

ments. In this example, each entry contains the expected benefit of transfer according to the

jumpstart(30) measure for each pair of tasks (in other words, the jump start was computed

over the first 30 training episodes on the target task). White values indicate high jump start

while black values indicate low (possibly negative) jump start.

The order of the columns and rows of the matrix is not random but rather, the entries

are sorted first according to the maze, then ghost-type, then ghost-slowdown, and then finally,

number-of-ghosts. The last 1/4 set of columns in the matrix appear brighter than the rest

because those tasks were much more likely to benefit from transfer. These tasks corresponded

59

Figure 5.3: An example transferability matrix computed for each pair of the 192 tasks
considered in our experiments. In this matrix, the entry at i, j amounts to the resulting
jumpstart(30) measure after transferring the policy learned on task Mi to task Mj. Light
values indicate high jump start while black values indicate low (possibly negative) jump
start.

to tasks with the fourth maze, which proved to be much more difficult for the agent than

the other three mazes. The grid-like pattern shows that transfer is not random and hence,

we hypothesized that the parameters that define the tasks may be useful in predicting the

benefit of transfer across tasks.

Figure 5.4 shows a histogram of the jump start measures for two randomly chosen

target tasks (i.e., a histogram over the values in a given column of the transferability matrix).

Even though the shapes of the histograms are similar, one of the target tasks is much more

likely to benefit from transfer. For the first target task (top histogram), virtually all source

tasks result in positive transfer. For the second target task, however, there are a large

number of source tasks that induce negative transfer, which further motivates the need for

effective source task selection.

60

Figure 5.4: Example histograms of the jump start measures for two randomly chosen target
tasks (i.e., a histogram over the values in a given column of the transferability matrix). For
the first target task (top histogram), virtually all source task result in positive transfer, while
for the second, there are a large number of source tasks that induce negative transfer.

5.3.2 Regression Model Performance

The performance of the regression model used to estimate transferability was evaluated using

10-fold cross validation at the task level. In other words, during each run, the tasks were

split into 10 sets such that 9 of these formed the set Msource while the remaining fold was

considered as the set of target tasks Mtarget. The regression model was trained on all pairs

of tasks (Mi,Mj) such that Mi,Mj ∈ Msource and then tested on all pairs of tasks induced

by the cross product of Msource ×Mtarget.

Table 5.2 shows the performance of the two regression algorithms that were used to

predict the jumpstart(w) measure for different values of w, the size of the temporal window

used to computed the jump start. The results are reported in terms of the Correlation

Coefficient (CC) between the actual and the predicted values. These results show that the

difficulty of modeling task transferability depends on the measures used to estimate the

benefit of transfer. For example, modeling the jump start after just 1 training episode on

61

Table 5.2: Regression Model Performance measured by Correlation Coefficient

Transferability Linear Regression M5P Model Tree

Measure

jumpstart(w = 1) 0.54 0.74

jumpstart(w = 3) 0.64 0.85

jumpstart(w = 5) 0.65 0.87

jumpstart(w = 10) 0.66 0.87

jumpstart(w = 15) 0.65 0.86

jumpstart(w = 30) 0.61 0.83

the target task is more difficult than modeling the jump start after 10 episodes on the target

task. Overall, the CCs are high enough that we expect the ranking induced by the regression

models to be useful for source task selection.

Figure 5.5: Source Task Selection loss for three transferability measures. The two regression
models were compared with the baseline source task selection model and with random source
task selection.

62

5.3.3 Source Task Ranking and Selection

Next, the framework for source task selection proposed in this paper was evaluated in terms

of the expected loss, i.e., if the agent selects the source task that maximizes the expected

transferability according to the regression model, how much worse does it do compared to

selecting the optimal source task that it has already learned. Figure 5.5 shows the result of

this test for two different regression algorithms, as well as the baseline approach. In addition,

as a sanity check we computed the loss when randomly selecting a source task.

As we expected, the baseline approach which selects a source task based on task

similarity in the task feature space performs better than randomly selecting a source task.

Furthermore, the proposed method for learning task transferability substantially outperforms

the baseline approach. While the Linear Regression (LR) model performed worse in terms of

Correlation Coefficient when compared to the M5P Tree (M5P), the top source task selected

when using LR tended to be a better source task than the one selected by M5P. An important

question is whether performance would suffer as the set of tasks used to train the regression

model becomes smaller. To obtain an answer, the number of tasks used to train the model

was varied from 2 to 30 and we found that the expected loss converges after about 20 tasks

(i.e., 400 pairs) are available for learning the regression.

The quality of the rankings were further evaluated using the Normalized Discounted

Cumulative Gain measure. The results of this test are shown in Figure 5.6. Overall, LR

performed the best. These results conclusively show that inter-task transferability can be

learned even without samples or models of the target task. In particular, when faced with

a new target task, a single good source task can be selected for transfer. These results

naturally raise the question of whether it is possible to chain together multiple such source

tasks sequentially to do even better. We examine that question next.

63

Figure 5.6: Evaluation of source task ranking using the learned regression model and the
baseline case-based reasoning approach. The ranking was evaluated using the Normalized
Discounted Cumulative Gain (DCGp) and the jumpstart(w = 5) measure (the results were
similar for the remaining values of w used in this study). The value for p, the number of
elements to be considered in the ranking (starting at position 1) was set to 20.

5.3.4 Multi-stage Transfer

In this section, we take our first steps towards automatic sequencing of a task-level sequence

curriculum, by exploring whether we can chain together a sequence of tasks M1 → M2 →

. . .→Mtarget, such that learning M1 makes it “easier” to learn M2, which makes it “easier”

to learn M3, and so on. For simplicity, consider two stage transfer: we are looking for

source tasks M1 and M2 such that transferring from M1 → M2 → Mtarget gives better

performance than training directly on Mtarget or any of the one-stage transfers M1 →Mtarget

and M2 →Mtarget.

Candidates for the tasks M1 and M2 can be determined recursively using the trans-

ferability matrix. We simply look at the column corresponding to the target task, and select

the row (i.e. source task) that provides the best transfer. The selected task then becomes

the column for the next recursive stage.

A key question is how to decide how many episodes to spend on each source task. We

used a heuristic approach based on the intuition that an agent should train on a source task

64

until additional training does not improve performance on the target. Specifically, we define

the target performance to be the total reward accumulated by the agent on the target task,

for a fixed number of episodes (i.e. the area under the learning curve). Let Abase be the total

reward accumulated by training directly on the target task without using transfer, and let

Axtransfer be the total reward accumulated on the target task after training on the source task

for x episodes, and using value function transfer. We used an incremental approach where the

agent trained on the source task for 10 episodes, and used this to compute Axtransfer. If the

difference (Axtransfer − Abaseline) was positive and increased, the agent trained on the source

for 10 more episodes. This process was repeated until the difference no longer increased, at

which point training on the source task was halted.

We hand-selected several of the more challenging tasks to serve as Mtarget. The results

for one such target task are shown in Figure 5.7. All methods of transfer resulted in a jump

start, but there was no benefit to using two stage transfer over single stage transfer. The

results were similar for the other target tasks and overall, we were not able to find a two-

stage transfer that was significantly better than its one-stage counterpart. We suspect that

this result is partly due to the fact that the mazes are very similar, especially from the view

of agent using the highly engineered feature set. Therefore, a single stage transfer already

initializes the policy in some area of the search space, and adding more stages does not

noticeably refine or change this area. For a multi-stage curriculum to be useful, the source

tasks ideally need to teach orthogonal skills, and/or allow the agent to accumulate rather

than overwrite previously learned skills.

5.4 Summary

In this chapter, I introduced a framework for source task selection in settings where neither

samples from the target task, nor a model of the task, are available to the learning agent.

Instead, the agent used task descriptors (i.e., a low-dimensional feature vector describing the

65

Figure 5.7: Performance on the target task using one and two-stage transfer. Note that the
transfer curves are offset to reflect time spent training in their source tasks. In this example,
all methods of transfer result in jump start but there is no benefit of two-stage transfer
relative to single-stage transfer

degrees of freedom of the task) to learn the expected benefit of transfer (i.e., transferability)

between source tasks and target tasks. The framework was evaluated using a large-scale

experiment in which the agent learned to play 192 variations of the Ms. Pac-Man game. Our

results show that an agent can indeed learn to predict the transferability for an arbitrary

pair of source-target tasks, provided training pairs for which the benefit (or detriment) of

transfer is known. The learned transferability model was then used to effectively select

relevant source tasks that improve the agent’s learning performance on a given target task.

Identifying which source task is useful for a particular next target task is an important

part of any sequencing method for curriculum learning. We further evaluated whether the

approach could be used to select a multi-stage curriculum consisting of at least two source

tasks, by using the transferability matrix to chain tasks together. However, we found that

at least in this domain, there was no added benefit to using a second source task in the

curriculum. This result could in part be due to the types of source tasks that were available

66

in this experiment, combined with a transfer learning method that was not able to accumulate

information from these tasks.

In the next chapters (Chapters 6 to 8), we focus on sequencing methods that explicitly

optimize for multi-stage curricula. In addition, we opt to take a different approach from the

backward chaining method proposed here. The main reasons are that 1) the approach

presented in this chapter is expensive to compute, especially when there are many source

tasks; 2) the whole process needs to be redone if the agent’s representation or learning

algorithm changes; and 3) the approach does not account for the transfer learning method

used. In this thesis, we assume the TL algorithm used is part of the agent and not within

our control to change. The goal is to create a curriculum without changing any aspects of

the agent itself.

67

6. Heuristic-based Approaches for Sequencing

Task sequencing is the subproblem most commonly associated with curriculum learning. The

goal of task sequencing is to order a set of source tasks into a curriculum. In most existing

reinforcement learning work that uses curricula, this sequencing has been done manually by

domain experts separately for each problem. One reason for the prevalence of this approach

is that finding a good sequence is hard – even when considering a simple task-based linear

sequence, the number of possible curricula grows combinatorially with the number of tasks

available. In some situations, the set of sources available may dynamically change to better

reflect the types of experience the agent needs to acquire, rather than being statically fixed

beforehand. In this case, the space of possible curricula is even larger.

Part of the goal of this thesis is to evaluate the extent to which this process can be

automated. In this chapter, I start by presenting a heuristic-based approach that automat-

ically sequences tasks into a curriculum. The core idea is to use trajectory samples of the

agent’s experience on the target task to guide the selection of appropriate source tasks. This

approach utilizes the task generation methods of Chapter 4 to dynamically suggest candidate

source tasks on the fly. Using dynamic sources and the agent’s experience samples on the

target task allows the approach to learn an individualized curriculum that is tailored to both

the capabilities and learning progress of the agent.

The ideas in this chapter are based on work that was published in the proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI) [83] and addresses

Contribution 4 from Chapter 1 of this thesis.

68

6.1 Method Intuition and Overview

For any curriculum sequencing method, we first need to consider the metric we are trying

to optimize and the type of curriculum we are trying to design. In this chapter, we consider

minimizing the time to threshold metric, which tries to find a curriculum that uses the least

amount of time/experience to achieve a performance threshold δ on the target task. We are

also looking to create a task-level sequence curriculum (see Chapter 3), which represents a

curriculum as an ordered list of tasks [M1,M2, . . .Mn].

The intuition for the approach we propose is as follows. Assume the learning agent

starts with some initial policy π0. Our goal is to learn a policy πf through training on a

sequence of tasks that allows the agent to achieve a return of δ on the target task Mt as

quickly as possible. Although we do not know what πf looks like before training, we can

identify what parts of the state space S are relevant to an optimal policy for the target task

by sampling state trajectories in the target task. We can then use those samples to guide the

selection of a source task. While initially these samples would be random and concentrated

near the starting state, as the agent updates its policy through learning on source tasks,

they will shift towards regions of the state space that are on the boundary between what the

agent is already able to do, and what it still needs further practice on.

Thus, the main idea behind our proposed algorithm is to incrementally build up the

policy using states and experiences the agent is currently facing. The algorithm samples

from the target task to figure out what the learning agent needs to learn about. It then

creates a set of sources tailored for those experiences using the heuristic functions defined in

Chapter 4. Tasks that are too difficult for the agent to solve are recursively broken down by

reapplying the task generation methods on the created source task.

In order to decide which task to select for the curriculum, we need to trade off how

useful that task is to learn versus how difficult the task is to learn. A useful task is one that

helps the agent make progress in the target task, which we can evaluate using the sample

69

trajectories collected on the target task. We make one important assumption, which is that

the source tasks created by the methods do not result in negative transfer. We discuss the

impact of this assumption in Section 6.2. With this assumption, we can then select the task

which as a result of learning changes the policy the most according to the target samples.

Learning the task updates the learning agent’s policy. This update in turn leads to a different

set of samples from the target task. This process repeats until the agent is able to solve the

target directly. Note that the goal is not to learn a policy π for every state in the state space

S of a target task Mt, as some of these states may not be encountered by the agent, and

hence are irrelevant for executing the optimal policy π∗.

At the same time, a task could be very useful to train on, but the time needed to

learn on it may not be worth it, especially if that same information can be acquired through

easier tasks. The difficulty of a task can be quantified by the amount of time needed to solve

the task. We will define what it means to solve a task in the next section (Section 6.2). This

cost depends on many different factors, such as the policy the learning agent starts with, the

learning algorithm being used, and also aspects of the task itself such as the size of its state

and action spaces.

The only way to determine the true cost is to solve the task, which is unbounded and

unknown ahead of time. Therefore, we introduce the idea of a budget or learning capacity

β for the agent, which limits the amount of time an agent will spend trying to learn a task

before it decides the task is too difficult. This process encourages learning easier tasks first,

and tackling harder tasks once the learning agent has accumulated knowledge from these

easy tasks. Finally, to prevent unnecessary tasks from being used in the curriculum, we

require tasks to affect the policy and be relevant to the target task by at least fraction ε

(described in detail in the next section).

70

Algorithm 8 GenerateCurriculum(Mt, π, β, δ, ε)

1: C ← ∅
2: while true do
3: size = |C|
4: (π′, C)← RecurseTaskSelect(Mt, π, β, ε, C)
5: if π′ = null then
6: Increase β
7: Pop(C, |C| − size)
8: continue
9: π ← π′

10: if Evaluate(Mt, π
′) ≥ δ then

11: break
12: return (π′, C)

6.2 Algorithm Details

We now formalize the intuition given into pseudocode. The main call is to Algorithm 8,

GenerateCurriculum, which takes as input the target task Mt that we want to generate

a curriculum for, the learning agent’s initial policy π (typically a uniform random policy),

the learning budget β, the return threshold δ desired on the target task, and the minimum

policy change and relevance parameter ε. It returns a policy π′ that can achieve a return of

δ on Mt, and the curriculum C.

Each iteration of the loop in Algorithm 8 attempts to add a task to the curriculum

by calling RecurseTaskSelect (Algorithm 8 Line 4). If a task is found and added to the

curriculum, the updated policy π′ is evaluated on the target task (Algorithm 8 Line 10). The

loop terminates if a return greater than δ is received. If no tasks are found, the budget β is

increased, any tasks that were added in this phase are cleared, and the search is repeated.

Algorithm 9, RecurseTaskSelect, is the core method that adds tasks to the cur-

riculum and updates the policy π. It starts by calling Learn, which attempts to solve the

given task M starting with initial policy π, using at most β time steps. Learn returns a

boolean solved indicating whether the task was solved or not, a set of state-action-reward

samples X for each trajectory experienced, and the updated policy π′ as a result of learning

71

Algorithm 9 RecurseTaskSelect(M,π, β, ε, C)
1: (solved, X, π′) = Learn(M,π, β)
2: if solved then
3: Enqueue(C,M)
4: return (π′, C)
5: Ms ← CreateSourceTasks(M,X)
6: P ← ∅
7: U ← ∅
8: for Ms ∈Ms do
9: (solvedMs , XMs , πMs) = Learn(Ms, π, β)

10: if solvedMs then
11: P ← P ∪ {(πMs ,Ms)}
12: else
13: U ← U ∪ {(Ms, XMs)}
14: if |P| > 0 then
15: (πbest,Mbest, score) = GetBestPolicy(P , π,X)
16: if score > ε then
17: Enqueue(C,Mbest)
18: return (πbest, C)
19: SortBySampleRelevance(U , X, ε)
20: for (Ms, XMs) ∈ U do
21: (π′s, C)← RecurseTaskSelect(Ms, π, β, ε, C)
22: if π′s 6= null then
23: return RecurseTaskSelect(M,π′s, β, ε, C)
24: return (null, C)

M .

We propose two methods for determining whether a task has been solved. The first

is policy convergence, which checks whether the policy has converged (i.e. not changed) for

the states the agent has visited over the past few episodes. In addition, the episodes must

terminate in a goal state. This requirement is in order to prevent an agent that has learned

to quickly fail a task from being considered as successfully solving a task. The second is

based on the maximum return possible in a task, where an agent that receives the maximum

return possible on a task can be said to have solved it. The first method assumes the agent

can detect a successful completion of a task, while the second assumes the max return (which

is task specific) is known.

72

If the task M can be solved, it is added to the curriculum and the updated policy

is returned (Algorithm 9 Line 4). Note that we only update the policy if the task can be

solved. Otherwise, the learned policy may not be correct. If the task M cannot be solved,

RecurseTaskSelect recursively tries to find and solve a simpler source task.

CreateSourceTasks(M,X) creates a set of source tasksMs tailored to the agent’s

experiences X on M , using the heuristic functions defined previously in Chapter 4. We

partition this set into two groups over lines 8 - 13 based on whether the source can be

solved or not. P contains source tasks that could be solved and their corresponding updated

learning agent policies. U contains tasks that could not be solved, and experience trajectories

from the learning agent’s attempts on those tasks.

If solvable tasks exist in P , the curriculum design agent needs to select a task to add.

We propose a heuristic GetBestPolicy (see Algorithm 10) that selects the policy-task

pair (πMs ,Ms) ∈ P that results in the greatest change in policy when evaluated on samples

X from the target task. This heuristic implicitly assumes that the source tasks created are

relevant to the target task and do not result in negative transfer.7 Formally, for each state s

encountered in the state sequence from samples X, we compare the action selected by π(s),

the policy before learning Ms, to πMs(s), the policy after learning Ms, and count the number

of states for which the action changed. This number is normalized by the number of states in

the sequence X to produce a score. Note that states where the learning agent spends more

time in M occur more often in X, and hence bias the score towards policies that update these

states. The policy-task pair with the highest score is returned from GetBestPolicy, and

if the score meets a minimum threshold ε, the task is added to the curriculum (Algorithm 9

Line 17). The threshold ε is used to prevent tasks that do not significantly impact the policy

from entering the curriculum.

7In this setting, this is not an unreasonable assumption because the source tasks are explicitly created to
be relevant to the target task, using the methods defined in Chapter 4. However, in the sequencing methods
described in the next 2 chapters of this thesis (Chapters 7 and 8), we do not make this assumption.

73

Algorithm 10 GetBestPolicy(P , π,X)

1: c← zeroes(|P|)
2: for (s, a, r) ∈ X do
3: aπ ← π(s)
4: for (πMs ,Ms) ∈ P do
5: aπMs ← πMs(a)
6: if aπ 6= aπMs then
7: c[Ms] = c[Ms] + 1

8: (πbest,Mbest)← P [arg max(c)]
9: score = c[Mbest]/|X|

10: return (πbest,Mbest, score)

Algorithm 11 SortBySampleRelevance(U , X, ε)
1: U ′ ← ∅
2: for (Ms, XMs) ∈ U do
3: St ← {s : (s, a, r) ∈ X}
4: Ss ← {s : (s, a, r) ∈ XMs}
5: score = |St ∩ Ss|/|St|
6: if score > ε then
7: U ′ = U ′ ∪ (Ms, XMs , score)

8: sort(U ′) . Sort by score
9: U ← {(Ms, XMs) : (Ms, XMs , score) ∈ U ′}

If no solvable source task is selected, the algorithm instead finds the most relevant

unsolvable source tasks (Algorithm 11), and attempts to break them down further. We

calculate the relevance of a source task by computing the overlap between samples from

a source XMs and the samples of the target X. Specifically, for each task-sample pair

(Ms, XMs) ∈ U , we compute the fraction of states s in the target samples X that are also

present in the source XMs . If function approximation is used, a distance metric such as that

by Ferns et al. [30] can be used to do this. The task-sample pairs in U are sorted by their

relevance, dropping any that have relevance less than ε, and are recursively broken down by

calling RecurseTaskSelect, which tries to find a sub-source task for the current source

task. If no tasks can be solved, the recursion ends.

Assuming the target task is solvable, Algorithm 8 is guaranteed to terminate once β

74

(a) (b)

Figure 6.1: (a) Grid world target task (b) Sample curricula generated for each of the agents.
Each one ends in the target task.

increases enough to solve the target task directly. In the worst case, no source tasks are

useful. If there are m total source tasks, and it takes n iterations of increasing β to learn

the target task, then the whole process makes at most O(mn) recursive calls.

6.3 Experiments

We evaluate our curriculum generation algorithm on a grid world domain, inspired by the

lights world domain used by Konidaris and Barto [65]. The world consists of a room, which

can contain 4 types of objects. Keys are items the agent can pick up by moving to them and

executing a pickup action. These are used to unlock locks. Each lock in a room is dependent

on a set of keys. If the agent is holding the right keys, then moving to a lock and executing

an unlock action opens the lock. Pits are obstacles placed throughout the domain. If the

agent moves into a pit, the episode is terminated. Finally, beacons are landmarks that are

placed on the corners of pits. A sample domain is pictured in Figure 6.1a.

The goal of the learning agent is to traverse the world and unlock all the locks. At

each time step, the learning agent can move in one of the four cardinal directions, execute a

pickup action, or an unlock action. Moving into a wall causes no motion. Sucessfully picking

75

up a key gives a reward of +500, and sucessfully unlocking a lock gives a reward of +1000.

Falling into a pit terminates the episode with a reward of -200. All other actions receive a

constant step penalty of -10.

This domain features a number of skills that must be learned in order to complete a

task. For example, navigation, picking up keys, and unlocking locks are all different skills

an agent must learn, and each could be learned in a separate task as part of a curriculum.

The complexity of the task can also be increased or decreased by adding or removing new

objectives and obstacles.

6.3.1 Learning Agent Descriptions

We created multiple reinforcement learning agents that have different representation and

action abilities, and used the algorithm proposed to generate curricula for them. We can

create agents that vary along the representation dimension by using features that increase

or decrease bias. We can change action capabilities by adding obstacles such as pits, and

giving an agent a “rope” action that allows it to cross pits.

Using multiple agents allows us to verify that the algorithm works regardless of the im-

plementation of the RL agent used. It also allows us to potentially answer another question:

whether different agents can benefit from tailored curricula, just as humans often benefit

from individualized curricula, and whether the method proposed facilitates that.

To evaluate these ideas, we created 3 different agents. The first agent, the basic agent,

has 16 sensors, grouped into 4 on each side. The first sensor in each quadruple measures the

Euclidean distance to the closest key from that side, the second measures the distance to

the closest lock, the third the distance to the closest beacon, and the fourth detects whether

there is a pit adjacent to the agent in that direction. An additional sensor indicates whether

all keys in the room have been picked up, which we refer to as the noKeys sensor. For

example, the perception vector for the agent in Figure 6.1a is [7.07, 5.10, 6, 6.32, 3.16, 3.16,

76

4, 2, 4.24, 3.16, 3.61, 2.83, 0, 0, 0, 0, 0], where the first 4 elements are key features for the

north, south, east, and west side sensor, followed by the 4 for locks, 4 for beacons, 4 for pits,

and the noKey.

The agent used Sarsa(λ) with ε-greedy action selection for the learning algorithm L,

value function transfer for transfer learning algorithm T , and CMAC tile coding for function

approximation (see Chapter 2 for a review). For all our agents, the tile widths were 1.

For the basic agent, we created two tilings: one over the 13 percepts from the key,

beacon, pit, and noKey sensors, and another over the 13 percepts from the lock, beacon, pit,

and noKey sensors. Tiling in this way allows the agent to generalize knowledge about keys

and locks learned in source tasks separately. The exploration rate ε was set to 0.1, eligibility

trace parameter λ to 0.9, and learning rate α to 0.1.

The second, action-dependent agent, has the same sensors as the basic agent, but they

are tiled differently: one tile is over the lock, pit, and noKey features; a second is over the key,

pit, and noKey features; and a third is over the beacon and pit features. In addition, unlike

the basic agent, the state representation is action-dependent. That is, when considering the

move right action, the agent’s feature vector uses values only from the right side sensors. For

example, the feature vector for the agent in Figure 6.1a considering the move right action

is [6, 4, 3.61, 0, 0], where the values correspond to the key, lock, beacon, pit, and noKey

features. The weights in the tilings are shared, so that the same set of weights is used for

the state in each of the directions. Sharing weights like this increases the agent’s level of

generalization.

Finally, the rope agent is like the basic agent, except that it has 4 additional actions,

which are to use a rope in one of the four directions. Doing so opens a path across a pit if

one is present, and incurs the step cost of -10. Depending on the task, this action capability

can result in a different optimal policy, and thus could benefit from a customized curriculum.

77

6.3.2 Curriculum Generation and Results

We used the algorithm presented in Section 6.2 to automatically generate curricula for each

of the 3 agents. The target task Mt was a 10x10 grid world with 1 lock and 1 key separated

by a 6 tile pit, as shown in Figure 6.1a. This task requires agents to learn at least 3 different

behaviors: picking up keys, navigating around pits, and unlocking locks.

Each agent was initialized with a uniform random policy, and given an initial learning

budget β of 500, which was increased by 500 in each iteration of the loop in Algorithm 8.

In order to add a source task, we specified it had to affect the policy by at least ε = 0.1.

Curriculum generation was terminated when a return δ = 700 was reached.

Tasks were identified as solved using the policy convergence method described in

Section 6.2. We applied the TaskSimplification and OptionSubGoals heuristics defined in

Chapter 4 to create source tasks. These created source tasks that varied elements such as

the size of the domain, the number of pits, or changed the goal of the task to be picking up

certain keys. A total of 15 unique tasks were considered for use by the curriculum algorithm,

and 9 were used to compose curricula for the different agents.

We evaluated the performance of each agent on the target task using no curriculum,

a curriculum tailored for that specific agent, curricula tailored for each of the other two

agents, and a random curriculum consisting of 3 randomly selected tasks. Figures 6.2 - 6.4

show the results for the basic agent, action-dependent agent, and rope agent, respectively.

The results clearly show that training via the curriculum customized for an agent provides

the best benefit. Using a different agent’s curriculum was usually suboptimal, and in some

cases even hurt performance. Using a random curriculum generally led to performance quite

similar to learning from scratch, only delayed. The random tasks added training time without

improving learning speed (results are shown for the rope agent. For the other agents, the

shape of the random curve was similar to the “no curriculum” curve, but the randomly

selected tasks led to horizontal offsets greater than the scale of the graph axes). Examples

78

Basic Agent

Figure 6.2: Performance on the target task by the basic agent after training using various
curricula. Each curve was averaged over 500 runs, and is offset to reflect time spent training
in source tasks. The basic curriculum is statistically significantly better than the other
curricula until game step 12292, using a 2-tail t-test with p < 0.05.

of produced curricula for each agent are shown in Figure 6.1b.

6.4 Summary

In this chapter, I introduced our first approach for automatically sequencing tasks into

a curriculum. The main idea is to repeatedly use samples of an agent’s experience on the

target task to determine which source tasks to train on next. In particular, we use a heuristic

which measures how much change learning each source task will have on these target task

samples to decide which task to select. The task that elicits the most change is selected.

After training on this source task, the agent’s policy is updated, and a new set of samples

is acquired on the target task based on the agent’s updated policy. This process is repeated

until a curriculum is formed.

We evaluated our approach in a grid world domain on 3 different types of RL agents

that varied in sensing and action capabilities. We were able to show that different agents do

benefit from individualized curricula, and that the proposed method is able to learn them.

79

Action-Dependent Agent

Figure 6.3: Performance on the target task by the action-dependent agent after training
using various curricula. Each curve was averaged over 500 runs, and is offset to reflect time
spent training in source tasks. The action dependent curriculum is statistically significantly
better than the other curricula between game steps 2809 and 4258, using a 2-tail t-test with
p < 0.05.

Rope Agent

Figure 6.4: Performance on the target task by the rope agent after training using various
curricula. Each curve was averaged over 500 runs, and is offset to reflect time spent training
in source tasks. The rope curriculum is statistically significantly better than the other
curricula until game step 12510, using a 2-tail t-test with p < 0.05.

80

An individualized curriculum is better than both a baseline of not using a curriculum, and

a curriculum designed for the other agents.

The approach designed in this chapter uses a heuristic for identifying which source

task would be most useful to learn next. In the next chapter, we instead pose the curriculum

generation problem as an MDP, and directly use learning to find a curriculum.

81

7. Learning-based Approaches for Sequencing

In Chapter 6, I presented the first automated sequencing method of this thesis. This method

performs a cost versus benefit computation to determine which task to add next in the

curriculum. Part of this computation uses a heuristic to determine the benefit of learning

a task – specifically, that a larger change in the policy on a set of target task samples after

learning a task implies that it is more beneficial. However, this heuristic relies on one key

assumption – that the source tasks generated as possible components of the curriculum do

not induce negative transfer. While in some settings, this assumption may hold, we would

also like methods that are robust to settings where this assumption does not hold.

In order to deal with this limitation, we need to have additional information about

the source and target task MDPs, or acquire additional experience in the target task MDP

after transfer to evaluate the direction of transfer. Therefore, in this chapter, I present an

alternative approach that uses experience trajectories and learning to perform sequencing.

This method poses curriculum generation as an interaction between two MDPs. One MDP

is a standard MDP for a learning agent (i.e., a student) interacting with a task. The second

MDP is a higher level MDP for the curriculum agent (i.e., teacher), which learns to select

tasks for the student to train on. A policy over the curriculum agent’s MDP (referred to

as a curriculum policy) is a mapping from the student agent’s current state of knowledge

and abilities, to the task it should learn next, to optimize one of the curriculum learning

metrics from Chapter 2. A curriculum policy can be learned using any standard RL method.

However, the key challenge of this approach is to represent the curriculum agent MDP’s

state space in a way that facilitates efficient learning. I discuss this and other challenges in

this chapter, and show that this approach produces curricula that are at least as good or

82

better than previous methods.

This chapter is based on work that was published in the proceedings of the Au-

tonomous Agents and Multi-agent Systems (AAMAS) conference [80] and addresses Contri-

bution 4 from Chapter 1 of this thesis.

7.1 Curriculum Generation as an MDP

As in Chapter 6, I first define the type of curriculum our approach will produce, as well as the

metric it will optimize. In this chapter, I will again consider task-level sequence curricula

which represent curricula as an ordered list of tasks [M1,M2, . . .Mn]. In contrast to the

previous chapter, the approach I will discuss assumes the set of source tasks is prespecified

beforehand, and can be used to optimize for multiple different transfer metrics. I will ground

the discussion and perform experimental evaluation using the time to threshold metric.

However, I will also discuss how it can be applied for asymptotic performance or jumpstart.

The core idea of our approach is to formulate curriculum generation as an interaction

between two agents acting in two different MDPs. One is a learning agent that is trying to

solve a specific target task MDP Mt, as is the standard case in reinforcement learning. The

second is a curriculum agent, which interacts in a second, higher level curriculum MDP, and

whose goal is to sequence tasks M for the learning agent.

The overall process in a CMDP unfolds as follows. The learning agent starts with

some initial state of knowledge – which for now we will assume can be encapsulated by its

policy – π0, which is represented as the initial state s0 of the CMDP. The curriculum agent

then selects an action a0, where each action corresponds to a different task that can be

learned by the learning agent using some learning algorithm. Learning a task transforms

the learning agent’s state of knowledge to a new policy π1, represented in the CMDP as the

next state s1, by means of a transfer learning algorithm. It also incurs a cost, which is the

amount of time needed by the learning agent to learn the task (when optimizing for time to

83

threshold). This process repeats until the curriculum agent transitions to a terminal state,

which is a state where the policy of the learning agent can achieve a return G0 ≥ δ on the

target task.

We now define this process formally as an MDP. To distinguish the curriculum MDP

from task MDPs, we will use the superscript C to refer to elements of the curriculum MDP.

Definition 7.1. A curriculum MDP (CMDP) MC is a 6-tuple

(SC ,AC , pC , rC ,∆sC0 ,SCf), where:

State Space The set of states SC consist of the set of all policies π the learning agent can

represent, in a form that is executable on the target task. For example, the initial state

sC0 could be the uniform random policy. In the time to threshold setting, the terminal

states SCf are states whose policies achieve a return of at least some desired performance

threshold δ on the target task. In the asymptotic performance or jumpstart setting,

the MDP terminates after a prespecified amount of time or number of episodes.

Action Space The set of actions AC , are the set of tasks a learning agent can train on.

Transition Function The transition function pC(sC , aC , s′C) gives the probability that s′C

is the learning agent’s policy after training on aC and starting with policy sC .

Reward Function The reward function rC(sC , aC , s′C) varies depending on the transfer

learning metric being optimized. In the time to threshold setting, rC(sC , aC , s′C) is the

negative of the time (measured e.g., in experience samples or wall clock time) needed

to learn task aC starting from policy sC . In the asymptotic performance setting, it is

0 unless s′C is a terminal state, in which case it is the final performance on the target

task. Likewise, in the jumpstart setting, rC(sC , aC , s′C) is 0 except on terminal states,

where it is the value of the jumpstart performance on the target task.

A policy πC on a CMDP specifies which task to train on given a learning agent policy

sC . Executing πC for a particular learning agent produces a task-level sequence curriculum.

84

Learning a full policy over a CMDP can be very difficult, due to stochasticity in the learning

algorithm (which leads to stochasticity in the CMDP transition function), a very large and

continuous state space, and the high cost of taking a CMDP action. In this rest of this

chapter, we explore the challenges involved in learning πC
∗
.

Before doing so, I would like to briefly comment on representing CMDP states and

its relation to the CMDP transition function and transfer learning algorithm being used by

the learning agent. We used the learning agent’s policy as one example of how to represent

the CMDP state. However, this representation assumes the underlying transfer learning

mechanism is value function or policy transfer. Intuitively, the state space of a CMDP

represents different states of knowledge. A transition between states reflects the change in

knowledge from training on a task and transferring/incorporating the information acquired.

In value function transfer, the knowledge learned from a task is represented by the value

function of the agent itself. Similarly, in policy transfer, the knowledge learned from a

task is encapsulated by the policy. However, for other transfer learning techniques, such as

transfer via reward shaping (see Chapter 2), knowledge can be represented in other forms;

for instance, as a potential-based shaping reward.

Thus, the CMDP state space and transition function are directly related to the transfer

learning algorithm being used. The goal of the agent is to reach a state of knowledge that

allows solving the target task in the least amount of time. Therefore, for an agent that uses

reward shaping, the CMDP state can be represented as a set of potential functions, derived

from the value functions of source tasks already learned. The goal is to find a CMDP state

whose sum of potential functions creates a shaping reward that allows learning the target

task as fast as possible. In the next section, we describe in detail how to represent CMDP

states.

85

7.2 Representing CMDP State Space

We now detail how to represent the CMDP state to facilitate learning of curriculum policies.

Recall that in the standard reinforcement learning setting, the agent perceives its state as

a set of raw state variables. These are typically used to extract basis features φ(s), which

transform the state variables into a space more suitable for learning and for use in function

approximation. Given these features and a functional form (such as a linear representation),

the goal is to learn weights θ for the value function or policy (e.g., in the linear case:

vθ(s) = θ · φ(s)). We introduce an analagous process for curriculum design agents acting

in CMDPs. We will ground the discussion assuming the learning agent uses value function

transfer. However, the idea is easily applied to the reward shaping setting by noting that

the potential-based reward, like the value function, can be expressed as a function of state

features and weights.

The first question is how to represent the raw state variables sC of the CMDP state

space. The representation chosen must be able to represent any policy the underlying learn-

ing agent can represent. Assuming the learning agent derives its policy from an action-value

function qθ(s, a), the form of the function – in particular, the way values are calculated from

φ(s, a) and θ (for example, the architecture of a neural network) – determines the class of

policies that can be represented. The functional form of qθ(s, a) and how learning agent

features φ are extracted are fixed. Thus, it is specific values of the weight vector θ that ac-

tually instantiates a policy in this class. It follows that we can represent the state variables

for a particular CMDP state sC using the instantiated vector of learning agent weights θ.

sC = θ (7.1)

Different instantiations of θ correspond to different CMDP states. Typically, these weights

θ will take on continuous values. Therefore, in order to learn a CMDP action-value function

86

qCθC (sC , aC), it will be necessary to do some kind of function approximation. While it is pos-

sible to directly use the raw θ as features for function approximation in the CMDP, learning

may be more efficient in an alternative basis space. Thus, it may be beneficial to extract

CMDP basis features φC(sC , aC), mirroring what is done in the standard MDP setting. For

example, with linear value function approximation, qCθC (sC , aC) = θC ·φC(sC , aC). The goal

then is to learn the weights θC for the CMDP’s value function. Any standard RL algorithm

can be used to do this.

The questions that remain are: (1) how to convert raw CMDP state variables to

CMDP basis features, i.e., the form of φC(sC , aC); and (2) what kind of functional form

to use to represent the function approximation. The best way to resolve these issues will

vary by domain. However, the key idea will be to choose representations that allow similar

CMDP states to be close in feature space, whereas those that are different to be farther

away. A simple example illustrating this idea for a 4 state MDP can be seen in Figure 7.1.

In the next 2 subsections, I provide specific examples and guidelines for representations and

function approximations that can apply across a broad class of domains.

7.2.1 Discrete State Representations

First we propose one specific way of extracting CMDP state features and performing function

approximation, that can be applied when the parameters θ are tied to specific states, as is

common in tabular reinforcement learning.

Assume again the learning agent learns an action-value function qθ(s, a), for each

state-action pair in the task. We can represent q as a linear function of “one-hot” features

φ(s, a) and their associated weights θ:

qθ(s, a) = θ · φ(s, a) (7.2)

87

Figure 7.1: A simple 4 state task MDP, and 3 examples of CMDP states over this task. Each
CMDP state corresponds to a different policy over the task MDP. Values under the “Left”
and “Right” columns are weights (such as q-values or probabilities) for taking those actions
in a primitive state in the task MDP, and correspond to θ from Equation 7.1. CMDP states
1 and 2 have similar policies. Therefore, we want them to be close in the featurized CMDP
state space. In contrast, CMDP state 3 has a more different policy, and should be farther
away in CMDP state space.

In other words, all the action-values are stored in θ, and φ(s, a) is a one-hot vector

used to select the activated action-value from θ. Our approach for designing φC is to utilize

tile coding over subsets of action-values in θ. Specifically, the idea is to create a separate

tiling for each primitive state s in the domain. Each such tiling will be defined over the

action-values in θ associated with state s. Thus, this process creates |S| tiling groups, where

each group is defined over |A| CMDP state variables (i.e., action-values). To create the

feature space, multiple overlapping tilings are laid over each group. An example of this

process for the 4 state MDP from Figure 7.1 is shown in Figure 7.2.

Since action-values can take a large range of values, we suggest normalizing the action-

values within each tiling. Thus, each tiling is over the relative preferences of the different

actions in a state. The entire CMDP basis state is the concatenation of all of these tiled

features. The effect of this approach is that when computing the value of a CMDP state sC ,

88

Figure 7.2: An example of how tile coding can be used to create CMDP features for the 4
state MDP from Figure 7.1. In this case, |S| = 4 for the 4 primitive states, and |A| = 2
for the left and right primitive actions. We treat the raw state variables θ in Figure 7.1 as
q-values and normalize them before applying the tilings.

the policy for each primitive state contributes equally towards the total value. Two CMDP

states will be “closer” in representation space the more φC activates the same tiles – which

will happen if they have similar action preferences for primitive states in their task state

spaces.

7.2.2 Continuous State Representations

The representation problem is harder in the continuous case, since each parameter θi is not

local to a state, and we cannot use a state-by-state approach to create a basis feature space.

In principle, any continuous feature extraction and function approximation scheme can form

the basis of φC (tile coding, neural nets, etc.). We offer 2 guidelines that we found useful in

defining successful φC representations in our experiments.

The first is that the precise form of φC should be informed by the domain and the

structure of the learning agent’s function approximation. The discrete case discussed pre-

viously is a special case of this setting. In the discrete case, aggregating action-values in

a state-by-state basis could be thought of as exploiting the structure and what we know

about the parameter vector θ: namely, that it consists of action values that share states.

89

Depending on the function approximation used by the learning agent, it may be possible to

draw similar insights to design φC .

The second guideline for creating φC is to capture the relative effect of each θi on

different action preferences. In the discrete case, this process was done by normalizing the

action values within each state to create preferences. However, since in general parameters

may not be local to a state, the normalization needs to be done directly on the parameter

values. In other words, we need to think about how each parameter θi affects the policy as

a whole over all states, and how each parameter θi relates to another. If the parameters θ

are not related, one option would be to create a separate tiling over each parameter, and

normalize over all the parameter values. We will demonstrate a specific example of creating

φC for the continuous case in Section 7.3.

7.3 Experimental Setup

We evaluated learning curriculum policies for agents on a grid world domain (see Section

6.3) as well as the Ms. Pac-Man domain (see Section 4.3) introduced in previous chapters.

These domains were selected because they allow us to compare to previous methods; test

our approach using different agent representations, different transfer learning algorithms,

and different CMDP representations; and test its scalability to a more complex setting.

I will show the results as CMDP learning curves. The x-axis on these learning curves

are over CMDP episodes. Each CMDP episode represents an execution of the current cur-

riculum policy for the agent. Thus, multiple tasks are selected over the course of a single

CMDP episode, with each task taking a varying number of steps/episodes, which contributes

to the cost on the y-axis. Tasks are selected until the desired performance can be achieved

in the target task, at which point the CMDP episode is terminated. In short, the curves

show how long it would take to achieve a certain performance threshold on the target task

following a curriculum, where the curriculum is represented by the CMDP policy, which is

90

being learned over time.

We compare curriculum policies learned for each agent to two static curricula. The

first is the baseline no curriculum policy. In this case, on each episode, the agent learns

tabula rasa directly on the target task. The flat line plotted represents the average time

needed to learn the target task directly. Note that the line is flat because the “curriculum”

is fixed and does not change over time. The second is a curriculum produced by following an

existing curriculum algorithm (from Narvekar et al. [83] for the gridworld and from Svetlik

et al. [123] for Ms. Pac-Man, to compare with past work). We also compare to a naive

learning-based approach, which represents CMDP states using a list of all tasks learned by

the learning agent. For example, the start state is the empty list. Upon learning a task

M1, the CMDP agent transitions to a new state [M1]. If the CMDP agent subsequently

selects task Mt, the resulting state is [M1,Mt]. Note that this representation is a cruder

approximation of the underlying process, as learning 2 different tasks that impart the same

knowledge will lead to 2 different states under this representation. In order to deal with the

combinatorial explosion of the size of the state space with this naive representation, we limit

the number of tasks that can be used as sources in the curriculum to a constant (between 1

and 3 in our experiments), and force the selection of the target task after.

Hyperparameters for the learning agents were chosen using previously reported results

in the respective domains. Hyperparameters for the CMDP agents were set as described in

Sections 7.4.1 and 7.5.2. They were not extensively optimized.

7.4 Gridworld Experiments

In our first set of experiments, our goal is to evaluate the ability of our method to learn

curriculum policies for 3 learning agents that have different state and action spaces, but use

the same transfer learning algorithm (value function transfer), in a grid world domain (see

Figure 6.1 and Section 6.3). This domain was chosen because it allows us to compare the

91

curriculum generated against our previous curriculum sequencing approach from Chapter

6. In addition, we also evaluate the effect of two different types of representations for the

CMDP state. The first CMDP representation is based on the finite state space representation

discussed earlier, while the second CMDP representation is created directly from θ without

using an intermediary state-based action-value representation. A description of the domain

and learning agents can be found in Section 6.3. In the next subsection, we describe the

representations for the CMDP state space and their effects on learning curriculum policies.

7.4.1 CMDP Description

We defined our curriculum MDP as follows:

State space. The start state sC0 was derived from an untrained, uniformly initialized

learning agent. The set of terminal states SCf were all states where the learning agent’s

policy allowed it to achieve a return of at least 700 on the target task. This performance

threshold was the maximum that all the agents could achieve after training to convergence

on the target task. Representations used for the CMDP state space are described in the

next section.

Action space. Source tasks were created using the TaskSimplification and Option-

SubGoals heuristics (see Chapter 4). These heuristics create source tasks by simplifying the

domain, for example by reducing the size of the grid or the number of keys, locks, and pits,

and by changing the goal of the task to be picking up keys. A total of 10 different tasks were

created, and with the target task, these formed the action space AC of the CMDP agent.

The properties of these source tasks are summarized in Table 7.1.

Transition function. The (unknown) transition function is stochastic, describing

how learning a task changes a learning agent’s policy.

Reward function. The environment returns a reward rC(sC , aC , s′C) as the negative

of the time needed to learn task aC from state sC . A task is considered learned once the

92

Task Num Grid Size Num Keys Num Locks Pit Present Rope Required

1 5x5 1 0 No No
2 10x10 1 0 No No
3 5x5 0 1 No No
4 10x10 0 1 No No
5 7x1 1 0 Yes Yes
6 7x6 1 0 Yes Yes
7 7x1 0 1 Yes Yes
8 7x6 0 1 Yes Yes
9 7x7 1 0 Yes No
10 7x7 0 1 Yes No

Target 10x10 1 1 Yes No

Table 7.1: Properties of tasks in the gridworld experiments. “Rope required” indicates tasks
where a pit blocks direct paths from the agent to the goal, necessitating a rope action. When
a lock is not present, the episode terminates when all keys are picked up.

policy ceases to change for 10 episodes. Time is measured using game steps.

Learning on the CMDP was done using Sarsa(λ) with ε = 0.001, λ = 0.9, and α = 0.1.

7.4.2 CMDP State Space Representations

One of the main challenges addressed in this research is identifying a representation for the

CMDP state space that is both generalizable and compact enough to enable efficient learning

of a curriculum for a range of agents. To this end, we instantiated and evaluated two forms

for φC .

Recall that the learning agents use tile coding with linear function approximation.

Here, φ is a feature vector that indicates which tiles have been activated for state s and

action a, and θ are the corresponding weights in each tile. These weights θ form the raw

CMDP state variables sC . We discuss two different ways to construct φC(θ), which will

convert the raw state variables into a CMDP basis feature space suitable for learning.

Finite State Representation

The learning agents use Sarsa(λ) with an egocentric feature space, which consists of relative

distances to objects of interest from the current position of the agent. Thus, the parameters

θ learned are not actually action-values for each grid world cell, but are weights for these

93

egocentric features. However, since the underlying domain has a fixed number of grid cells,

we can simulate the finite state representation case by “moving” the learning agent to each

of the grid cells in the target task and computing action values. Let this new parameter of

weights be θ′. We can now utilize the procedure described in Section 7.2 to create a CMDP

feature space φC(θ′).

Continuous State Representation

The above representation is only well-defined in environments with a discrete underlying

state space. We therefore also explore a CMDP representation that can apply in continuous

domains by creating φC directly from θ without using an intermediary state-based action-

value representation. Recall that the CMDP state variables sC = θ are the weights associated

with all the tiles. Each of these tiles is part of a tiling group. For example, the basic and

rope agents had 2 tiling groups over different subsets of its sensor percepts, while the action-

dependent agent had 3 tiling groups. All tiles in a tiling group are related to each other.

Thus there is an inherent structure to the parameters in the tiles.

However, forming a φC tiling group over the weights of all the tiles associated with a φ

tiling would not generalize well, because it would require nearly identical action-preferences

in every state to activate common tiles. Therefore, we created a separate tile group for

each θi. Since the weights θ within each learning agent’s tilings φ are still correlated, we

normalized the weights associated within each φ tile group.

7.4.3 Results and Discussion

We learned curriculum policies for all 3 learning agents using both the finite and continuous

state representations for the CMDP state space. The target task Mt is shown in Figure 6.1.

The corresponding CMDP learning curves are shown in Figures 7.3 - 7.5. The results show

that each agent successfully learned curriculum policies using both CMDP representations

94

Basic Agent

0 100 200 300 400 500

CMDP Episodes
−35000

−30000

−25000

−20000

−15000

−10000

−5000

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

no curriculum
Narvekar et al. (2017)
finite state representation
continuous state representation
naive length 2 representation
naive length 3 representation

Figure 7.3: CMDP learning curves for the basic agent using different curriculum design
approaches and CMDP state space representations. The y-axis represents the cost (i.e., neg-
ative of the time needed) to reach a performance of 700 on the target task, following the
curriculum policy at episode X. All curves are averaged over 500 runs. Each curriculum
method was statistically significantly better than no curriculum using a 2 tail t-test with
p < 0.05.

that were better than learning without a curriculum, and comparable to the curricula gen-

erated by previous work [83]. However, unlike this previous work, our approach does not

require additional prior information about source tasks (such as task descriptors). In addi-

tion, the results show that our approach is robust to different predefined agent and CMDP

representations.

7.5 Ms. Pac-Man Experiments

In the previous section, we demonstrated that CMDPs can be learned for agents with different

actions and/or state representations. Another relevant way in which agents can differ is the

algorithm by which they transfer knowledge from a source to a target task. Thus, in this

section, we evaluate the robustness of our approach to different underlying transfer learning

methods, while simultaneously evaluating the scalability to a significantly more complex

95

Action-Dependent Agent

0 100 200 300 400 500

CMDP Episodes
−35000

−30000

−25000

−20000

−15000

−10000

−5000

0

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

no curriculum
Narvekar et al. (2017)
finite state representation
continous state representation
naive length 2 representation
naive length 3 representation

Figure 7.4: CMDP learning curves for the action-dependent agent using different curriculum
design approaches and CMDP state space representations. The y-axis represents the cost
(i.e., negative of the time needed) to reach a performance of 700 on the target task, following
the curriculum policy at episode X. All curves are averaged over 500 runs. Each curriculum
method was statistically significantly better than no curriculum using a 2 tail t-test with
p < 0.05.

Rope Agent

0 100 200 300 400 500

CMDP Episodes
−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

no curriculum
Narvekar et al. (2017)
finite state representation
continuous state representation
naive length 2 representation
naive length 3 representation

Figure 7.5: CMDP learning curves for the rope agent using different curriculum design
approaches and CMDP state space representations. The y-axis represents the cost (i.e., neg-
ative of the time needed) to reach a performance of 700 on the target task, following the
curriculum policy at episode X. All curves are averaged over 500 runs. Each curriculum
method was statistically significantly better than no curriculum using a 2 tail t-test with
p < 0.05.

96

Ms. Pac-Man domain. In particular, we examine the case when the learning agent stays

the same, but uses 2 different types of transfer learning methods: value function transfer

and reward shaping. The change in transfer algorithm affects both the CMDP state space

representation, and the CMDP transition function, which we will describe in the following

subsections. A description of the domain can be found in Section 4.3.

7.5.1 Learning Agent Description

We created a Ms. Pac-Man learning agent using the low-asymptote feature set described

in Svetlik et al. [123], Taylor et al. [130]. The state space of the agent is represented by a

set of 24 action-dependent egocentric features. These are divided into 4 sets of features for

pills, power pills, ghosts, and edible ghosts, that count the fraction of each object type in a

direction up to 6 different “depths.” The depth refers to junctions, i.e., locations in the maze

where there are more than 2 possible actions.8 For example, the ghost feature for depth 1

would return the fraction of ghosts there are along one direction until the first junction. The

pill feature for depth 2 would return the fraction of pills present up to two junctions away,

and so on. These features were used to learn a linear value function approximator.

The agent was trained using Sarsa(λ), with ε = 0.05, α = 0.001, γ = 0.999, and

λ = 0.9. See the code by Svetlik et al. [123] for implementation details.

7.5.2 CMDP Description

We defined our curriculum MDP as follows:

State space. As before, the start state sC0 was an untrained, randomly initialized

learning agent. The set of terminal states SCf were all states where the learning agent could

achieve a return of at least 2000 on the target task.

8Two possible actions in a state means the agent is in a corridor, whereas a “T” and “+” junction has 3
and 4 actions respectively.

97

Task Num Num Junctions Num Ghosts Num Pills Num Power Pills

1 2 0 53 1
2 2 1 65 2
3 40 2 234 4
4 36 4 240 4
5 8 0 179 4
6 8 2 179 4
7 8 4 179 4
8 13 2 209 4
9 13 4 209 4
10 13 0 209 4
11 24 0 231 4
12 24 2 231 4
13 24 4 231 4
14 24 4 231 4

Target 36 4 240 4

Table 7.2: Properties of source tasks in the Ms. Pac-Man experiments. “Num Junctions”
indicates how many maze positions had 3 or more direction actions possible. Note that some
tasks have similar properties; however, the layout of the maps in these tasks differed. See
the code release from Svetlik et al. [123] for more details.

Action space. We used the same 15 tasks used in the code release of Svetlik et al.

[123] to form the action space AC . These tasks were formed by varying the type of maze,

as well as the number of pills, ghosts, and power pills. Their properties are summarized in

Table 7.2.

Transition function. As before, the (unknown) transition function is stochastic,

describing how Ms. Pac-Man’s value function or set of shaping potentials changes as a result

of learning a task.

Reward function. We measure the cost of learning a task in terms of the number

of game steps needed. Following the experimental setup of Svetlik et al. [123], a task is

considered learned when at least 35% of the maximum reward possible for that task can be

achieved. The maximum reward for a task is calculated analytically by summing the points

accrued for eating all the pills, and all the edible ghosts for each power pill.

Learning on the CMDP was done using Sarsa(λ) with ε = 0.001, λ = 0.9, and

α = 0.05.

98

7.5.3 CMDP State Space Representations

We consider 2 different CMDP state space represenations that result from the use of 2

different transfer learning algorithms. In the value function transfer case, the raw CMDP

state variables sC are the weights θ of the Ms. Pac-Man agent’s linear function approximator.

To create the CMDP space φC , we normalize θ and use tile coding, creating a separate tiling

over each θi. In the reward shaping setting, each source task in the curriculum is associated

with a potential function (derived from the value function). As multiple tasks are learned,

the potentials are added together, and used to create a shaping reward (as done in Svetlik

et al. [123]). Thus, the raw CMDP state variables are the summed weights of the potential

functions. As in the value function case, we use tile coding to create a separate tiling over

each potential weight feature to create the CMDP basis space.

7.5.4 Results and Discussion

Figure 7.6 shows CMDP learning curves for Ms. Pac-Man using value function transfer and

Figure 7.7 shows the curves using transfer with reward shaping. The results again clearly

demonstrate that curriculum policies can be learned, and that such policies are more useful

than training directly on the target task. They also show that the approach is adjustable to

different types of transfer learning algorithms. In addition, we compared the reward shaping

approach with that of Svetlik et al. [123], who also use reward shaping for transfer in their

curriculum algorithm, and found that a much better curriculum is possible in this more

complex domain.9

Finally, we also study the effect of the hyperparameter that controls when to finish

training on a source task. For the previous two experiments in Ms. Pac-Man, training

on a source was stopped after 35% of the max possible return in the task was achieved, to

9Our results are based on a reproduction of their experiments using their publicly released code. Inter-
estingly, we also get slightly better results for their method than they report in their paper. We measure
cost in episodes for this experiment only to facilitate comparison to their work.

99

Value Function Transfer

0 100 200 300 400 500 600 700

CMDP Episodes
−250000

−200000

−150000

−100000

−50000

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

no curriculum
continuous state representation
naive length 1 representation
naive length 2 representation

Figure 7.6: CMDP learning curves on the Ms. Pac-Man target task, using value function
transfer. All curves are averaged over 500 runs and cost is measured in game steps. Each
curriculum method was statistically significantly better than no curriculum at convergence.
These were tested using a 2-tail t-test with p < 0.05.

Reward Shaping Transfer

0 100 200 300 400 500 600 700

CMDP Episodes
−3500

−3000

−2500

−2000

−1500

−1000

−500

0

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

no curriculum
Svetlik et al. (2017)
continuous state representation
naive length 2 representation

Figure 7.7: CMDP learning curves on the Ms. Pac-Man target task, using transfer with
reward shaping. All curves are averaged over 500 runs, and cost is measured in episodes. Each
curriculum method was statistically significantly better than no curriculum at convergence.
In addition, the CMDP-based approaches were statistically better than Svetlik et al. [123].
These were tested using a 2-tail t-test with p < 0.05.

100

replicate the experimental conditions of Svetlik et al. [123]. Since their approach precomputes

a curriculum and does not model the state of the learning agent’s progress, this termination

condition must be carefully chosen to ensure something can be learned in each source task.

In contrast, with our approach, we can train on source tasks for an arbitrarily small amount

of time, as the curriculum policy can learn to reselect a task if additional experience in that

task is required.

In Figure 7.8, we reproduce the continuous state representation CMDP learning curves

using value function transfer from Figure 7.6 and reward shaping from Figure 7.7. These are

denoted in the figure by “(return-based)”, and train on sources until 35% of the max return

is achieved. We compare them against an approach that is identical to “(return-based)”

approaches, but that trains for 5 episodes on a task at a time. These CMDP learning curves

are denoted with “(small fixed).” The results show that agents do not need to train for

a long time or to convergence on source tasks, and that our approach can adapt to this

hyperparameter setting.

7.6 Summary

In Chapter 6, I introduced our first method for automatically sequencing tasks into a cur-

riculum, that used a heuristic to guide the selection of tasks. In this chapter, I introduced

a second method for automatically sequencing tasks into a curriculum that instead relies

on learning. The approach formulates curriculum generation as an interaction between two

MDPs: one for the learning agent (i.e., a student) which learns tasks, and one for the cur-

riculum agent (i.e., a teacher) that sequences tasks for the learning agent. A policy over the

curriculum agent’s MDP (i.e., a CMDP) is a mapping from the state of knowledge of an

agent to the task it should learn next, to optimize some curriculum learning metric (such as

time to threshold or asymptotic performance from Chapter 2). A key challenge in learning

curriculum policies is representing the CMDP state. I discussed how this can be done for

101

Termination Criteria Analysis

0 100 200 300 400 500

CMDP Episodes
-500000

-400000

-300000

-200000

-100000

0

C
os

t
to

L
ea

rn
Ta

rg
et

Ta
sk

reward shaping (return-based)
reward shaping (small fixed)
value function (return-based)
value function (small fixed)

Figure 7.8: A CMDP learning curve comparison between the continuous representations for
value function and reward shaping transfer, using different criteria to determine when to
stop training on source tasks. All curves are averaged over 500 runs and cost is measured in
game steps. The “small fixed approaches were statistically better than their corresponding
“return-based methods at convergence. These were tested using a 2-tail t-test with p < 0.05.

both discrete and continuous domains.

We evaluated this method on both a grid world domain, and a large, discrete Ms. Pac-

Man domain. The results show that the approach is robust to multiple learning agent

types, multiple transfer learning algorithms, and different CMDP representations. Learned

curricula were also as good as or better than previous CL approaches on the same domain.

We also showed an additional benefit of this method, which is that it can implicitly learn

how long to spend on each task in the curriculum, as opposed to learning each task to

convergence.

A key limitation of this approach is that learning a full curriculum policy can take

significantly more experience data than simply learning the target task from scratch. In the

next chapter (Chapter 8), I show how this cost can be amortized by learning a curriculum

policy that can adapt to multiple different target tasks.

102

8. Generalizing Curricula

Over the years, many techniques have been designed to both manually and automatically

design curricula for RL agents. In Chapters 6 and 7, I presented two such algorithms for

automatic sequencing. However, these methods and – to the best of my knowledge – all

existing methods have one key limitation: the curriculum must be regenerated from scratch

for each new agent or task encountered. In many cases, this generation process can be very

expensive. However, there is structure that can be exploited between tasks and agents, such

that knowledge gained developing a curriculum for one task should be able to be reused to

speed up creating a curriculum for a new task. Just as curricula designed for humans are

used to teach many different students, and can easily be adapted to teach people how to

solve similar tasks, we would like curricula designed for artificial autonomous agents to have

similar versatility.

This chapter thus considers the problem of curriculum generalization: how can knowl-

edge gained about designing a curriculum for one task be generalized to speed up learning

of a curriculum for a similar, but novel, unseen task? In other words, how can we transfer

or adapt a curriculum learned for one task to a new target task?

This chapter builds on the representation of a curriculum as a policy as described in

Chapter 7, which maps from the state of knowledge of an RL agent to the task it should

learn next. The primary contribution is to show that by combining curriculum policies with

universal value functions, where the task is encoded as the goal, we can learn a curriculum

policy that can generalize to produce curricula for new unseen tasks. This combination allows

us to essentially perform “zero-shot” curriculum learning, where a curriculum is generated

for a novel target task based on experience generating curricula for similar tasks.

103

This chapter is based on work that was presented at the 4th Lifelong Learning Work-

shop at the International Conference on Machine Learning [81] and addresses Contribution

5 from Chapter 1 of this thesis.

8.1 Curriculum Generalization

Our main idea is to learn a universal value function over a curriculum MDP so that we can

generalize over CMDP states and goals.

In standard reinforcement learning, the value function vπ(s) estimates the return of a

policy from a given state s. In deep reinforcement learning, the value function is typically

represented by a deep neural network, and exploits the structure in the state space to learn

values for observed states and to generalize to unseen states. In goal-oriented tasks, where

the environment transition dynamics stay the same but the goal state may differ, much of

the structure of a value function can also be shared across goals. Thus, the idea behind

Universal Value Functions (UVFA) [105] is to create a value function vπ(s, g) that generalize

over both states s and goals g by creating an embedding over state features and goal features:

vπ(s, g) = Eπ
[
∞∑
t=0

rg(st, a, st+1)

∣∣∣∣s0 = s

]
(8.1)

A universal value function can also be learned over a curriculum MDP. The key

questions are how to represent CMDP states, goals, and the architecture for the UVFA.

8.1.1 CMDP States and Goals

Recall from Chapter 7 that a CMDP state parametrically represents the agent’s knowledge.

One way to represent the agent’s state of knowledge is by its policy πθ. In particular,

the class of policies the agent can represent is determined by the structure of the function

approximator used, and the instantiation of weights θ determines the exact policy in this

104

class. Thus, when access to the internal representation of the agent is available, we can

represent the agent’s raw state of knowledge in the CMDP state SC using the vector of

weights of the student agent’s value function or policy θ. We can then use tile coding

with linear function approximation as in Chapter 7 or some other feature extractor and

approximator (in this chapter we will use neural networks) to perform learning.

A goal in the universal value framework is represented as a single state: g ∈ S. In the

CMDP setting, we instead propose to represent goals gC as target tasks that the agent could

be trained on, with one goal for each target task. A key question is how to represent tasks.

In this work, we restrict our attention to goal-based navigational tasks, which are defined

by a starting position and an ending position. This assumption allows us to easily create

a parameterized representation of the task by using the concatenated vector of coordinates

corresponding to the starting and ending states. As an example, consider the gridworld

environment in Figure 8.1a, using a coordinate system where the origin (0, 0) is at the

bottom left tile. The agent’s (red triangle) starting position is (1, 10) and the end position

(green circle) is (9, 3). Thus, we would represent this task parametrically as [1, 10, 9, 3]. An

important direction for future work is to extend these ideas to non-goal-based tasks, such as

those described by language or vision commands [18].

8.1.2 Architecture

Given a representation for both the CMDP state and goal, we use a two-stream neural net-

work architecture as used by Schaul et al. [105] to learn a universal value function over the

CMDP. A two-stream architecture assumes the problem can be factorized into two compo-

nents. In our case, one component is φ : SC 7→ Rn, which creates an embedding for CMDP

states. The second is ψ : GC 7→ Rn, which creates an embedding for CMDP goals. The

two streams are combined using an output function h : Rn × Rn 7→ Rm. In our case, the

mappings φ and ψ are represented by multi-layer perceptrons, and the output function is

105

the Hadamard product. See Figure 8.3 for the architecture we use in the experiments.

A policy extracted from this value function is then able to suggest a task to the

student based both on what the student knows, and the task it needs to learn. Given enough

experience on a set of “training” target tasks, our experiments will show that learning such

a universal value function allows the curriculum policy to generalize and produce curricula

for unseen “test” target tasks.

8.2 Gridworld Navigation Domain

We evaluated curriculum transfer on navigation tasks in a static gridworld environment. Our

goal was to train a CMDP teacher agent to learn a curriculum policy on a subset of tasks,

and show that it can produce curricula for a student on novel unseen target tasks.

The gridworld environment considers goal-oriented navigation tasks in a standard 4-

room grid world. The environment consists of 4 connected rooms, where each room is 5x5

in size and connected at one cell to each adjacent room. A navigation task is defined by a

pair of (x, y) coordinates for the starting position and goal position. There are 100 possible

starting and ending positions. We ignore tasks that start and end at the same position, thus

there are 9900 possible different target tasks. See Figure 8.1 for examples of tasks.

Our student agent has a tabular representation for the state space, and learns using

Sarsa(λ) with exploration ε = 0.1, learning rate α = 0.1, discount factor γ = 1.0, and

eligibility trace decay rate λ = 0.7. We use value function transfer to transfer information

between tasks in the curriculum.

8.3 Teacher (CMDP) Agent Description

In this section, I describe the representation, architecture, and learning parameters for the

teacher CMDP agent.

106

(a) (b)

Figure 8.1: Examples of tasks in the gridworld environment. The red arrow is the agent, and
the green circle is the goal. (a) An example of a target task. (b) An example of a dynamic
source task for the target task in (a).

State and Goal Space

The CMDP needs to learn to generalize over both the agent’s knowledge and task space.

Conceptually, the agent’s current policy – its function for selecting actions in each state,

which we assume to be known to the teacher – is its state of knowledge. As done in Chapter 7,

we represent the agent’s knowledge using the vector of weights associated with the student’s

q-function table. In this chapter, we limit ourselves to goal-oriented navigational tasks. Thus,

tasks can be represented using the pair of (x, y) coordinates associated with the starting and

goal states.

Action Space

We create nine different source tasks. Eight of these tasks are static tasks that don’t change

based on the target task. These tasks initialize the agent in one of the 4 rooms, and terminate

when the agent moves into one of the adjacent two rooms. There is one such task for each

room and adjacent room pair. In addition, all corridors between rooms are blocked except

for the one required to complete the task. The 8 source tasks can be seen in Figure 8.2.

107

Figure 8.2: The 8 static source tasks, that teach an agent to navigate to an adjacent room.
They are shown grouped by the agent’s room for clarity, but each task is independent.

The ninth source task is a dynamic source task that changes based on the current target

task. This task initializes the agent in the same room as the goal of the target task, and

sets the goal tile to be the same as the target task. As with the static sources, all corridors

to other rooms are blocked off. An example of a target task and its corresponding dynamic

source task can be seen in Figure 8.1. These sources, together with the target task, form the

action space of the CMDP. Note that these tasks were intentionally designed to give rise to a

natural and interpretable curriculum for each target task: use the static sources to navigate

to the goal room, and follow with the dynamic source task to complete the path.

Reward Function

When a task is selected, it is trained on until convergence. We consider a task converged

when the steps taken to reach the goal averaged over the last 5 episodes is less than the

108

Manhattan distance between the start s and goal positions g plus a slack term δ:

converged :=
(
steps taken < ||s− g||1 + δ

)
(8.2)

We set δ to 0 when the start and goal positions are in the same room, 5 when they

are in adjacent rooms, and 10 when the rooms are diagonally across. The slack term is

introduced as a simple way of accounting for the extra steps needed to navigate around

walls. The cost of learning a task is the number of steps needed to learn to convergence.

Therefore, the reward given at each CMDP step is the negative of the steps taken to converge

on the selected task.

Architecture and Learning Parameters

We use DQN [77] to learn the CMDP. The neural network uses a two-stream architecture,

where the features relating to the task/goal space pass through a single hidden layer, while

the agent knowledge features pass through three hidden layers. Each hidden layer has 128

units followed by a tanh activation function. The two streams are subsequently merged via

element-wise multiplication, and pass through a final hidden layer to produce action-values.

A diagram of this network can be seen in Figure 8.3. The learning rate is 5e-4, the replay

buffer size is 5000, the batch size is 64, the exploration fraction is 0.05, and the target

network is updated every 50 steps. To speed up training, we also capped the number of

CMDP actions the teacher agent could take at 5, and trained on the target task thereafter.

We arrived at these parameters after informal experimentation with a handful of settings,

but they were not extensively optimized.

109

Figure 8.3: The two-stream network architecture used for the teacher CMDP agent. The
agent knowledge features sC are the weights θ of the student agent’s action-value function.
The task features is the length 4 vector corresponding to the start and end coordinates of
the task as described in Section 8.1.

8.4 Experimental Results

We consider two types of generalization that may be possible in navigational task CMDPs:

interpolation and extrapolation. In the interpolation case, we randomly shuffle all the 9900

possible target tasks, and present them to the CMDP agent one by one. Each CMDP

episode takes place on a new target task. This situation is similar to the lifelong learning

setting, where each task encountered is new, though there may be similarities to tasks seen

previously. The results are shown in Figure 8.4. As the CMDP learns and the coverage

of tasks in the 4 rooms increase, the curricula produced gradually improve, until they pass

the baseline of training on the target task after having seen just 300 of the 9900 possible

target tasks. Thus, the results show that the curriculum policy learned jointly over state

of knowledge and task representations is able to interpolate and produce curricula for novel

unseen tasks. Furthermore, this process requires training on only a small fraction of the

110

0 200 400 600 800 1000

CMDP Episodes
−6000

−5000

−4000

−3000

−2000

−1000

0

Co
st
 t
o
Le

ar
n
Ta

rg
et
 T
as
k

no curriculum
curriculum

Figure 8.4: CMDP learning curves for the interpolation experiments. The x-axis represents
CMDP episodes, where each episode is an entire run of a curriculum. The y-axis is the cost of
that curriculum in game steps. The curriculum curve converges to a cost that is statistically
signficantly better than the no curriculum curve, using a 2-tail t-test with p < 0.05.

total possible tasks.

In the interpolation case, while each CMDP episode presented a new task, after a

certain number of episodes, very similar tasks had already been seen. In particular, by the

end of training, all possible useful combinations of source tasks were already seen, and each

novel target task could have a curriculum designed for it using experience from this same

set of source tasks. In the next experiment – the extrapolation case – we explicitly split the

set of target tasks into a training set and a test set. The test set contains all tasks that

start in the top left room, and end in the bottom right room, while the training set contains

tasks with all other possible start and end goal pairs. See Figure 8.5 for examples of tasks

in the training and test sets. The extrapolation case is more challenging, because in the

previous interpolation setting, generalization was expected because goals were represented

with similar features and the set of training tasks covered pairings from all the different

rooms. However, in this case, the curriculum of navigating from the top left room to the

bottom right room has not been seen before. We train on tasks in the training set for the

111

Figure 8.5: Examples of target tasks in the training and test sets for the extrapolation
experiments.

first 200 CMDP episodes, and subsequently evaluate on the test set. The results are shown

in Figure 8.6, with the curriculum graph offset to reflect time spent training on the training

set. The results again show that curricula learned on one set of tasks can transfer to produce

curricula for new unseen tasks. In addition, the extrapolation experiment shows that this

generalization is possible to target tasks that require an entirely new curriculum. Examples

of curricula seen in the training and test sets can be seen in Figure 8.7.

8.5 Summary

Most existing work on automated curriculum learning has relied on heuristics, or has limited

the types of source tasks that can be used in a curriculum, because learning a full curriculum

directly from experience can be computationally expensive. One way this expense can be

amortized is by learning curricula that can generalize to new agents or target tasks. In this

chapter, I consider one of these cases, and show how curriculum policies can be combined

with universal value functions to generalize curricula to novel unseen navigational tasks. A

112

0 200 400 600 800 1000

CMDP Episodes
−3000

−2500

−2000

−1500

−1000

−500

0

Co
st
 t
o
Le

ar
n
Ta

rg
et
 T
as
k

no curriculum
curriculum

Figure 8.6: CMDP learning curves for the extrapolation experiments. The x-axis represents
a CMDP episode, where each episode is an entire run of a curriculum. The y-axis is the cost
of that curriculum in game steps. Taking all the points along the curve, the curriculum curve
was statistically significantly better than no curriculum, using a 2-tail t-test with p < 0.05.

(a) (b)

Figure 8.7: Examples of curricula seen in the (a) training set and (b) test set. Tasks in the
test set were the only ones that benefitted from a curriculum that directed the agent from
the top left room to the bottom right. All other combinations of start and end rooms were
seen in the training set.

113

universal value function is a value function defined over states and goals. In a curriculum

MDP, states correspond to the agent’s knowledge (as done in Chapter 7) while goals cor-

respond to target tasks. Using this model and a two-stream neural network architecture, I

showed that curriculum policies can both interpolate to new tasks that have similar curricula

to seen tasks, and also extrapolate to new navigational tasks that use totally new curricula.

This result opens the door to using more learning from experience in curriculum design. In

human and animal training, as well as more recently in supervised machine learning, cur-

ricula have been adapted to train multiple types of learners for different target tasks. This

work provides a similar result for the reinforcement learning setting.

114

9. Taxonomy of CL Methods and Related Work

Over the past few years, several groups have been studying how curricula can be generated

automatically to train reinforcement learning agents, and many approaches to do so now

exist. These methods for curriculum generation have separately been introduced for areas

such as robotics, multi-agent systems, human-computer and human-robot interaction, and

intrinsically motivated learning. This body of work, however, is largely disconnected. In

addition, many landmark results in reinforcement learning, from TD-Gammon [131] to Al-

phaGo [110] have implicitly used curricula to guide training. In some domains, researchers

have successfully used methodologies that align with our definition of curriculum learning

without explicitly describing it that way (e.g., self-play). Given the many landmark results

that have utilized ideas from curriculum learning, we think it is very likely that future land-

mark results will also rely on curricula, perhaps more so than researchers currently expect.

Thus, having a common basis for discussion of ideas in this area is likely to be useful for

future AI challenges.

In this chapter, I describe a taxonomy of curriculum learning for reinforcement learn-

ing approaches. I systematically survey methods that address each of the 3 main elements

of curriculum learning – task generation, sequencing, and transfer learning – and focus in

particular on sequencing methods. The central assumption in curriculum learning is that

source tasks can be generated and organized to improve learning. Therefore, I organize se-

quencing methods by the ways in which the source task MDPs are allowed to differ from

the target task MDP. During this discussion, I describe how the contributions and methods

presented in this thesis fit in this taxonomy. Following this discussion, I describe how cur-

riculum learning compares to other techniques for improving sample complexity in RL, and

115

how curriculum learning is used in related areas such as supervised learning and for human

training. This chapter is based on a survey that was published in the Journal of Machine

Learning Research [84] and addresses Contribution 6 from Chapter 1 of this thesis.

9.1 Dimensions of Categorization

Curriculum learning methods make different assumptions about where tasks come from, how

they are represented and sequenced, and how they are evaluated. I propose to categorize

curriculum learning approaches along the following seven dimensions, organized by attributes

(in bold) and the values (in italics) they can take. I use these dimensions to create a taxonomy

of surveyed work in Sections 9.2 to 9.4.

1. Intermediate task generation: target / automatic / domain experts / naive users.

In curriculum learning, the primary challenge is how to sequence a set of tasks to

improve learning speed. However, finding a good curriculum depends on first having

useful source tasks to select from. Most methods assume the set of possible source tasks

is fixed and given ahead of time. In the simplest case, only samples from the target task

are used. When more than one intermediate task is used, typically they are manually

designed by humans. I distinguish such tasks as designed by either domain experts,

who have knowledge of the agent and its learning algorithm, or naive users, who do not

have this information. On the other hand, some works consider automatically creating

tasks online using a set of rules or generative process. These approaches may still rely

on some human input to control/tune hyper-parameters, such as the number of tasks

generated, or to verify that generated tasks are actually solvable.

2. Curriculum representation: single / sequence / graph. As I discussed previously,

the most general form of a curriculum is a directed acyclic graph over subsets of

samples. However, in practice, simplified versions of this representation are often used.

116

In the simplest case, a curriculum is an ordering over samples from a single task.

When multiple tasks can be used in a curriculum, curricula are often created at the

task-level. These curricula can be represented as a linear chain, or sequence. In this

case, there is exactly one source for each intermediate task in the curriculum. It is

up to the transfer learning algorithm to appropriately retain and combine information

gathered from previous tasks in the chain. More generally, they can be represented as

a full directed acyclic graph of tasks. This form supports transfer learning methods

that transfer from many-to-one, one-to-many, and many-to-many tasks.

3. Transfer method: policies / value function / task model / partial policies / shaping

reward / other / no transfer. Curriculum learning leverages ideas from transfer learning

to transfer knowledge between tasks in the curriculum. As such, the transfer learning

algorithm used affects how the curriculum will be produced. The type of knowledge

transferred can be low-level knowledge, such as an entire policy, an (action-)value

function, or a full task model, which can be used to directly initialize the learner in the

target task. It can also be high-level knowledge, such as partial policies (e.g. options)

or shaping rewards. This type of information may not fully initialize the learner in the

target task, but it could be used to guide the agent’s learning process in the target

task. I use partial policies as an umbrella term to represent closely related ideas such

as options, skills, and macro-actions. When samples from a single task are sequenced,

no transfer learning algorithm is necessary. Finally, I use other to refer to other types

of transfer learning methods. I categorize papers along this dimension based on what

is transferred between tasks in the curriculum in each paper’s experimental results.

4. Curriculum sequencer: automatic / domain experts / naive users. Curriculum

learning is a three-part method, consisting of task generation, sequencing, and trans-

fer learning. While much of the attention of this chapter is on automated sequencing

approaches, many works consider the other parts of this method, and assume the se-

117

quencing is done by a human or oracle. Thus, I identify and categorize the type of

sequencing approach used in each work similar to task generation: it can be done au-

tomatically by a sequencing algorithm, or manually by humans that are either domain

experts or naive users.

5. Curriculum adaptivity: static / adaptive. Another design question when creating a

curriculum is whether it should be generated in its entirety before training, or dynam-

ically adapted during training. I refer to the former type as static and to the latter as

adaptive. Static approaches use properties of the domain and possibly of the learning

agent, to generate a curriculum before any task is learned. Adaptive methods, on the

other hand, are influenced by properties that can only be measured during learning,

such as the learning progress by the agent on the task it is currently facing. For exam-

ple, learning progress can be used to guide whether subsequent tasks should be easier

or harder, as well as how relevant a task is for the agent at a particular point in the

curriculum.

6. Evaluation metric: time to threshold / asymptotic / jumpstart / total reward. I

discussed four metrics to quantify the effectiveness of learned curricula in Section 3.3.

When calculating these metrics, one can choose whether to treat time spent generating

the curriculum and training on the curriculum as a sunk cost, or whether to account

for both of these for performance. Specifically, there are three ways to measure the

cost of learning and training via a curriculum. 1) The cost of generating and using

the curriculum is treated as a sunk cost, and the designer is only concerned with

performance on the target task after learning. This case corresponds to the weak

transfer setting. 2) The cost of training on intermediate tasks in the curriculum is

accounted for, when comparing to training directly on the target task. This case is

most common when it is hard to evaluate the cost of generating the curriculum itself,

for example if it was hand-designed by a human. 3) Lastly, the most comprehensive

118

case accounts for the cost of generating the curriculum as well as training via the

curriculum. I will refer to the last two as strong transfer, and indicate it by bolding

the corresponding metric. Note that achieving asymptotic performance improvements

implies strong transfer.

7. Application area: toy / sim robotics / real robotics / video games / other. Curricu-

lum learning methods have been tested in a wide variety of domains. Toy domains

consist of environments such as grid worlds, cart-pole, and other low dimensional envi-

ronments. Sim robotics environments simulate robotic platforms, such as in MuJoCo.

Real robotics papers test their method on physical robotic platforms. Video games

consist of game environments such as Starcraft or the Arcade Learning Environment

(Atari). Finally, other is used for custom domains that do not fit in these categories.

I list these so that readers can better understand the scalability and applicability of

different approaches, and use these to inform what methods would be suitable for their

own problems.

In the next 3 sections, I describe our systematic work surveying each of the three

central elements of curriculum learning: task generation (Section 9.2), sequencing (Section

9.3), and transfer learning (Section 9.4). For each of these subproblems, I provide a table

that categorizes work surveyed according to the dimensions outlined in this section. The bulk

of attention will be devoted to the subproblem most commonly associated with curriculum

learning: sequencing.

9.2 Task Generation

Task generation is the problem of creating intermediate tasks specifically to be part of a

curriculum. In contrast to the life-long learning scenario, where potentially unrelated tasks

are constantly proposed to the agent [134], the aim of task generation is to create a set of

119

tasks such that knowledge transfer through them is beneficial. Therefore, all the generated

tasks should be relevant to the final task(s) and avoid negative transfer, where using a task

for transfer hurts performance. The properties of the research surveyed in this section are

reported in Table 9.1.

Very limited work has been dedicated to formally studying this subproblem in the con-

text of reinforcement learning. All known methods assume the domain can be parameterized

using some kind of representation, where different instantiations of these parameters create

different tasks. For instance, in Chapter 4 (based on our published work [82]), I introduced

a number of methods to create intermediate tasks for a specific final task. The methods

hinge on a definition of a domain as a set of MDPs identified by a task descriptor, which

is a vector of parameters specifying the degrees of freedom in the domain. For example, in

the quick chess example (see Chapter 1), these parameters could be the size of the board,

number of pawns, etc. By varying the degrees of freedom and applying task restrictions,

the methods define different types of tasks. The set of methods determine different kinds of

possible tasks, which form a space of tasks in which appropriate intermediate tasks can be

chosen.

Da Silva and Reali Costa [21] propose a similar partially automated task generation

procedure in their curriculum learning framework, based on Object-Oriented MDPs. Each

task is assumed to have a class environment parameterized by a number of attributes. A

function, which must be provided by the designer, creates simpler versions of the final task

by instantiating the attributes with values that make the tasks easier to solve. For example,

continuing the quick chess example, the attributes could be the types of pieces, and the values

are the number of each type of piece. The presence of different kinds and numbers of objects

provide a range of tasks with different levels of difficulty. However, since the generation is

mostly random, the designer has to make sure that the tasks are indeed solvable.

Generating auxiliary intermediate tasks is a problem that has been studied in non-RL

120

Citation Intermediate
Task
Generation

Curriculum
Representation

Transfer
Method

Curriculum
Sequencer

Curriculum
Adaptivity

Evaluation
Metric

Application
Area

Da Silva and Reali Costa [21] automatic graph value function automatic static time to threshold, total reward toy, video games

Narvekar et al. [82] automatic sequence value function domain experts adaptive asymptotic video games

Schmidhuber [107] automatic sequence partial policies automatic adaptive asymptotic other

Stone and Veloso [117] automatic sequence other domain experts adaptive time to threshold other

Table 9.1: The papers discussed in Section 9.2, categorized along the dimensions presented
in Section 9.1. Bolded values under evaluation metric indicate strong transfer.

contexts as well. For instance, Stone and Veloso [117] consider how to semiautomatically

create subproblems to aid in learning to solve difficult planning problems. Rather than using

a static analysis of the domain’s properties, they propose to use a partially completed search

trajectory of the target task to identify what makes a problem difficult, and suggest auxiliary

tasks. For example, if the task took too long and there are multiple goals in the task, try

changing the order of the goals. Other methods they propose include reducing the number of

goals, creating tasks to solve difficult subgoals, and changing domain operators and objects

available for binding.

Lastly, Schmidhuber [107] introduced Powerplay, a framework that focuses on in-

venting new problems to train a more and more general problem solver in an unsupervised

fashion. The system searches for both a new task and a modification of the current problem

solver, such that the modified solver can solve all previous tasks, plus the new one. The

search acts on a domain-dependent encoding of the problem and the solver, and has been

demonstrated on pattern recognition and control tasks [115]. The generator of the task and

new solver is given a limited computational budget, so that it favors the generation of the

simplest tasks that could not be solved before. Furthermore, a possible task is to solve all

previous tasks, but with a more compact representation of the solver. The resulting iterative

process makes the system increasingly more competent at different tasks. The task genera-

tion process effectively creates a curriculum, although in this context there are no final tasks,

and the system continues to generate pairs of problems and solvers indefinitely, without any

specific goal.

121

9.3 Sequencing

Given a set of tasks, or samples from them, the goal of sequencing is to order them in a way

that facilitates learning. Many different sequencing methods exist, each with their own set

of assumptions. One of the fundamental assumptions of curriculum learning is that we can

configure the environment to create different tasks. For the practitioner attempting to use

curriculum learning, the amount of control one has to shape the environment affects the type

of sequencing methods that could be applicable. Therefore, we categorize sequencing meth-

ods by the degree to which intermediate tasks may differ. Specifically, they form a spectrum,

ranging from methods that simply reorder experience in the final task without modifying

any property of the corresponding MDP, to ones that define entirely new intermediate tasks,

by progressively adjusting some or all of the properties of the final task.

In this section, I discuss the different sequencing approaches. First, in Section 9.3.1, I

consider methods that reorder samples in the target task to derive a curriculum. Experience

replay methods are one such example. In Section 9.3.2, I examine multi-agent approaches to

curriculum generation, where the cooperation or competition between two (typically evolv-

ing) agents induces a sequence of progressively challenging tasks, like a curriculum. Then,

in Section 9.3.3, I begin describing methods that explicitly use intermediate tasks, starting

with ones that vary in limited ways from the target task. In particular, these methods only

change the reward function and/or the initial and terminal state distributions to create a

curriculum. In Section 9.3.4, I discuss methods that relax this assumption, and allow inter-

mediate tasks that can vary in any way from the target task MDP. Finally, in Section 9.3.5,

we discuss work that explores how humans sequence tasks into a curriculum.

9.3.1 Sample Sequencing

First I consider methods that reorder samples from the final task, but do not explicitly change

the domain itself. These ideas are similar to curriculum learning for supervised learning [13],

122

where training examples are presented to a learner in a specific order, rather than completely

randomly. Bengio et al. [13] showed that ordering these examples from simple to complex

can improve learning speed and generalization ability. An analogous process can be used for

reinforcement learning. For example, many current reinforcement learning methods, such as

Deep Q Networks (DQN) [77] use a replay buffer to store past state-action-reward experience

tuples. At each training step, experience tuples are sampled from the buffer and used to train

DQN in minibatches. The original formulation of DQN performed this sampling uniformly

randomly. However, as in the supervised setting, samples can be reordered or “prioritized,”

according to some measure of usefulness or difficulty, to improve learning.

The first to do this type of sample sequencing in the context of deep learning were

Schaul et al. [106]. They proposed Prioritized Experience Replay (PER), which prioritizes

and replays important transitions more. Important transitions are those with high expected

learning progress, which is measured by their temporal difference (TD) error. Intuitively,

replaying samples with larger TD errors allows the network to make stronger updates. As

transitions are learned, the distribution of important transitions changes, leading to an

implicit curriculum over the samples.

Alternative metrics for priority/importance have been explored as well. Ren et al.

[96] propose to sort samples using a complexity index function, which is a combination of

a self-paced prioritized function and a coverage penalty function. The self-paced prioritized

function selects samples that would be of appropriate difficulty, while the coverage function

penalizes transitions that are replayed frequently. They provide one specific instantiation

of these functions, which are used in experiments on the Arcade Learning Environment

[12], and show that it performs better than PER in many cases. However, these functions

must be designed individually for each domain, and designing a broadly applicable domain-

independent priority function remains an open problem.

Kim and Choi [62] consider another extension of prioritized experience replay, where

123

Citation Intermediate
Task
Generation

Curriculum
Representation

Transfer
Method

Curriculum
Sequencer

Curriculum
Adaptivity

Evaluation
Metric

Application
Area

Sample Sequencing (Section 9.3.1)

Andrychowicz et al. [5] target single no transfer automatic adaptive asymptotic sim robotics

Fang et al. [27] target single no transfer automatic adaptive asymptotic sim robotics

Kim and Choi [62] target single no transfer automatic adaptive asymptotic toy, other

Lee et al. [69] target single no transfer automatic adaptive time to threshold toy, video games

Ren et al. [96] target single no transfer automatic adaptive asymptotic video games

Schaul et al. [106] target single no transfer automatic adaptive asymptotic video games

Co-learning (Section 9.3.2)

Baker et al. [7] automatic sequence policies automatic adaptive asymptotic, time to threshold other

Bansal et al. [9] automatic sequence policies automatic adaptive asymptotic sim robotics

Pinto et al. [90] automatic sequence policies automatic adaptive time to threshold sim robotics

Sukhbaatar et al. [120] automatic sequence policies automatic adaptive time to threshold, asymptotic toy, video games

Vinyals et al. [136] automatic sequence policies automatic adaptive asymptotic video games

Reward and Initial/Terminal State Distribution Changes (Section 9.3.3)

Asada et al. [6] domain experts sequence value function automatic adaptive asymptotic sim/real robotics

Baranes and Oudeyer [10] automatic sequence partial policies automatic adaptive asymptotic sim/real robotics

Florensa et al. [32] automatic sequence policies automatic adaptive asymptotic sim robotics

Florensa et al. [33] automatic sequence policies automatic adaptive asymptotic sim robotics

Ivanovic et al. [54] automatic sequence policies automatic adaptive asymptotic sim robotics

Racaniere et al. [92] automatic sequence policies automatic adaptive asymptotic toy, video games

Riedmiller et al. [97] domain experts sequence policies automatic adaptive time to threshold sim/real robotics

Wu and Tian [147] domain experts sequence task model automatic both asymptotic video games

No Restrictions (Section 9.3.4)

Bassich et al. [11] domain experts sequence policies automatic adaptive asymptotic, time to threshold toy

Da Silva and Reali Costa [21] automatic graph value function automatic static time to threshold, total reward toy, video games

Foglino et al. [34] domain experts sequence value function automatic static time to threshold, asymptotic, total reward toy

Foglino et al. [35] domain experts sequence value function automatic static total reward toy

Foglino et al. [36] domain experts sequence value function automatic static total reward toy

Jain and Tulabandhula [56] domain experts sequence value function automatic adaptive time to threshold, total reward toy

Matiisen et al. [74] domain experts sequence policies automatic adaptive asymptotic toy, video games

Narvekar et al. [83] automatic sequence value function automatic adaptive time to threshold toy

Narvekar and Stone [80] domain experts sequence value function, shaping reward automatic adaptive time to threshold toy, video games

Svetlik et al. [123] domain experts graph shaping reward automatic static asymptotic, time to threshold toy, video games

Human-in-the-loop Curriculum Generation (Section 9.3.5)

Hosu and Rebedea [51] target single no transfer automatic adaptive asymptotic video games

Khan et al. [61] domain experts sequence no transfer naive users static N/A other

MacAlpine and Stone [71] domain experts graph policies domain experts static asymptotic sim robotics

Peng et al. [88] domain experts sequence task model naive users static time to threshold other

Stanley et al. [116] domain experts sequence partial policies domain experts adaptive asymptotic video games

Table 9.2: The papers discussed in Section 9.3, categorized along the dimensions presented
in Section 9.1. Bolded values under evaluation metric indicate strong transfer.

124

the weight/priority of a sample is jointly learned with the main network via a secondary neu-

ral network. The secondary network, called ScreenerNet, learns to predict weights according

to the error of the sample by the main network. Unlike PER, this approach is memory-

less, which means it can directly predict the significance of a training sample even if that

particular example was not seen. Thus, the approach could potentially be used to actively

request experience tuples that would provide the most information or utility, creating an

online curriculum.

Instead of using sample importance as a metric for sequencing, an alternative idea

is to restructure the training process based on trajectories of samples experienced. For

example, when learning, typically easy to reach states are encountered first, whereas harder

to reach states are encountered later on in the learning cycle. However, in practical settings

with sparse rewards, these easy to reach states may not provide a reward signal. Hindsight

Experience Replay (HER) [5] is one method to make the most of these early experiences.

HER is a method that learns from “undesired outcomes,” in addition to the desired outcome,

by replaying each episode with a goal that was actually achieved rather than the one the

agent was trying to achieve. The problem is set up as learning a Universal Value Function

Approximator (UVFA) [105], which is a value function vπ(s, g) defined over states s and goals

g . The agent is given an initial state s1 and a desired goal state g. Upon executing its policy,

the agent may not reach the goal state g, and instead land on some other terminal state sT .

While this trajectory does not help to learn to achieve g, it does help to learn to achieve sT .

Thus, this trajectory is added to the replay buffer with the goal state substituted with sT ,

and used with an off-policy RL algorithm. HER forms a curriculum by taking advantage of

the implicit curriculum present in exploration, where early episodes are likely to terminate

on easy to reach states, and more difficult to reach states are found later in the training

process.

One of the issues with vanilla HER is that all goals in seen trajectories are replayed

125

evenly, but some goals may be more useful at different points of learning. Thus, Fang et al.

[27] later proposed Curriculum-guided HER (CHER) to adaptively select goals based on two

criteria: curiosity, which leads to the selection of diverse goals, and proximity, which selects

goals that are closer to the true goal. Both of these criteria rely on a measure of distance or

similarity between goal states. At each minibatch optimization step, the objective selects a

subset of goals that maximizes the weighted sum of a diversity and proximity score. They

manually impose a curriculum that starts biased towards diverse goals and gradually shifts

towards proximity based goals using a weighting factor that is exponentially scaled over time.

Other than PER and HER, there are other works that reorder/resample experiences

in a novel way to improve learning. One example is the episodic backward update (EBU)

method developed by Lee et al. [69]. In order to speed up the propagation of delayed rewards

(e.g., a reward might only be obtained at the end of an episode), Lee et al. [69] proposed

to sample a whole episode from the replay buffer and update the values of all transitions

within the sampled episode in a backward fashion. Starting from the end of the sampled

episode, the max Bellman operator is applied recursively to update the target Q-values

until the start of the sampled episode. This process basically reorders all the transitions

within each sampled episode from the last timestep of the episode to the first, leading to an

implicit curriculum. Updating highly correlated states in a sequence while using function

approximation is known to suffer from cumulative overestimation errors. To overcome this

issue, a diffusion factor β ∈ (0, 1) was introduced to update the current Q-value using a

weighted sum of the new bootstrapped target value and the pre-existing Q-value estimate.

Their experimental results show that in 49 Atari games, EBU can achieve the same mean

and median human normalized performance of DQN by using significantly fewer samples.

Methods that sequence experience samples have wide applicability and found broad

success in many applications, since they can be applied directly on the target task without

needing to create intermediate tasks that alter the environment. In the following sections,

126

we consider sequencing approaches that progressively alter how much intermediate tasks in

the curriculum may differ.

9.3.2 Co-learning

Co-learning is a multi-agent approach to curriculum learning, in which the curriculum

emerges from the interaction of several agents (or multiple versions of the same agent) in

the same environment. These agents may act either cooperatively or adversarially to drive

the acquisition of new behaviors, leading to an implicit curriculum where both sets of agents

improve over time. Self-play is one methodology that fits into this paradigm, and many

landmark results such as TD-Gammon [131] and more recently AlphaGo [110] and AlphaS-

tar [136] fall into this category. Rather than describing every work that uses self-play or

co-learning, I describe a few papers that focus on how the objectives of the multiple agents

can be set up to facilitate co-learning.

Sukhbaatar et al. [120] proposed a novel method called asymmetric self-play that al-

lows an agent to learn about the environment without any external reward in an unsupervised

manner. This method considers two agents, a teacher and a student, using the paradigm of

“the teacher proposing a task, and the student doing it.” The two agents learn their own

policies simultaneously by maximizing interdependent reward functions for goal-based tasks.

The teacher’s task is to navigate to an environment state that the student will use either

as 1) a goal, if the environment is resettable, or 2) as a starting state, if the environment is

reversible. In the first case, the student’s task is to reach the teacher’s final state, while in

the second case, the student starts from the teacher’s final state with the aim of reverting

the environment to its original initial state. The student’s goal is to minimize the number

of actions it needs to complete the task. The teacher, on the other hand, tries to maximize

the difference between the actions taken by the student to execute the task, and the actions

spent by the teacher to set up the task. The teacher, therefore, tries to identify a state that

127

strikes a balance between being the simplest goal (in terms of number of teacher actions) for

itself to find, and the most difficult goal for the student to achieve. This process is iterated

to automatically generate a curriculum of intrinsic exploration.

Another example of jointly training a pair of agents adversarially for policy learning

in single-agent RL tasks is Robust Adversarial RL (RARL) by Pinto et al. [90]. Unlike

asymmetric self-play [120], in which the teacher defines the goal for the student, RARL trains

a protagonist and an adversary, where the protagonist learns to complete the original RL

task while being robust to the disturbance forces applied by the adversarial agent. RARL

is targeted at robotic systems that are required to generalize effectively from simulation,

and learn robust policies with respect to variations in physical parameters. Such variations

are modeled as disturbances controlled by an adversarial agent, and the adversarial agent’s

goal is to learn the optimal sequence of destabilizing actions via a zero-sum game training

procedure. The adversarial agent tries to identify the hardest conditions under which the

protagonist agent may be required to act, increasing the agent’s robustness. Learning takes

place in turns, with the protagonist learning against a fixed antagonist’s policy, and then

the antagonist learning against a fixed protagonist’s policy. Each agent tries to maximize its

own return, and the returns are zero-sum. The set of “destabilizing actions” available to the

antagonist is assumed to be domain knowledge, and given to the adversary ahead of time.

For multi-agent RL tasks, several works have shown how simple interaction between

multiple learning agents in an environment can result in emergent curricula. Such ideas were

explored early on in the context of evolutionary algorithms by Rosin and Belew [100]. They

showed that competition between 2 groups of agents, dubbed hosts and parasites, could lead

to an “arms race,” where each group drives the other to acquire increasingly complex skills

and abilities. Similar results have been shown in the context of RL agents by Baker et al. [7].

They demonstrated that increasingly complex behaviors can emerge in a physically grounded

task. Specifically, they focus on a game of hide and seek, where there are two teams of agents.

128

One team must hide with the help of obstacles and other items in the environment, while the

other team needs to find the first team. They were able to show that as one team converged

on a successful strategy, the other team was pressured to learn a counter-strategy. This

process was repeated, inducing a curriculum of increasingly competitive agents.

A similar idea was explored by Bansal et al. [9]. They proposed to use multi-agent

curriculum learning as an alternative to engineering dense shaping rewards. Their method

interpolates between dense “exploration” rewards, and sparse multi-agent competitive re-

wards, with the exploration reward gradually annealed over time. In order to prevent the

adversarial agent from getting too far ahead of the learning agent and making the task im-

possible, the authors propose to additionally sample older versions of the opponent. Lastly,

in order to increase robustness, the stochasticity of the tasks is increased over time.

Curriculum learning approaches have also been proposed for cooperative multi-agent

systems [138, 149]. In these settings, there is a natural curriculum created by starting with

a small number of agents, and gradually increasing them in subsequent tasks. The schedule

with which to increase the number of agents is usually manually defined, and the emphasis

instead is on how to perform transfer when the number of agents change. Therefore, I discuss

these approaches in more detail in Section 9.4.

Finally, while self-play has been successful in a wide variety of domains, including

solving games such as Backgammon [131] and Go [110], such an approach alone was not

sufficient for producing strong agents in a complex, multi-agent, partially-observable game

like Starcraft. One of the primary new elements of Vinyals et al. [136] was the introduction of

a Starcraft League, a group of agents that have differing strategies learned from a combination

of imitation learning from human game data and reinforcement learning. Rather than have

every agent in the league maximize their own probability of winning against all other agents

like in standard self play, there were some agents that did this, and some whose goal was

to optimize against the main agent being trained. In effect, these agents were trained to

129

exploit weaknesses in the main agent and help it improve. Training against different sets

of agents over time from the league induced a curriculum that allowed the main agents to

achieve grandmaster status in the game.

9.3.3 Reward and Initial/Terminal State Distribution Changes

Thus far, the curriculum consisted of ordering experience from the target task or modifying

agents in the target environment. In this and the next section, I begin to examine approaches

that explicitly create different MDPs for intermediate tasks, by changing some aspect of

the MDP. First I consider approaches that keep the state and action spaces the same, as

well as the environment dynamics, but allow the reward function and initial/terminal state

distributions to vary.

One of the earliest examples of this type of method was learning from easy missions.

Asada et al. [6] proposed this method to train a robot to shoot a ball into a goal based on

vision inputs. The idea was to create a series of tasks, where the agent’s initial state distri-

bution starts close to the goal state, and is progressively moved farther away in subsequent

tasks, inducing a curriculum of tasks. In this work, each new task starts one “step” farther

away from the goal, where steps from the goal is measured using a domain specific heuris-

tic: a state is closer to the terminal state if the goal in the camera image gets larger. The

heuristic implicitly requires that the state space can be categorized into “substates,” such

as goal size or ball position, where the ordering of state transitions in a substate to a goal

state is known. Thus, each substate has a dimension for making the task simpler or more

complex. Source tasks are manually created to vary along these dimensions of difficulty.

Recently, Florensa et al. [32] proposed more general methods for performing this re-

verse expansion. They proposed reverse curriculum generation, an algorithm that generates a

distribution of starting states that get increasingly farther away from the goal. The method

assumes at least one goal state is known, which is used as a seed for expansion. Nearby

130

starting states are generated by taking a random walk from existing starting states by se-

lecting actions with some noise perturbation. In order to select the next round of starting

states to expand from, they estimate the expected return for each of these states, and select

those that produce a return between a manually set minimum and maximum interval. This

interval is tuned to expand states where progress is possible, but not too easy. A similar

approach by Ivanovic et al. [54] considered combining the reverse expansion phase for cur-

riculum generation with physics-based priors to accelerate learning by continuous control

agents.

An opposite “forward” expansion approach has also been considered by Florensa et al.

[33]. This method allows an agent to automatically discover different goals in the state space,

and thereby guide exploration of the space. They do this discovery with a Generative Ad-

versarial Network (GAN) [42], where the generator network proposes goal regions (parame-

terized subsets of the state space) and the discriminator evaluates whether the goal region

is of appropriate difficulty for the current ability of the agent. Goal regions are specified

using an indicator reward function, and policies are conditioned on the goal in addition to

the state, like in a universal value function approximator [105]. The agent trains on tasks

suggested by the generator. In detail, the approach consists of 3 parts: 1) First, goal regions

are labelled according to whether they are of appropriate difficulty. Appropriate goals are

those that give a return between hyperparameters Rmin and Rmax. Requiring at least Rmin

ensures there is a signal for learning progress. Requiring less than Rmax ensures that it is

not too easy. 2) They use the labeled goals to train a Goal GAN. 3) Goals are sampled from

the GAN as well as a replay buffer, and used for training to update the policy. The goals

generated by the GAN shift over time to reflect the difficulty of the tasks, and gradually

move from states close to the starting state to those farther away.

Racaniere et al. [92] also consider an approach to automatically generate a curriculum

of goals for the agent, but for more complex goal-conditioned tasks in dynamic environments

131

where the possible goals vary between episodes. The idea was to train a “setter” model

to propose a curriculum of goals for a “solver” agent to attempt to achieve. In order to

help the setter balance its goal predictions, they proposed three objectives which lead to a

combination of three losses to train the setter model: goal validity (the goal should be valid

or achievable by the current solver), goal feasibility (the goal should match the feasibility

estimates for the solver with current skill), and goal coverage (encourage the setter to choose

more diverse goals to encourage exploration in the space of goals). In addition, a “judge”

model was trained to predict the reward the current solver agent would achieve on a goal

(the feasibility of a goal) proposed by the setter. Their experimental results demonstrate the

necessity of all three criteria for building useful curricula of goals. They also show that their

approach is more stable and effective than the goal GAN method [33] on complex tasks.

An alternative to modifying the initial or terminal state distribution is to modify

the reward function. Riedmiller et al. [97] introduce SAC-X (Scheduled Auxiliary Control),

an algorithm for scheduling and executing auxiliary tasks that allow the agent to efficiently

explore its environment and also make progress towards solving the final task. Auxiliary tasks

are defined to be tasks where the state, action, and transition function are the same as the

original MDP, but where the reward function is different. The rewards they use in auxiliary

tasks correspond to changes in raw or high level sensory input, similar to Jaderberg et al.

[55]. However, while Jaderberg et al. [55] only used auxiliary tasks for improving learning

of the state representation, here they are used to guide exploration, and are sequenced. The

approach is a hierarchical RL method: they need to 1) learn intentions, which are policies

for the auxiliary tasks, and 2) learn the scheduler, which sequences intention policies and

auxiliary tasks. To learn the intentions, they learn to maximize the action-value function

of each intention from a starting state distribution that comes as a result of following each

of the other intention policies. This process makes the policies compatible. The scheduler

can be thought of as a meta-agent that performs sequencing, whose goal is to maximize the

132

return on the target task MDP. The scheduler selects intentions, whose policy is executed

on the extrinsic task, and is used to guide exploration.

Heuristic-based methods have also been designed to sequence tasks that differ in their

reward functions. One such approach is SAGG-RIAC (Self-Adaptive Goal Generation -

Robust Intelligent Adaptive Curiosity) [10]. They define competence as the distance between

the achieved final state and the goal state, and interest as the change in competence over

time for a set of goals. A region of the task space is deemed more interesting than others,

if the latest tasks in the region have achieved a high increase in competence. The approach

repeatedly selects goals by first picking a region with a probability proportional to its interest,

and then choosing a goal at random within that region. With a smaller probability the

system also selects a goal at random over the whole task set or a goal close to a previously

unsuccessful task. The bias towards interesting regions causes the goals to be more dense

in regions where the competence increases the fastest, creating a curriculum. Because of

the stochastic nature of the goal generating process, however, not every task is necessarily

beneficial in directly increasing the agent’s ability on the target task, but contributes to

updating the competence and interest measures. Since the intermediate tasks are generated

online as the agent learns, in this approach both sequencing and generation result from the

same sampling process.

Finally, Wu and Tian [147] also consider changing the transition dynamics and the

reward functions of the intermediate tasks. They propose a novel framework for training an

agent in a partially observable 3D Doom environment. Doom is a First-Person Shooter game,

in which the player controls the agent to fight against enemies. In their experiment, they

first train the agent on some simple maps with several curricula. Each curriculum consists

of a sequence of progressively more complex environments with varying domain parameters

(e.g., the movement speed or initial health of the agent). After learning a capable initial

task model, the agent is then trained on more complicated maps and more difficult tasks

133

with a different reward function. They also design an adaptive curriculum learning strategy

in which a probability distribution over different levels of curriculum is maintained. When

the agent performs well on the current distribution, the probability distribution is shifted

towards more difficult tasks.

9.3.4 No Restrictions

Next, there is a class of methods that create a curriculum using intermediate tasks, but make

no restrictions on the MDPs of these intermediate tasks. I categorize them in three ways by

how they address the task sequencing problem: treating sequencing 1) as an MDP/POMDP,

2) as a combinatorial optimization over sequences, and 3) as learning the connections in a

directed acyclic task graph. Because there are no limitations on the types of intermediate

tasks allowed, some assumptions are usually made about the transfer learning algorithm, and

additional information about the intermediate tasks (such as task descriptors) is typically

assumed. Finally, I also discuss work on an auxiliary problem to sequencing: how long to

spend on each task.

MDP-based Sequencing

The first formalization of the sequencing problem is as a Markov Decision Process. These

methods formulate curriculum generation as an interaction between 2 types of MDPs. The

first is the standard MDP, which models a learning agent (i.e., the student) interacting with

a task. The second is a higher level meta-MDP for the curriculum agent (i.e., the teacher),

whose goal is to select tasks for the learning agent.

Narvekar et al. [83] denote the meta-MDP as a curriculum MDP (CMDP), where the

state space S is the set of policies the learning agent can represent (this CMDP is described

in Chapter 7). These CMDP states can be represented parametrically using the weights of

the learning agent. The action space A is the set of tasks the learning agent can train on

134

next. Learning a task updates the learning agent’s policy, and therefore leads to a transition

in the CMDP via a transition function p. Finally, the reward function r is the time in steps

or episodes that it took to learn the selected task. Under this model, a curriculum agent

typically starts in an initial state corresponding to a random policy for the learning agent.

The goal is to reach a terminal state, which is defined as a policy that can achieve some

desired performance threshold on the target task, as fast as possible.

Matiisen et al. [74] consider a similar framework, where the interaction is defined as a

POMDP. The state and action spaces of the meta-POMDP are the same as in Narvekar et al.

[83], but access to the internal parameters of the learning agent is not available. Instead, an

observation of the current score of the agent on each intermediate task is given. The reward

is the change in the score on the task from this timestep to the previous timestep when the

same task was trained on. Thus, while Narvekar et al. [83] focused on minimizing time to

threshold performance on the target task, the design of Matiisen et al. [74] aims to maximize

the sum of performance in all tasks encountered.

While both approaches are formalized as POMDPs, learning on these POMDPs is

computationally expensive. Thus, both propose heuristics to guide the selection of tasks.

Narvekar et al. [83] take a sample-based approach (which we describe in detail in Chapter 6),

where a small amount of experience samples gathered on the target and intermediate tasks

are compared to identify relevant intermediate tasks. The task that causes the greatest

change in policy as evaluated on the target task samples is selected. In contrast, Matiisen

et al. [74] select tasks where the absolute value of the slope of the learning curve is highest.

Thus it selects tasks where the agent is making the most progress or where the agent is

forgetting the most about tasks it has already learned. Initially tasks are sampled randomly.

As one task starts making progress, it will be sampled more, until the learning curve plateaus.

Then another will be selected, and the cycle will repeat until all the tasks have been learned.

Subsequently, Narvekar and Stone [80] explored whether learning was possible in a

135

curriculum MDP, thus avoiding the need for heuristics in task sequencing. This approach is

described in detail in Chapter 7. They showed that you can represent a CMDP state using

the weights of the knowledge transfer representation. For example, if the agent uses value

function transfer, the CMDP state is represented using the weights of the value function.

By utilizing function approximation over this state space, they showed it is possible to learn

a policy over this MDP, termed a curriculum policy, which maps from the current status of

learning progress of the agent, to the task it should learn next. In addition, the approach

addresses the question of how long to train on each intermediate task. While most works have

trained on intermediate tasks until learning plateaus, this is not always necessary. Narvekar

and Stone [80] showed that training on each intermediate task for a few episodes, and letting

the curriculum policy reselect tasks that require additional time, results in faster learning.

However, while learning a curriculum policy is possible, doing so independently for each

agent and task is still very computationally expensive.

Combinatorial Optimization and Search

A second way of approaching sequencing is as a combinatorial optimization problem: given

a fixed set of tasks, find the permutation that leads to the best curriculum, where best

is determined by one of the CL metrics introduced in Section 3.3. Finding the optimal

curriculum is a computationally difficult black-box optimization problem. Thus, typically

fast approximate solutions are preferred.

One such popular class of methods are metaheuristic algorithms, which are heuristic

methods that are not tied to specific problem domains, and thus can be used as black boxes.

Foglino et al. [34] adapt and evaluate four representative metaheuristic algorithms to the

task sequencing problem: beam search [87], tabu search [40], genetic algorithms [41], and

ant colony optimization [22]. The first two are trajectory-based, which start at a guess of

the solution, and search the neighborhood of the current guess for a better solution. The

136

last two are population-based, which start with a set of candidate solutions, and improve

them as a group towards areas of increasing performance. They evaluate these methods for

3 different objectives: time to threshold, maximum return (asymptotic performance), and

cumulative return. Results showed that the trajectory-based methods outperformed their

population-based counterparts on the domains tested.

While metaheuristic algorithms are broadly applicable, it is also possible to create

specific heuristic search methods targeted at particular problems, such as task sequencing

with a specific transfer metric objective. Foglino et al. [35] introduce one such heuristic

search algorithm, designed to optimize for the cumulative return. Their approach begins

by computing transferability between all pairs of tasks, using a simulator to estimate the

cumulative return attained by using one task as a source for another. The tasks are then

sorted according to their potential of being a good source or target, and iteratively chained

in curricula of increasing length. The algorithm is anytime, and eventually exhaustively

searches the space of all curricula with a predefined maximum length.

Jain and Tulabandhula [56] propose 4 different online search methods to sequence

tasks into a curriculum. Their methods also assume a simulator is available to evaluate

learning on different tasks, and use the learning trajectory of the agent on tasks seen so far

to select new tasks. The 4 approaches are: 1) Learn each source task for a fixed number of

steps, and add the one that gives the most reward. The intuition is that high reward tasks are

the easiest to make progress on. 2) Calculate a transferability matrix for all pairs of tasks,

and create a curriculum by chaining tasks backwards from the target tasks greedily with

respect to it. 3) Extract a feature vector for each task as in Narvekar et al. [82], and learn

a regression model to predict transferability using the feature vector. 4) Extract pair wise

feature vectors between pairs of tasks, and learn a regression model to predict transferability.

Finally, instead of treating the entire problem as a black box, it has also been treated

as a gray box. Foglino et al. [36] propose such an approach, formulating the optimization

137

problem as the composition of a white box scheduling problem and black box parameter

optimization. The scheduling formulation partially models the effects of a given sequence,

assigning a utility to each task, and a penalty to each pair of tasks, which captures the

effect on the objective of learning two tasks one after the other. The white-box scheduling

problem is an integer linear program, with a single optimal solution that can be computed

efficiently. The quality of the solution, however, depends on the parameters of the model,

which are optimized by a black-box optimization algorithm. This external optimization

problem searches the optimal parameters of the internal scheduling problem, so that the

output of the two chained optimizers is a curriculum that maximizes cumulative return.

Graph-based Sequencing

Another class of approaches explicitly treats the curriculum sequencing problem as connect-

ing nodes with edges into a directed acyclic task graph. Typically, the task-level curriculum

formulation is used, where nodes in the graph are associated with tasks. A directed edge

from one node to another implies that one task is a source task for another.

Existing work has relied on heuristics and additional domain information to determine

how to connect different task nodes in the graph. For instance, Svetlik et al. [123] assume

the set of tasks is known in advance, and that each task is represented by a task feature

descriptor. These features encode properties of the domain. For example, in a domain like

Ms. Pac-Man, features could be the number of ghosts or the type of maze. The approach

consists of three parts. First, a binary feature vector is extracted from the feature vector

to represent non-zero elements. This binary vector is used to group subsets of tasks that

share similar elements. Second, tasks within each group are connected into subgraphs using

a novel heuristic called transfer potential. Transfer potential is defined for discrete state

spaces, and trades off the applicability of a source task against the cost needed to learn it.

Applicability is defined as the number of states that a value function learned in the source

138

can be applied to a target task. The cost of a source task is approximated as the size of

its state space. Finally, once subgraphs have been created, they are linked together using

directed edges from subgraphs that have a set of binary features to subgraphs that have a

superset of those features.

Da Silva and Reali Costa [21] follow a similar procedure, but formalize the idea of task

feature descriptors using an object-oriented approach. The idea is based on representing the

domain as an object-oriented MDP, where states consist of a set of objects. A task OO-

MDP is specified by the set of specific objects in this task, and the state, action, transition,

and reward functions of the task. With this formulation, source tasks can be generated by

selecting a smaller set of objects from the target task to create a simpler task. To create the

curriculum graph, they adapt the idea of transfer potential to the object-oriented setting:

instead of counting the number of states that the source task value function is applicable in,

they compare the sets of objects between the source and target tasks. While the sequencing

is automated, human input is still required to make sure the tasks created are solvable.

Auxiliary Problems

Finally, I discuss an additional approach that tackles an auxiliary problem to sequencing:

how long to spend on each intermediate task in the curriculum. Most existing work trains

on intermediate tasks until performance plateaus. However, as we mentioned previously,

Narvekar and Stone [80] showed that this is unnecessary, and that better results can be

obtained by training for a few episodes, and reselecting or changing tasks dynamically as

needed.

Bassich et al. [11] consider an alternative method for this problem based on progression

functions. Progression functions specify the pace at which the difficulty of the task should

change over time. The method relies on the existence of a task-generation function, which

maps a desired complexity ct ∈ [0, 1] to a task of that complexity. The most complex

139

task, for which ct = 1, is the final task. After every episode, the progression function

returns the difficulty of the task that the agent should face at that time. The authors

define two types of progression functions: fixed progressions, for which the learning pace is

predefined before learning takes place; and adaptive progressions, which adjust the learning

pace online based on the performance of the agent. Linear and exponential progressions are

two examples of fixed progression functions, and increase the difficulty of the task linearly

and exponentially, respectively, over a prespecified number of time steps. The authors also

introduce an adaptive progression based on a friction model from physics, which increases

ct as the agent’s performance is increasing, and slows down the learning pace if performance

decreases. Progression functions allow the method to change the task at every episode,

solving the problem of deciding how long to spend in each task, while simultaneously creating

a continually changing curriculum.

9.3.5 Human-in-the-Loop Curriculum Generation

Thus far, all the methods discussed in Section 9.3 create a curriculum automatically using a

sequencing algorithm, which either reorders samples from the final task or progressively alters

how much intermediate tasks in the curriculum may differ. Bengio et al. [13] and Taylor [125]

both emphasize the importance of better understanding how humans approach designing

curricula. Humans may be able to design good curricula by considering which intermediate

tasks are “too easy” or “too hard,” given the learner’s current ability to learn, similar to

how humans are taught with the zone of proximal development [137]. These insights could

then be leveraged when designing automated curriculum learning systems. Therefore, in this

section, we consider curriculum sequencing approaches that are done manually by humans

who are either domain experts, who have specialized knowledge of the problem domain,

or naive users, who do not necessarily know about the problem domain and/or machine

learning.

140

One example of having domain experts manually generate the curriculum is the work

done by Stanley et al. [116], in which they explore how to keep video games interesting by

allowing agents to change and to improve through interaction with the player. They use

the NeuroEvolving Robotic Operatives (NERO) game, in which simulated robots start the

game with no skills and have to learn complicated behaviors in order to play the game. The

human player takes the role of a trainer and designs a curriculum of training scenarios to

train a team of simulated robots for military combat. The player has a natural interface for

setting up training exercises and specifying desired goals. An ideal curriculum would consist

of exercises with increasing difficulty so that the agent can start with learning basic skills

and gradually building on them. In their experiments, the curriculum is designed by several

NERO programmers who are familiar with the game domain. They show that the simulated

robots could successfully be trained to learn different sophisticated battle tactics using the

curriculum designed by these domain experts. It is unclear whether a human player who is

not familiar with the game can also design a good curriculum.

A more recent example is by MacAlpine and Stone [71]. They use a very extensive

manually constructed curriculum to train agents to play simulated robot soccer. The cur-

riculum consists of a training schedule over 19 different learned behaviors. It encompasses

skills such as moving to different positions on the field with different speeds and rotation,

variable distance kicking, and accessory skills such as getting up when fallen. Optimizing

these skills independently can lead to problems at the intersection of these skills. For exam-

ple, optimizing for speed in a straight walk can lead to instability if the robot needs to turn or

kick due to changing environment conditions. Thus, the authors of this work hand-designed

a curriculum to train related skills together using an idea called overlapping layered learning.

This curriculum is designed using their domain knowledge of the task and agents.

While domain experts usually generate good curricula to facilitate learning, most

existing work does not explicitly explore their curriculum design process. It is unclear what

141

(a) (b)

Figure 9.1: One example of curricula designed by human users. (a) Given final task. (b) A
curriculum designed by one human participant.

kind of design strategies people follow when sequencing tasks into a curriculum. Published

research on Interactive Reinforcement Learning [46, 63, 64, 70, 72, 118, 119, 133] has shown

that RL agents can successfully speed up learning using human feedback, demonstrating the

significant role can humans play in teaching an agent to learn a (near-) optimal policy. This

large body of work mainly focuses on understanding how human teachers want to teach the

agent and how to incorporate these insights into the standard RL framework. Similarly,

the way we define curriculum design strategies still leaves a lot to be defined by human

teachers. As pointed out by Bengio et al. [13], the notion of simple and complex tasks is

often based on human intuition, and there is value in understanding how humans identify

“simple” tasks. Along these lines, some work has been done to study whether curriculum

design is a prominent teaching strategy that naive users choose to teach the agent and how

they approach designing curricula.

To study the teaching strategies followed by naive users, Khan et al. [61] conduct

behavioral studies in which human participants need to teach a robot the concept of whether

an object can be grasped with one hand. In their experiment, participants are provided with

31 cards with photos of common objects (e.g., food, furniture, and animals) for them to

select. The experiment consists of two subtasks. In the first subtask, participants sort the

objects on the table based on their subjective ratings of their graspability. In the second

subtask, participants pick up the cards from the table and show them to the robot while

142

teaching the robot the concept of graspability, using as few cards as possible. While teaching

the robot the object’s graspability, participants can either use any natural language or say

either “graspable” or “not graspable,” depending on one of the two conditions they are

randomly assigned. They observe that participants follow three distinct teaching strategies,

one of which is consistent with the curriculum learning principle, i.e., starting simple and

gradually increasing the difficulty of the task. Furthermore, they propose a novel theoretical

framework as a potential explanation for the teaching strategy that follows the curriculum

learning principle, which shows that it is the result of minimizing per-iteration expected

error of the learner.

Peng et al. [88] also explore how naive users design a curriculum of tasks for an agent,

but in a more complex sequential decision-making task. Specifically, a simple simulated

home environment is used, where the agent must learn to perform tasks in a variety of

environments. The tasks are specified via text commands and the agent is trained to perform

the task via reinforcement and punishment feedback from a human trainer. It uses the goal-

directed Strategy-Aware Bayesian Learning (SABL) algorithm [70] for learning from human

feedback. In the user study, participants are asked to design a set of training assignments

for the agent to help it quickly learn to complete the given final assignment (shown in Figure

9.1a). A set of source tasks are provided for human participants to select and sequence.

One example of curricula designed by human participants is shown in Figure 9.1b. Their

empirical results show that, compared to directly learning the pre-specified final task from

scratch, non-expert humans can successfully design curricula that result in better overall

agent performance on learning both the entire curriculum and the final task. They also

discover that humans are more likely to select commands for intermediate tasks that include

concepts that are important for the final task, and that doing so results in curricula that

lead to better overall agent performance. Furthermore, they demonstrate that by taking

advantage of this type of non-expert guidance, their curriculum-learning algorithm can be

143

adapted to learn the human-generated curricula more efficiently.

There is also some work that does not explicitly ask humans to design a curriculum,

but uses human data to help generate the curriculum. One example is the work done by

Hosu and Rebedea [51], in which they propose a deep RL method that combines online

agent experiences with offline human experiences to train the agent more efficiently. In some

sparse-reward Atari games such as Montezuma’s Revenge and Private Eye, the agent needs

to execute a long sequence of specific actions to receive the first positive reward from the

environment, which makes the exploration problem much harder. Thus, the commonly used

ε-greedy strategy could not find any game paths to reach a first state with positive reward,

preventing the neural network from learning relevant features to good states. Inspired by

curriculum learning and the human starts evaluation metric used for testing Atari agents,

they use checkpoints sampled from a human player’s game experience as starting points for

the learning process. The main intuition behind this approach is that at least some of the

checkpoints will be an “easier” starting point, which is closer to some states with positive

reward that the agent can benefit from. While this method belongs to the class of sequencing

approaches, as discussed in Section 9.3.1, that reorders samples in the final task to derive

a curriculum, it additionally considers more informative sample data generated by naive

human users in order to build a more efficient curriculum.

9.4 Transfer Learning

While sequencing, as covered in Section 9.3, is the core component of curriculum learning,

the whole premise of CL depends on an agent’s ability to transfer knowledge among tasks.

In this subsection, I provide a brief survey of this area.

In curriculum learning, transfer learning methods are used to allow the agent to reuse

knowledge learned from one intermediate task for another within the curriculum. It is worth

noting that when creating a curriculum using only samples from the target task (discussed

144

in Section 9.3.1), there is no transfer as there is only a single task (the target task) and

correspondingly no change in the environment. However, when creating a curriculum using

multiple intermediate tasks, which may differ in state/action space, reward function, or

transition function from the final task, transfer learning is needed to extract and pass on

reusable knowledge acquired in one intermediate task to the next. The type of knowledge

transferred also directly affects the type of learner that is applicable to the learning process.

Transferred knowledge can be low-level, such as an entire policy, a value function,

a full task model, or some training instances, which can be directly used to initialize the

learner in the target task. The knowledge can also be high-level, such as partial policies

or options, skills, shaping rewards, or subtask definitions. This type of information may

not fully initialize the learner in the target task, but it could be used to guide the agent’s

learning process in the target task. In this subsection, we discuss different transfer learning

approaches used in curricula.

In policy transfer, a policy learned in a source or intermediate task is used to initialize

the policy in the target task. When transferring policies between different tasks, the tasks

may differ in some aspect of the MDP, such as starting states [32], reward functions [33,

97], or transition functions [19]. For instance, Clegg et al. [19] demonstrate that an arm-

like manipulator can successfully learn the control policy for a simulated dressing task, by

transferring policies between tasks with different transition functions. In a dressing task, the

goal is to insert a robotic arm into a garment (such as a shirt) and achieve a desired position.

To achieve this goal, they first train a sphere to move through a funnel-like geometry to reach

some target location. They then directly apply the learned policy to a different scenario in

which a manipulator with arbitrary shape navigates through a simulated garment. The main

trick is to train multiple spheres using a curriculum learning strategy and then aggregate

them to control the manipulator in the dressing task.

In Shao et al. [109], a learned task model is transferred between tasks, which is used

145

Citation Intermediate
Task
Generation

Curriculum
Representation

Transfer
Method

Curriculum
Sequencer

Curriculum
Adaptivity

Evaluation
Metric

Application
Area

Clegg et al. [19] domain experts sequence policies domain experts static asymptotic, time to threshold sim robotics

Fujii et al. [38] domain experts sequence partial policies domain experts static asymptotic real robotics

Karpathy and Van De Panne [60] domain experts/target sequence/single partial policies /no transfer domain experts/automatic static/adaptive time to threshold sim robotics

Rusu et al. [101] domain experts sequence policies domain experts static asymptotic video games

Shao et al. [109] domain experts sequence task model domain experts static asymptotic, total reward video games

Sinapov et al. [112] automatic sequence value function automatic static jump start video games

Tessler et al. [132] domain experts sequence partial policies domain experts static asymptotic video games

Vezhnevets et al. [135] automatic sequence partial policies automatic static asymptotic, total reward video games

Wang et al. [138] domain experts sequence policies domain experts static asymptotic video games

Yang and Asada [148] domain experts sequence partial policies automatic adaptive asymptotic, time to threshold real robotics

Yang et al. [149] domain experts sequence policies domain experts static asymptotic, time to threshold toy, other

Zimmer et al. [150] domain experts sequence partial policies domain experts static asymptotic, total reward sim robotics

Table 9.3: The papers discussed in Section 9.4, categorized along the dimensions presented
in Section 9.1. Bolded values under evaluation metric indicate strong transfer.

to initialize the policy network. Thus, it is similar to transferring policies. Their work aims

to solve the problem of multi-agent decision making in StarCraft micromanagement, where

the goal is to control a group of units to destroy the enemy under certain terrain condi-

tions. A parameter sharing multi-agent gradient-descent Sarsa(λ) (PS-MAGDS) method is

proposed to train the units to learn an optimal policy, which is parametrized by a feed-

forward neural network. PS-MAGDS simply extends the traditional Sarsa(λ) to multiple

units by sharing parameters of the policy network among units to encourage cooperative

behaviors. A reward function including small immediate rewards is also designed to accel-

erate the learning process. When using transfer learning in their experiments, the agents

are first trained in some small scale source scenarios using PS-MAGDS. The well-trained

model is then used to initialize the policy network to learn micromanagement in the target

scenarios. To scale the combat to a large scale scenario, they combine curriculum learning

and transfer learning where the agents are trained with a sequence of progressively more

complex micromanagement tasks. The difficulty of the micromanagement task is controlled

by changing the number and type of units.

Value function transfer is another common method for transferring low-level knowl-

edge between intermediate tasks within a curriculum. In most existing work [21, 83, 112],

value function transfer is achieved by using the parameters of a value function learned in

one intermediate task to initialize the value function in the next intermediate task in the

146

curriculum, such that the agent learns the final task with some initial policy that is better

than random exploration. For example, Sinapov et al. [112] focus on addressing the task

selection problem in curriculum learning using value function transfer, under the assumption

that no samples from the final tasks are available (this idea is described in detail in Chapter

5). They propose to use meta-data (i.e., a fixed-length feature vector that describes the task)

associated with each task to identify suitable intermediate tasks. The main idea is to use

such meta-data to learn the benefits of transfer between different ‘source-target’ task pairs,

and have this generalize to new unseen task pairs to guide task selection.

When transferring low-level policies or value functions across tasks, there are several

challenges that arise, particularly in the modern context of deep reinforcement learning. First

is the problem of catastrophic forgetting, where knowledge from previously learned tasks is

lost as information on a new task is incorporated. This effect occurs because the weights of

the neural network optimized for a first task must be changed to meet the objectives of a new

task, often resulting in poorer performance on the original task. Typically, in the curriculum

setting, we only care about performance in the final tasks. However, if information from two

orthogonal tasks needs to be combined (such as two independent skills), this challenge needs

to be addressed. One approach is progressive neural networks [101], which trains a new

network “column” for each new task, and leverages lateral connections to previously learned

network columns to achieve transfer. When training subsequent columns, parameters from

previous columns are frozen, which prevents catastrophic forgetting. The limitation is that

the number of parameters grows with the number of tasks, and at inference time, the task

label is needed to know which column to extract output from.

A second problem is the case where the state and action spaces differ between tasks.

One alternative is to transfer higher-level knowledge across tasks, such as partial policies

or options. A partial policy is a policy that is not necessarily defined for all states in the

state space of an MDP. We use partial policies as an umbrella term to represent closely

147

related ideas such as options, skills, and macro-actions. Yang and Asada [148] transfer

learned control parameters between tasks, which are similar to partial policies. To solve the

impedance learning problem for high-speed robotic assembly, they allow the system to learn

impedance parameters associated with different dynamic motions separately, rather than

to learn all the control parameters simultaneously. For instance, they first learn only the

parameters associated with quasistatic motion by driving the system slowly, leaving other

parameters unlearned. After the quasistatic parameters have been learned, they then slightly

increase the motion speed, and use the learned values to initialize the quasistatic parameters

when learning other parameters. Another example of transferring partial policies between

tasks is the work done by Zimmer et al. [150]. Their main idea is to progressively increase

the dimensionality of the tackled problem by increasing the (continuous) state and action

spaces of the MDP, while an agent is learning a policy. The agent first learns to solve the

source task with reduced state and action spaces until the increase in performance stagnates.

Then, the partial policy learned by the agent is used as an initialization to learn the full

policy in the target task with full state and action spaces. A developmental layer (like a

dropout layer) is added to the network to filter dimensions of the states and actions.

Similarly, Fujii et al. [38] transfer options between tasks. To train mobile robots to

learn collision avoidance behaviors in multi-robot systems more efficiently, they develop a

multi-layered RL mechanism. Rather than gradually increasing the level of task complexity

based on the learner’s performance as in Yang and Asada [148], their learning process consists

of four stages like a curriculum in which each stage learns a pre-defined controller. Each

controller learns an option to solve a pre-defined sub-task. For instance, the first controller

learns to move toward a specific goal. Then the output (goal-directed behavior) of the first

controller is used as input for the second controller, which aims to learn to avoid the collision

to a single robot, and so on.

Vezhnevets et al. [135] also transfer high-level macro-actions between tasks, which are

148

simpler instances of options. In their experiment, the agent is trained with a curriculum

where the goal state is first set to be very close to the start state and is then moved further

away during learning process. Although the task gets progressively harder, the temporally

abstracted macro-actions remain the same. The macro-actions learned early on can also

be easily adapted using their proposed architecture. Specifically, a deep recurrent neural

network architecture is used to maintain a multi-step action plan. The network learns when

to commit to the action plan to generate macro-actions and when to update the plan based

on observations.

Another mode for transfer is skills. Tessler et al. [132] propose a deep RL method

that effectively retains and transfers learned skills to solve lifelong learning in MineCraft. In

their work, a set of N skills are trained a priori on various sub-tasks, which are then reused

to solve the harder composite task. In their MineCraft experiment, the agent’s action space

includes the original primitive actions as well as the set of pre-learned skills (e.g., navigate

and pickup). A hierarchical architecture is developed to learn a policy that determines when

to execute primitive actions and when to reuse pre-learned skills, by extending the vanilla

DQN architecture [77]. The skills could be sub-optimal when they are directly reused for

more complex tasks, and this hierarchical architecture allows the agent to learn to refine the

policy by using primitive actions. They also show the potential for reusing the pre-learned

skill to solve related tasks without performing any additional learning.

Rather than selectively reusing pre-learned skills, Karpathy and Van De Panne [60]

focus on learning motor skills in an order of increasing difficulty. They decompose the

acquisition of skills into a two-level curriculum: a high-level curriculum specifies the order

in which different motor skills should be learned, while the low-level curriculum defines the

learning process for a specific skill. The high-level curriculum orders the skills in a way such

that each skill is relatively easy to learn, using the knowledge of the previously learned skills.

For instance, the Acrobot first learns the Hop (easy to learn from scratch) and Flip (similar

149

to hopping very slowly) skills, and then learns the more complex Hop-Flip skill. The learned

skill-specific task parameters for easier skills will highly constrain the states that the Acrobat

could be in, making it easier to learn more complex skills. For example, the Hop-Flip skills

begin from a hopping gait of some speed, which can be reached by repeatedly executing the

previously learned Hop skill.

In multi-agent settings, several specific methods have been designed for curricula that

progressively scale the number of agents between tasks. In these settings, the state and

action spaces often scale based on the number of agents present. One common assumption

in many of these methods is that the state space can be factored into elements for the

environment senv, the agent sn, and all other agents s−n. For example, Yang et al. [149]

propose CM3, which takes a two-stage approach. In the first stage, a single agent is trained

without the presence of other agents. This training is done by inducing a new MDP that

removes all dependencies on agent interactions (i.e., removing s−n) and training a network

on this subspace. Then in the second stage, cooperation is learned by adding the parameters

for the other agents into the network.

Wang et al. [138] propose 3 different approaches for multi-agent settings. The first is

buffer reuse, which saves the replay buffers from all previous tasks, and samples experience

from all of them to train in the current task. Samples from lower dimensional tasks are

padded with zeros. The second is curriculum distillation, which adds a distillation loss based

on KL divergence between policies/q-values between tasks. The third is transferring the

model using a new network architecture called Dynamic Agent-number Network (DyAN). In

this architecture, the state space elements related to the agent and environment go through a

fully connected network, while the observations for each teammate agent are passed through

a graph neural network (GNN) and then aggregated. These networks are subsequently

combined to produce q-values or policies.

150

9.5 Related Paradigms in Reinforcement Learning

One of the central challenges in applying reinforcement learning to real world problems is

sample complexity. Due to issues such as a sparse reward signal or complex dynamics,

difficult problems can take an RL agent millions of episodes to learn a good policy, with

many suboptimal actions taken during the course of learning. Many different approaches

have been proposed to deal with this issue. To name a few, one method is imitation learning

[104], which uses demonstrations from a human as labels for supervised learning to bootstrap

the learning process. Another example is off-policy learning [49], which uses existing data

from an observed behavior policy, to estimate the value of a desired target policy. Model-

based approaches [121] first learn a model of the environment, which can then be used for

planning the optimal policy.

Each of these methods come with their advantages and disadvantages. For imitation

learning, the assumption is that human demonstrations are available. However, these are not

always easy to obtain, especially when a good policy for the task is not known. In off-policy

learning, in order to make full use of existing data, it is assumed that the behavior policy has a

nonzero probability of selecting each action, and typically that every action to be evaluated or

the target policy has been seen at least once. Finally, model-based approaches typically first

learn a model of the environment, and then use it for planning. However, any inaccuracies

in the learned model can compound as the planning horizon increases. Curriculum learning

takes a different approach, and makes a different set of assumptions. The primary assumption

is that the environment can be configured to create different subtasks, and that it is easier

for the agent to discover on its own reusable pieces of knowledge in these subtasks that can

be used for solving a more challenging task.

Within reinforcement learning, there are also several paradigms that consider learning

on a set of tasks so as to make learning more efficient. Multitask learning, lifelong/continuous

learning, active learning, and meta-learning are four such examples.

151

In multitask learning, the goal is to learn how to solve sets of prediction or decision

making tasks. Formally, given a set of tasks m1,m2, . . .mn, the goal is to co-learn all of

these tasks, by optimizing the performance over all n tasks simultaneously. Typically, this

optimization is facilitated by learning over some shared basis space. For example, Caruana

[17] considers multitask learning for supervised learning problems, and shares layers of a

neural network between tasks. In supervised learning, these tasks are different classification

or regression problems. Similar ideas have been applied in a reinforcement learning context

by Wilson et al. [145]. In reinforcement learning, different tasks correspond to different

MDPs.

Lifelong learning and continual learning can be viewed as an online version of mul-

titask learning. Tasks are presented one at a time to the learner, and the learner must use

shared knowledge learned from previous tasks to more efficiently learn the presented task.

As in multitask learning, typically the goal is to optimize performance over all tasks given

to the learner. Lifelong and continual learning have been examined in both the supervised

setting [102] and the reinforcement learning setting [2, 98]. The distinguishing feature of

curriculum learning compared to these works is that in curriculum learning, we have full

control over the order in which tasks are selected. Indeed, we may have control over the

creation of tasks as well. In addition, the goal is to optimize performance for a specific target

task, rather than all tasks. Thus, source tasks in curriculum learning are designed solely to

improve performance on the target task—we are not concerned with optimizing performance

in a source.

In active learning, the learner chooses which task or example to learn or ask about

next, from a given set of tasks. Typically, active learning has been examined in a semi-

supervised learning setting: a small amount of labeled data exists whereas a larger amount

of unlabeled data is present. The labeled data is used to learn a classifier to infer labels for

unlabeled data. Unlabeled data that the classifier is not confident about is requested for

152

a label from a human user. For example, Ruvolo and Eaton [103] consider active learning

in a lifelong learning setting, and show how a learner can actively select tasks to improve

learning speed for all tasks in a set, or for a specific target task. The selection of which

task to be learned next is similar to the sequencing aspect of curriculum learning. However,

the full method of curriculum learning is much broader, as it also encompasses creating the

space of tasks to consider. Ruvolo and Eaton [103] and similar active learning work typically

assume the set of tasks to learn and select from are already given. In addition, typically

active learning has been examined for supervised prediction tasks, whereas we are concerned

with reinforcement learning tasks.

Finally, in meta-learning [31], the goal is to train an agent on a variety of tasks such

that it can quickly adapt to a new task within a small number of gradient descent steps.

Typically, the agent is not given information identifying the task it is training on. In contrast,

in curriculum learning, the learning agent may or may not have information identifying the

task. However, the process that designs the curriculum by sequencing tasks usually does

have this information. Like in the lifelong setting, there is no significance attached to the

order in which tasks are presented to the learner. In addition, the objective in meta-learning

is to train for fast adaptability, rather than for a specific final task as is the case in curriculum

learning.

9.6 Curricula in Supervised Machine Learning

In addition to reinforcement learning, curriculum learning has been examined for supervised

learning. In this section, I highlight a few examples of work that draw parallels to the RL

setting.

Bengio et al. [13] first formalized the idea of curriculum learning in the context of

supervised machine learning. They conducted case studies examining when and why training

with a curriculum can be beneficial for machine learning algorithms, and hypothesized that a

153

curriculum serves as both a continuation method and a regularizer. A continuation method

is an optimization method for non-convex criteria, where a smoothed version of the objective

is optimized first, with the smoothing gradually reduced over training iterations. Typically,

“easy” examples in a curriculum correspond to a smoother objective. Using a simple shape

recognition and language domain, they showed that training with a curriculum can improve

both learning speed and performance.

While many papers before Bengio et al. [13] used the idea of a curriculum to improve

training of machine learning algorithms, most work considering how to systematically learn

a curriculum came after. One recent example is work by Graves et al. [43]. They introduced

measures of learning progress, which indicate how well the learner is currently improving

from the training examples it is being given. They introduce 2 main measures based on

1) rate of increase in prediction accuracy and 2) rate of increase of network complexity.

These serve as the reward to a non-stationary multi-armed bandit algorithm, which learns

a stochastic policy for selecting tasks. These signals of learning progress could in theory be

applied or adapted to the reinforcement learning setting as well. Graves et al. [43] also make

an interesting observation, which is that using a curriculum is similar to changing the step

size of the learning algorithm. Specifically, in their experiments, they found that a random

curriculum still serves as a strong baseline, because all tasks in the set provide a gradient10.

Easier tasks provide a stronger gradient while harder tasks provide a gradient closer to 0.

Thus, choosing easy, useful tasks allows the algorithm to take larger steps and converge

faster.

More recently, Fan et al. [26] frame curriculum learning as “Learning to Teach,” where

a teacher agent learned to train a learning agent using a curriculum. The process is formu-

lated as an MDP between these two interacting agents, similar to the MDP approaches

discussed in Section 9.3.4: the teacher agent selects the training data, loss function, and hy-

10Note however that in the reinforcement learning setting, because the policy affects the distribution of
states an agent encounters, random training can be significantly worse.

154

pothesis space, while the learning agent trains given the parameters specified by the teacher.

The state space of the MDP is represented as a combination of features of the data, features

of the student model, and features that represent the combination of both data and learner

models. The reward signal is the accuracy on a held-out development set. Training a teacher

agent can be computationally expensive. They amortize this cost by using a learned teacher

agent to teach a new student with the same architecture. For example, they train the teacher

using the first half of MNIST, and use the learned teacher to train a new student from the

second half of MNIST. Another way they amortize the cost is to train a new student with a

different architecture (e.g., changing from ResNet32 to ResNet110). Similar ideas have been

explored in the reinforcement learning setting. However, the test set distribution is different

from the training set distribution, which makes performing these kind of evaluations more

challenging. However, showing that the cost for training a teacher can be amortized is an

important direction for future work.

Finally, Jiang et al. [58] explore the idea of self-paced curriculum learning for su-

pervised learning, which unifies and takes advantage of the benefits of self-paced learning

and curriculum learning. In their terminology, curriculum learning uses prior knowledge,

but does not adapt to the learner. Specifically, a curriculum is characterized by a ranking

function, which orders a dataset of samples by priority. This function is usually derived by

predetermined heuristics, and cannot be adjusted by feedback from the learner. In contrast,

self-paced learning (SPL) adjusts to the learner, but does not incorporate prior knowledge

and leads to overfitting. In SPL, the curriculum design is implicitly embedded as a reg-

ularization term into the learning objective. However, during learning, the training loss

usually dominates over the regularization, leading to overfitting. This paper proposes a

framework that unifies these two ideas into a concise optimization problem, and discusses

several concrete implementations. The idea is to replace the regularization term in SPL with

a self-paced function, such that the weights lie within a predetermined curriculum region.

155

In short, the curriculum region induces a weak ordering over the samples, and the self-paced

function determines the actual learning scheme within that ordering. The idea has parallels

to a task-level curriculum for RL, where the curriculum induces a weak ordering over samples

from all tasks, and with the learning algorithm determining the actual scheme within that

ordering.

9.7 Algorithmically Designed Curricula in Education

Curriculum learning has also been widely used for building effective Intelligent Tutoring

Systems (ITS) for human education [15, 23, 44, 52, 53]. An ITS system involves a student

interacting with an intelligent tutor (a computer-based system), with the goal of helping the

student to master all skills quickly, using as little learning content as possible. Given that

students have different learning needs, styles, and capabilities, the intelligent tutor should

be able to provide customized instructions to them. To achieve this goal, one common

strategy is called curriculum sequencing, which aims to provide the learning materials in a

meaningful order that maximizes learning of the students with different knowledge levels.

The main problem this strategy must solve is to find the most effective lesson to propose

next, given the student’s current learning needs and capabilities.

Reinforcement learning is one of the machine learning techniques that has been used

with intelligent tutors to partially automate construction of the student model and to auto-

matically compute an optimal teaching policy [146]. One advantage of using RL methods in

tutoring is that the model can learn adaptive teaching actions based on each individual stu-

dent’s performance in real time, without needing to encode complex pedagogical rules that

the system requires to teach effectively (e.g., how to sequence the learning content, when and

how to provide an exercise). Another advantage is that it is a general domain-independent

technique that can be applied in any ITS.

As a concrete example, Iglesias et al. [52, 53] adapt Q-learning [141] to an adaptive

156

and intelligent educational system to allow it to automatically learn how to teach each stu-

dent. They formulate the learning problem as an RL problem, where the state is defined

as the description of the student’s knowledge, indicating whether the student has learned

each knowledge item. The set of actions the intelligent tutor can execute includes selecting

and showing a knowledge item to the student. A positive reward is given when all required

content has been learned, otherwise no reward is given. The system evaluates the student’s

knowledge state through tests, which shows how much the student knows about each knowl-

edge item. The Q-value estimates the usefulness of executing an action when the student

is in a particular knowledge state. Then, the tutoring problem can be solved using the

traditional Q-learning algorithm.

Green et al. [44] propose using a multi-layered Dynamic Bayes Net (DBN) to model

the teaching problem in an ITS system. The main idea is to model the dynamics of a

student’s skill acquisition using a DBN, which is normally used in RL to represent transition

functions for state spaces. More specifically, they formulate the problem as a factored MDP,

where the state consists of one factor for each skill, corresponding to the student’s proficiency

on that particular skill. The actions are to either provide a hint or to pose a problem about

a particular skill to the student. From a history of teacher-student interaction, the teacher

can model the student’s proficiency state, with the goal of teaching the student to achieve

the highest possible proficiency value on each skill, using as few problems and hints as

possible. Subsequently, the learned DBN model is used by a planning algorithm to search

for the optimal teaching policy, mapping proficiency states of student knowledge to the most

effective problem or hint to pose next.

To allow the automated teacher to select a sequence of pedagogical actions in cases

where learner’s knowledge may be unobserved, a different problem formulation is posed

by Rafferty et al. [93]. They formulate teaching as a partially observable Markov decision

process (POMDP), where the learner’s knowledge state is considered as a hidden state, cor-

157

responding to the learner’s current understanding of the concept being taught. The actions

the automated teacher can select is a sequence of pedagogical choices, such as examples or

short quizzes. The learner’s next knowledge state is dependent on her current knowledge

state and the pedagogical action the teacher chooses. Changes in the learner’s knowledge

state reflect learning. In this framework, the automated teacher makes some assumptions

about student learning, which is referred to as the learner model: it specifies the space

of possible knowledge states and how the knowledge state changes. Then the teacher can

update its beliefs about the learner’s current knowledge state based on new observations,

given this learner model. Using this POMDP framework, they explore how different learner

models affect the teacher’s selection of pedagogical actions.

While most approaches seek to solely maximize overall learning gains, Ramachandran

and Scassellati [95] propose an RL-based approach that uses a personalized social robot to

tutor children, that maximizes learning gains and sustained engagement over the student-

robot interaction. The main goal of the social robot is to learn the ordering of questions

presented to a child, based on difficulty level and the child’s engagement level in real time. To

represent the idea that children with different knowledge levels need a different curriculum,

each child is categorized into a given group based on knowledge level at the start of the

one-on-one tutoring interaction. An optimal teaching policy is then learned specific to each

group. In particular, their approach consists of a training phase and an interaction phase. In

the training phase, participants are asked to complete a tutoring exercise. A pretest and post-

test will be used to evaluate the participant’s relative learning gains, which will also be used

as the reward function to learn an optimal policy during the training phase. Subsequently, in

the interaction phase, the child’s real-time engagement will be detected, serving as another

reward signal for the RL algorithm to further optimize the teaching policy.

Non-RL-based algorithms have been considered as well. Ballera et al. [8] leverage the

roulette wheel selection algorithm (RWSA) to perform personalized topic sequencing in e-

158

learning systems. RWSA is typically used in genetic algorithms to arrange the chromosomes

based on their fitness function, such that individuals with higher fitness value will have

higher probability of being selected [41]. Similarly, in an e-learning system, a chromosome

is denoted by a lesson. Each lesson has a fitness value that dynamically changes based

on the student’s learning performance. This fitness value indicates how well the topic was

learned by the student, depending on three performance parameters: exam performance,

study performance, and review performance of the learner. A lower fitness value means

that the student has a poorer understanding of the topic. Thus, a reversed mechanism

of RWSA is implemented, so as to select the lessons with lower fitness values more often

for reinforcement. Then, this reversed RWSA algorithm is combined with linear ranking

algorithm to sort the lessons.

9.8 Summary

In this chapter, I introduced a taxonomy of curriculum learning methods for reinforcement

learning, that classified approaches according to 7 different attributes. These attributes

spanned categories such as how the curriculum is generated, how it is represented, and

how it is evaluated. I then systematically surveyed existing work on each of 3 elements of

curriculum learning – task generation (Section 9.2), sequencing (Section 9.3), and transfer

learning (Section 9.4) – with a particular focus on sequencing methods. In particular, I

split sequencing methods into five categories, based on the assumptions they make about

intermediate tasks in the curriculum. The simplest of these methods are sample sequencing

methods (Section 9.3.1), which reorder samples from the final task itself, but do not explicitly

change the domain. These methods were followed by co-learning methods (Section 9.3.2),

where a curriculum emerges from the interaction of several agents in the same environment.

Next I considered methods that explicitly changed the MDP to produce intermediate tasks.

Some of these methods assumed that the environment dynamics stay the same, but that the

159

initial/terminal state distribution and reward function can change (Section 9.3.3). Others

made no restrictions on the differences allowed from the target task MDP (Section 9.3.4). I

also discussed how humans approach sequencing, to shed light on manually designed curricula

in existing work (Section 9.3.5).

The work in this thesis contributes in several areas to this body of work, as I high-

lighted throughout this chapter. The task generation methods described in Chapter 4 are

one of only a few methods designed to address this subproblem. Other methods to address

this subproblem (Section 9.2) rely on similar ideas to the task descriptor feature vector for

creating tasks. Chapter 5 then uses the task descriptor to perform source task selection for a

target task, and learn a model of transferability. I discuss how this fits in with other transfer

learning methods that make different assumptions about what is available in the target task,

and what is transferred in Section 9.4.

Chapters 6 and 7 introduce full curriculum sequencing methods, that fall within the

approaches that make no assumptions on the way the target task MDP can be modified to

create source tasks for the curriculum (Section 9.3.4). Chapter 8 extends the method from

Chapter 7 to learn curriculum policies that generalize to new tasks – an idea that, to the

best of my knowledge, has not been considered by previous work.

Following this discussion, I described how curriculum learning relates to other ap-

proaches to improve sample complexity in reinforcement learning, and approaches that also

consider learning multiple sets of tasks (Section 9.5). Finally, I also discussed how curricu-

lum learning is used in supervised learning (Section 9.6), as well as for teaching humans

in education (Section 9.7). Our survey of this literature has helped identify several open

problems and directions for future work, which I will discuss in the next chapter (Chapter

10).

160

10. Conclusion and Future Work

Reinforcement learning is a branch of machine learning that considers how an agent should

act in an environment, using only a numeric reward signal. Due to the typically sparse

nature of this signal and challenges in the environment (such as a large state space, partial

observability, or adversaries), learning in complex tasks can be very slow, taking millions of

episodes. One way to accelerate this process is to train the agents through a curriculum,

which allows them to acquire simple skills in easy tasks, and use those skills to aid in solving

a more difficult target task. This idea is inspired by human learning, where people gradually

acquire complex cognitive and motor skills by training through a curriculum.

While manually designed curricula have been used to train artificial agents for over 2

decades, the question of how to automatically design a curriculum has only recently begun

to receive attention. This thesis therefore sought to answer the following question:

Can reinforcement learning agents benefit from learning via a curriculum, and how can an

autonomous curriculum design agent automatically create a curriculum tailored to both the

abilities of individual learning agents and the task in question?

To answer this question, we first formalized the idea of a curriculum, and the method-

ology of curriculum learning. Over the past few years, several groups have looked at different

ways of organizing experience from tasks, and the definitions we provide encompass these

different techniques. We then tackled the main components of curriculum learning: how to

create useful source tasks, how to evaluate how good a source task is for another target task,

and how to automatically sequence these tasks into a curriculum. We also showed that our

161

methods produce curricula that are tailored to each agent’s learning abilities, and showed

how the curricula could be generalized for new unseen tasks.

10.1 Contributions

In summary, this thesis made the following contributions to the field of curriculum learning

in reinforcement learning:

1. Problem Definition

In Chapter 3, I formalized the concept of a curriculum as a directed acyclic graph

over sets of samples. I showed how this general-purpose definition encompasses special

cases such as curricula composed of sequences of tasks. I also introduced the method

of curriculum learning, which consists of 3 parts – task generation, sequencing, and

transfer learning – and discussed how curriculum learning approaches can be evaluated

by adapting metrics from transfer learning.

2. Methods for Creating Source Tasks

In Chapter 4, I presented several methods that modify the target task MDP to produce

relevant source tasks. Some of these methods use a parameterized model of the domain

to create simpler instances of the domain, while others use an agent’s experience tuples

from trajectories on the target task to create agent-specific source tasks.

3. Method to Evaluate Task Transferability

In Chapter 5, I discussed an approach that learns a task transferability model between

source and target task pairs. The method uses only a feature vector describing both

tasks, and learns to predict the expected jumpstart in the target task, after first training

on the source task.

162

4. Methods for Sequencing Tasks into a Curriculum

In Chapter 6, I presented our first method for sequencing tasks into a curriculum. This

method repeatedly obtains samples of the agent’s policy on the target task, and uses a

heuristic that looks for the maximum policy change on those samples to select which

task should go next in the curriculum.

In Chapter 7, I discussed our second method for sequencing tasks, which formulates

curriculum generation as an interaction between 2 MDPs – one for the student RL

agent, and one for the teacher curriculum agent. This approach uses reinforcement

learning to learn a policy over the teacher MDP, which specifies what a student agent

should train to optimize a desired performance metric.

For both methods, I showed that an individualized curriculum was learned for each

agent.

5. Methods for Adapting a Curriculum Created for one Task to a Different

Task

In Chapter 8, I discussed how the CMDP approach from Chapter 7 could be combined

with universal value functions. With this combination, I showed that a curriculum

policy could be trained on one set of tasks, and generalize to produce curricula for new

and unseen navigation-based target tasks.

6. A Taxonomy of Curriculum Learning Approaches for RL

In Chapter 9, I presented a taxonomy to classify curriculum learning methods based on

7 different attributes. These attributes encompassed properties such as how the cur-

riculum is generated, how it is represented, and how it is evaluated. I also presented

a systematic survey of methods addressing each of the 3 elements of curriculum learn-

ing, with a particular focus on sequencing methods. Finally, I also briefly discussed

how curriculum learning for RL methods compare to other methods to improve sample

163

complexity in RL, how curriculum learning has been used in supervised learning, and

how it has been used for teaching humans in education.

7. Empirical Validation

Throughout this thesis, we have evaluated our methods on domains ranging from

gridworlds, to domains such as Ms. Pac-Man and Half Field Offense. Domains were

chosen based on whether they had the properties relevant to show the benefits of

curriculum-based strategies, with the primary one being customizability (to create a

diverse set of source and target tasks).

10.2 Future Work

In this section, I describe open problems and ideas for future work. These ideas include

extensions of the methods presented throughout this thesis, as well as related directions

that I expect will be useful for the field of curriculum learning in reinforcement learning in

general.

10.2.1 Human Studies

As laid out in Chapter 1, human learning is the inspiration for using curriculum-based

strategies to improve learning in artificial agents. Humans learn and refine complex motor

and cognitive skills by training via a curriculum. Whether it’s coaching an athlete in sports,

or designing a therapy to help stroke patients recover control of a limb, the training process is

organized through a series of drills that incrementally build up their abilities. However, how

best to design such a curriculum is a challenging open problem, even for human learning and

education [20, 78, 79, 93]. Currently, curricula across many domains are developed largely

based on tradition and intuition, centered around the ill-defined notion of “practice.”

The focus of this thesis has been on understanding how curricula can be automatically

164

designed for artificial agents. But this topic also begs the question: can a similar process

be used to design curricula for human learning? Our ongoing work [39] – being done in

collaboration with Keya Ghonasgi, Reuth Mirsky, Bharath Masetty, Ashish Deshpande, and

Peter Stone – considers learning curricula for human motor learning tasks, such as learning to

regain control of a limb after a stroke by devising a therapy (i.e., a curriculum) or improving

proficiency in a motor task (such as in sports or games).

As a step towards this goal, we are proposing to adapt the CMDP curriculum learning

model presented in Chapter 7 designed for RL agents to represent the learning process of

humans. This model was inspired by human learning, and designed to improve training for

autonomous reinforcement learning agents. In this work, we take the complementary view

and aim to train human agents by adapting curriculum learning methods designed for RL

agents to the human setting. In the CMDP model, this effect is achieved by replacing the

RL student agent with a human learner.

There are two initial challenges to adapting the CMDP formulation and directly using

it for human student agents:

1. Representing the Human’s State of Knowledge. The knowledge state of an

RL student is usually defined as the weights of the student’s policy. Based on these

weights, one can predict the student’s behavior in each possible task. However, for

humans, there is no perfect way to fully capture the student’s knowledge state, as we

do not have access to the brain’s parameters. Instead, we can only infer their internal

state by measuring features of their performance on an instance of the task (such as

using a diagnostic or evaluative “test”).

2. Learning Never Stops. In RL agents, when we wish to evaluate the state of knowl-

edge of the student, we can turn off its learning process and run the student’s policy

many times without it using these new experiences to improve its policy. We can also

evaluate the effects of different curricula by resetting the student’s state to some base-

165

line level for every new curriculum. However, when evaluating people we cannot “turn

off” their learning mechanisms, and hence any evaluation must be considered as part

of the training process. Moreover, once a learner has trained on one sequence of source

tasks, the knowledge state cannot be reset to test a new curriculum.

In order to test automated curriculum learning for human agents, we also need a

domain that is both flexible enough to create many different learning scenarios (i.e., has

many potential source tasks), and challenging enough to induce motor learning in humans

quantifiable via measured features of performance. In our ongoing work [39], we have intro-

duced a new game called “Reach Ninja,” which is inspired by the popular phone game Fruit

Ninja [47]. It uses a webcam to track a player’s hand movement as they reach for various

objects on the screen, rewarding them for hitting certain objects and penalizing them for

hitting others. The game has several features that make it challenging to learn, and we have

observed that training on the game over time does improve a participant’s motor skill and

performance.

The next step is to evaluate whether a good curriculum can be learned by adapting

the curriculum MDP model from Chapter 7. One way to implement this idea is to directly

apply the CMDP process as done previously to human students. However, training directly

in this way is computationally expensive, and would be even more expensive since it would

require human time. Therefore, we propose to first learn a curriculum policy for this domain

using an RL agent, where the cost of simulation is much cheaper. We will use this curriculum

as a baseline, and evaluate how well it works for a human.

Although at first glance it seems unlikely that humans and artificial agents could

benefit from similar curricula, there could be some overlap. We hypothesize that a curriculum

is based on 2 elements. First, there is progression of difficulty that is intrinsic to the domain

– for example, playing chess with more types of pieces is harder than playing with fewer

types. Such domain-specific qualities would influence curricula for all types of learners in

166

this domain. The second is an agent-specific element, where the curriculum is modified based

on how a specific agent learns. We hypothesize that the RL-agent curriculum will capture

some elements of the difficulty that are intrinsic to the domain, and thus will serve as a

good starting point for adaptation for the second element. If the starting point is found

to be useful, performing this adaptation will be an important direction for future work.

Tailoring the curriculum for human learners will require understanding how a human’s state

of knowledge changes as they interact with tasks, and can be thought of as a sim-to-real

problem, where the curriculum policy is learned in simulation on RL agents, and must be

applied to real human learners.

10.2.2 Fully Automated Task Creation

Task creation is an important component of the methodology of curriculum learning. Whether

tasks are created “on-demand” or all in advance, the quality of the pool of tasks generated

directly affects the quality of curricula that can be produced. In addition, the quantity of

tasks produced affect the search space and efficiency of curriculum sequencing algorithms.

Despite its importance to curriculum learning, very limited work (see Section 9.2) has been

done on the problem of automatically generating tasks.

In Chapter 4, I introduced a set of methods for semi-automatically creating tasks.

However, these methods have hyper-parameters that control both how many and what types

of tasks are created. These parameters are usually manually tuned to keep the space of tasks

a reasonable size while retaining quality source tasks. For example, MistakeLearning

(Algorithm 4) uses the parameter ε which controls how far back to rewind, while TaskSim-

plification (Algorithm 1) can simplify each dimension of the degrees of freedom by a

variable amount. Reducing the amount of manual input required by these methods remains

an important area for future work.

167

10.2.3 Transferring and Combining Different Types of Knowledge

Between each pair of tasks in a curriculum, knowledge must be transferred from one task to

the next (or in the case of a graph, knowledge must be transferred from nodes that have a

directed edge into the current node). In Chapters 6 and 7, we have assumed that the type

of knowledge transferred has been fixed. For example, in Chapter 6, value function transfer

was used to transfer information between every pair of tasks in the curriculum. In Chapter

7, we showed that the CMDP approach can be used to transfer different types of knowledge

(both value functions and shaping rewards). However, as in Chapter 6, only one or the other

is used in a particular run while learning the CMDP, because it affects how the CMDP state

space is represented. To the best of my knowledge, all existing work also sequences curricula

using a single, fixed transfer method.

However, this limitation opens the question of whether different tasks could benefit

from extracting different types of knowledge. For instance, it may be useful to extract an

option from one task, and a model from another. Thus, in addition to deciding which task

to transfer from (which is the typical question in sequencing), we could also ask what to

extract and transfer from that task. Past transfer learning literature has shown that many

forms of transfer are possible, and the best type of knowledge to extract may very well differ

based on task. In addition, new methods will need to be developed to effectively combine

these different types of knowledge.

10.2.4 Generalizing Curricula to Different Agents

As we discussed in Chapter 8, a limitation of many curriculum learning approaches is that the

time to generate a curriculum can be greater than the time to learn the target task outright.

This shortcoming stems from the fact that curricula are typically learned independently for

each agent and target task. However, in areas such as human education, curricula are used

to train multiple students in multiple subjects.

168

In Chapter 8, I discussed how to deal with one half of this limitation: generalizing

curricula to new tasks, by combining CMDPs with universal value functions. Another way

would be to create a curriculum that can generalize or adapt to new agents. One approach

to do so could be to encode a representation of the learner, rather than the task as done in

Chapter 8. This representation would need to capture the class of policies that learner could

represent, in a space that is comparable with classes of policies for other learners. Another

option could be meta-learning (in the style of MAML [31]), where we learn a curriculum

policy over a distribution of agents, in a way that is able to quickly adapt to new agent

types. Such an approach could also be considered for quickly adapting to new target tasks.

10.2.5 Extending CMDPs to Black Box Agents

The CMDP formulation for curriculum generation presented in Chapter 7 represents the

CMDP state space using the agent’s state of knowledge. For RL agents, I described how the

state of knowledge can be represented by the weights θ of the RL agent’s value function or

policy. However, sometimes we may not have access to the agent’s internal parameters. For

example, when designing a curriculum for multi-agent or ad hoc teamwork settings, we may

not have access to these parameters. Even in the cases where we do have such access, the

agent may have too many parameters θ for efficient learning, such as if the agent uses a very

large neural network. In both of these cases, the agent is effectively a black box.

One alternative is to instead rely on observations of the agent’s state of knowledge –

i.e., actions from instances of its policy. For example, we can evaluate the agent’s policy on

some set of states from the target task (and optionally also the source tasks). These states

can be thought of as “test states” – similar to how humans evaluate their knowledge through

a finite set of questions on a test. A key open question is how to select an appropriate set of

test states. The main property we desire is that as the agent trains through a curriculum,

the policy should change to reflect accumulation of knowledge on these test states. As part

169

of ongoing work, we are looking into using states from expert demonstrations of the target

task as test states.

10.2.6 Sim-to-Real Curriculum Learning

As I discussed earlier, generating curricula can be very expensive. However, using a curricu-

lum once learned is faster than learning a task tabula rasa. Therefore, if the curriculum can

be generated in a (simulation) environment where the cost is cheap compared to the (real)

environment where the actual agent is deployed, the cost can also be justified.

This idea is similar to the sim-to-real problem, where policies learned in simulation

(such as a simulated robot) need to be transferred to the real world (a physical robot),

where the environment dynamics are different. Common approaches to address the sim-to-

real problem include grounding the simulator by making it more closely resemble the real

world [28], transforming the agent’s actions to make their effects more similar to reality [50],

and injecting noise or training on multiple simulation environments to learn more robust

policies [94].

The motivation behind these approaches is that the policy learned in simulation is

not optimized for the real world. Similarly, when training an agent in simulation using a

curriculum, the exact weights of the policy learned after the curriculum in simulation would

not apply in the real world. However, an interesting question is whether the semantics

of the curriculum tasks might. Therefore, the physical robot could go through the same

training regimen that was already optimized in simulation, but learn using the physics and

dynamics of the real world. Also, I would like to note that the “real world” does not have

to be limited to robots. As I described in Section 10.2.1, a similar approach can be used for

human learning, where humans are the “real world” setting.

170

10.2.7 Combining Task Generation and Sequencing

The curriculum learning method can be thought of as consisting of 3 parts: task generation,

sequencing, and transfer learning. In this thesis and most existing work, each of these pieces

has been tackled independently. For example, sequencing methods typically assume the

tasks are prespecified, or a task generation method exists. However, an interesting question

is whether the task generation and task sequencing phases can be done simultaneously, by

directly generating the next task in the curriculum.

Some very preliminary work has been done in this direction in the context of video

game level generation. For example, Green et al. [45] used an evolutionary algorithm to

generate maps for a gridworld, where each tile had a different element. The generator was

optimized to maximize the loss of a deep RL agent’s network, inducing a training curriculum.

Combining task generation and sequencing introduces additional challenges, such as

specifying the space of possible maps/tasks, ensuring those maps are solvable, and creating

maps that are challenging, but not too difficult to solve. In addition, training the generator

can be very expensive. However, it promises an end-to-end solution that could reduce the

amount of human intervention needed to design curricula.

10.2.8 Theoretical Analysis

There have been many practical applications of curricula to speed up learning in both su-

pervised and reinforcement learning. However, despite empirical evidence that curricula are

beneficial, there is a lack of theoretical results analyzing why they are useful, and how they

should be created. An initial analysis in the context of supervised learning was done by

Weinshall and Amir [142] and Weinshall et al. [143]. They analyzed whether reordering

samples in linear regression and binary classification problems could improve the ability to

learn new concepts. They did this analysis by formalizing the idea of an Ideal Difficulty

Score (IDS), which is the loss of the example with respect to the optimal hypothesis, and the

171

Local Difficulty Score (LDS), which is the loss of the example with respect to the current

hypothesis. These are 2 ways to classify the difficulty of a sample, which can be used as a

means to sequence samples. They showed that the convergence of an algorithm like stochas-

tic gradient descent monotonically decreases with the IDS, and monotonically increases with

the LDS. An open question is whether similar grounded metrics for difficulty of tasks can be

identified in reinforcement learning, and what kind of convergence guarantees we can draw

from them.

10.3 Concluding Remarks

Humans learn concepts and develop complex motor skills by training via a curriculum.

This thesis explored whether similar ideas could be used to improve the efficiency of training

reinforcement learning agents. Concretely, this thesis formalized the idea of a curriculum, and

the method of curriculum learning in reinforcement learning. It presented several methods

that address the main new components of curriculum learning – generating source tasks

and automatically sequencing them into a curriculum. Together, the formalizations create a

common basis for discussion in this field, and the methods devised offer a new paradigm for

training RL agents. As alluded to in this thesis, curriculum-based strategies have been key

to many successful reinforcement learning applications, and we expect advances in this field

will play an important role in future ones as well.

172

A. Acronyms

term meaning

CC Correlation Coefficient

CHER Curriculum Hindsight Experience Replay

CL Curriculum Learning

CM3 Cooperative Multi-goal Multi-stage Multi-agent

CMAC Cerebellar Model Arithmetic Computer

CMDP Curriculum Markov Decision Process

DBN Dynamic Bayes Net

DCG Discounted Cumulative Gain

DQN Deep Q-Network

DyAN Dynamic Agent-number Network

EBU Episodic Backward Update

GAN Generative Adversarial Network

GNN Graph Neural Network

HER Hindsight Experience Replay

HFO Half Field Offense

IDS Ideal Difficulty Score

ITS Intelligent Tutoring System

KL KullbackLeibler

LDS Local Difficulty Score

LR Linear Regression

MAML Model Agnostic Meta-learning

MDP Markov Decision Process

173

term meaning

NDCG Normalized Discounted Cumulative Gain

NERO NeuroEvolving Robotic Operatives

NN Neural Network

OO-MDP Object-oriented Markov Decision Process

PER Prioritized Experience Replay

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

PS-MAGDS Parameter Sharing Multi-agent Gradient Descent

RARL Robust Adversarial Reinforcement Learning

RWSA Roulette Wheel Selection Algorithm

RL Reinforcement Learning

SABL Strategy-Aware Bayesian Learning

SAC-X Scheduled Auxiliary Control

SAGG-RIAC Self-adaptive Goal Generation - Robust Intellligent Adaptive Curiosity

SPL Self-paced Learning

TD Temporal Difference

TL Transfer Learning

UVFA Universal Value Function Approximator

174

Bibliography

[1] H. Akiyama and T. Nakashima. HELIOS 2012: RoboCup 2012 Soccer Simulation 2D

League Champion, volume 7500. Springer, 2012. 44

[2] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor. Online multi-task learning for

policy gradient methods. In International Conference on Machine Learning (ICML),

pages 1206–1214, 2014. 152

[3] H. B. Ammar, E. Eaton, M. E. Taylor, D. C. Mocanu, K. Driessens, G. Weiss, and

K. Tuyls. An automated measure of mdp similarity for transfer in reinforcement learn-

ing. In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014. 50

[4] H. B. Ammar, E. Eaton, J. M. Luna, and P. Ruvolo. Autonomous cross-domain

knowledge transfer in lifelong policy gradient reinforcement learning. In International

Joint Conference on Artificial Intelligence (IJCAI), pages 3345–3351, 2015. 14

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,

J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in

Neural Information Processing Systems (NIPS), pages 5048–5058, 2017. 124, 125

[6] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Purposive behavior acquisition

for a real robot by vision-based reinforcement learning. Machine Learning, 23(2-3):

279–303, 1996. 19, 124, 130

175

[7] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch.

Emergent tool use from multi-agent autocurricula. In International Conference on

Learning Representations (ICLR), 2020. 124, 128

[8] M. Ballera, I. A. Lukandu, and A. Radwan. Personalizing e-learning curriculum using

reversed roulette wheel selection algorithm. In International Conference on Education

Technologies and Computers (ICETC), pages 91–97. IEEE, 2014. 158

[9] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch. Emergent complexity

via multi-agent competition. In International Conference on Learning Representations

(ICLR), 2018. 124, 129

[10] A. Baranes and P.-Y. Oudeyer. Active learning of inverse models with intrinsically

motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73,

2013. 124, 133

[11] A. Bassich, F. Foglino, M. Leonetti, and D. Kudenko. Curriculum learning with a

progression function. https://arxiv.org/abs/2008.00511, 2020. 124, 139

[12] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning envi-

ronment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013. 123

[13] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Inter-

national Conference on Machine Learning (ICML), pages 41–48, 2009. 122, 123, 140,

142, 153, 154

[14] M. Bowling, N. Burch, M. Johanson, and O. Tammelin. Heads-up limit hold’em poker

is solved. Science, 347(6218):145–149, January 2015. 1

[15] E. Brunskill and S. Russell. Partially observable sequential decision making for problem

176

selection in an intelligent tutoring system. In Poster at International Conference on

Educational Data Mining (EDM). Citeseer, 2011. 156

[16] P. Burrow and S. M. Lucas. Evolution versus temporal difference learning for learning

to play ms. pac-man. In 2009 IEEE Symposium on Computational Intelligence and

Games, pages 53–60. IEEE, 2009. 38

[17] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997. 152

[18] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen,

and Y. Bengio. BabyAI: First steps towards grounded language learning with a human

in the loop. In International Conference on Learning Representations, 2019. 105

[19] A. Clegg, W. Yu, Z. Erickson, J. Tan, C. K. Liu, and G. Turk. Learning to navigate

cloth using haptics. In International Conference on Intelligent Robots and Systems

(IROS), pages 2799–2805, 2017. 145, 146

[20] B. Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes. Multi-armed bandits for intelligent

tutoring systems. Journal of Educational Data Mining, 7(2), 2015. 164

[21] F. L. Da Silva and A. Reali Costa. Object-oriented curriculum generation for rein-

forcement learning. In International Conference on Autonomous Agents & Multiagent

Systems (AAMAS), 2018. 120, 121, 124, 139, 146

[22] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: An autocatalytic optimizing

process. Technical Report, 1991. 136

[23] S. Doroudi, K. Holstein, V. Aleven, and E. Brunskill. Sequence matters but how

exactly? a method for evaluating activity sequences from data. Grantee Submission,

2016. 156

177

[24] J. L. Elman. Learning and development in neural networks: The importance of starting

small. Cognition, 48(1):71–99, 1993. 19

[25] A. Fachantidis, I. Partalas, G. Tsoumakas, and I. Vlahavas. Transferring task models

in reinforcement learning agents. Neurocomputing, 107:23–32, 2013. 14

[26] Y. Fan, F. Tian, T. Qin, X.-Y. Li, and T.-Y. Liu. Learning to teach. In International

Conference on Learning Representations (ICLR), 2018. 154

[27] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang. Curriculum-guided hindsight expe-

rience replay. In Advances in Neural Information Processing Systems (NIPS), pages

12602–12613, 2019. 124, 126

[28] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone. Humanoid robots learning to

walk faster: From the real world to simulation and back. In Proceedings of the 2013

International Conference on Autonomous Agents and Multi-agent Systems, pages 39–

46, 2013. 170

[29] F. Fernández, J. Garćıa, and M. Veloso. Probabilistic policy reuse for inter-task transfer

learning. Robotics and Autonomous Systems, 58(7):866–871, 2010. 14

[30] N. Ferns, P. Panangaden, and D. Precup. Bisimulation metrics for continuous markov

decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011. 74

[31] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation

of deep networks. In International Conference on Machine Learning (ICML), pages

1126–1135. JMLR. org, 2017. 153, 169

[32] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum

generation for reinforcement learning. In Conference on Robot Learning (CoRL), 2017.

31, 124, 130, 145

178

[33] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for rein-

forcement learning agents. In International Conference on Machine Learning (ICML),

pages 1514–1523, 2018. 124, 131, 132, 145

[34] F. Foglino, C. Coletto Christakou, and M. Leonetti. An optimization framework for

task sequencing in curriculum learning. In International Conference on Developmental

Learning (ICDL-EPIROB), 2019. 124, 136

[35] F. Foglino, C. Coletto Christakou, R. Luna Gutierrez, and M. Leonetti. Curriculum

learning for cumulative return maximization. In International Joint Conference on

Artificial Intelligence (IJCAI), 2019. 124, 137

[36] F. Foglino, M. Leonetti, S. Sagratella, and R. Seccia. A gray-box approach for cur-

riculum learning. In World Congress on Global Optimization, 2019. 124, 137

[37] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g: A computation

management agent for multi-institutional grids. Cluster Computing, 5(3):237–246,

2002. 56

[38] T. Fujii, Y. Arai, H. Asama, and I. Endo. Multilayered reinforcement learning for

complicated collision avoidance problems. In International Conference on Robotics

and Automation (ICRA), volume 3, pages 2186–2191. IEEE, 1998. 146, 148

[39] K. Ghonasgi, R. Mirsky, B. Masetty, S. Narvekar, A. Haith, A. Deshpande, and

P. Stone. Leveraging reinforcement learning for human motor skill acquisition. In

Social AI for Human-Robot Interactions of Human-Care Service Robots Workshop in

the International Conference on Intelligent Robots and Systems (IROS), 2020. 165,

166

[40] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization,

pages 2093–2229. Springer, 1998. 136

179

[41] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

136, 159

[42] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural

Information Processing Systems (NIPS), pages 2672–2680, 2014. 131

[43] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu. Automated

curriculum learning for neural networks. In International Conference on Machine

Learning (ICML), 2017. 154

[44] D. T. Green, T. J. Walsh, P. R. Cohen, and Y.-H. Chang. Learning a skill-teaching cur-

riculum with dynamic Bayes nets. In Innovative Applications of Artificial Intelligence

(IAAI), 2011. 156, 157

[45] M. C. Green, B. Sergent, P. Shandilya, and V. Kumar. Evolutionarily-curated curricu-

lum learning for deep reinforcement learning agents. In AAAI Reinforcement Learning

in Games Workshop, 2019. 171

[46] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz. Policy shap-

ing: Integrating human feedback with reinforcement learning. In Advances in Neural

Information Processing Systems (NIPS), pages 2625–2633, 2013. 142

[47] Halfbrick Studios. Fruit ninja, Apr 2010. 166

[48] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):

10–18, 2009. 57

[49] J. Hanna, P. Thomas, P. Stone, and S. Niekum. Data-efficient policy evaluation

180

through behavior policy search. In International Conference on Machine Learning

(ICML), August 2017. 151

[50] J. P. Hanna and P. Stone. Grounded action transformation for robot learning in

simulation. In Association for the Advancement of Artificial Intelligence, pages 3834–

3840, 2017. 170

[51] I.-A. Hosu and T. Rebedea. Playing Atari games with deep reinforcement learning and

human checkpoint replay. In Workshop on Evaluating General-Purpose AI (EGPAI),

2016. 124, 144

[52] A. Iglesias, P. Mart́ınez, and F. Fernández. An experience applying reinforcement

learning in a web-based adaptive and intelligent educational system. Informatics in

Education, 2:223–240, 2003. 156

[53] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández. Learning teaching strategies in an

adaptive and intelligent educational system through reinforcement learning. Applied

Intelligence, 31(1):89–106, 2009. 156

[54] B. Ivanovic, J. Harrison, A. Sharma, M. Chen, and M. Pavone. Barc: Backward

reachability curriculum for robotic reinforcement learning. In International Conference

on Robotics and Automation (ICRA), pages 15–21. IEEE, 2019. 124, 131

[55] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In Inter-

national Conference on Learning Representations (ICLR), 2017. 132

[56] V. Jain and T. Tulabandhula. Faster reinforcement learning using active simulators.

In NIPS Workshop on Teaching Machines, Robots, and Humans, 2017. 124, 137

[57] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM

Transactions on Information Systems (TOIS), 20(4):422–446, 2002. 53

181

[58] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-paced curriculum

learning. In Association for the Advancement of Artificial Intelligence (AAAI), 2015.

155

[59] S. Kalyanakrishnan, Y. Liu, and P. Stone. Half field offense in RoboCup soccer: A

multiagent reinforcement learning case study. In RoboCup-2006: Robot Soccer World

Cup X, volume 4434 of Lecture Notes in Artificial Intelligence, pages 72–85. Springer

Verlag, Berlin, 2007. ISBN 978-3-540-74023-0. 40, 41

[60] A. Karpathy and M. Van De Panne. Curriculum learning for motor skills. In Canadian

Conference on Artificial Intelligence, pages 325–330. Springer, 2012. 146, 149

[61] F. Khan, B. Mutlu, and X. Zhu. How do humans teach: On curriculum learning and

teaching dimension. In Advances in Neural Information Processing Systems (NIPS),

pages 1449–1457, 2011. 124, 142

[62] T.-H. Kim and J. Choi. Screenernet: Learning self-paced curriculum for deep neural

networks. arXiv preprint arXiv:1801.00904, 2018. 123, 124

[63] W. B. Knox and P. Stone. Interactively shaping agents via human reinforcement: The

TAMER framework. In International Conference on Knowledge Capture, 2009. 142

[64] W. B. Knox and P. Stone. Reinforcement learning from simultaneous human and MDP

reward. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pages 475–482, 2012. 142

[65] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning do-

mains using skill chaining. In Advances in Neural Information Processing Systems,

2009. 35, 75

[66] A. Lazaric. Transfer in reinforcement learning: a framework and a survey. In Rein-

forcement Learning, pages 143–173. Springer, 2012. 1, 14

182

[67] A. Lazaric and M. Restelli. Transfer from multiple MDPs. In Advances in Neural

Information Processing Systems (NIPS), 2011. 14

[68] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch reinforcement

learning. In International Conference on Machine Learning (ICML), pages 544–551,

2008. 14, 50

[69] S. Y. Lee, C. Sungik, and S.-Y. Chung. Sample-efficient deep reinforcement learning

via episodic backward update. In Advances in Neural Information Processing Systems

(NeurIPS), pages 2110–2119, 2019. 124, 126

[70] R. Loftin, B. Peng, J. MacGlashan, M. L. Littman, M. E. Taylor, J. Huang, and

D. L. Roberts. Learning behaviors via human-delivered discrete feedback: modeling

implicit feedback strategies to speed up learning. Autonomous Agents and Multi-Agent

Systems, 30(1):30–59, 2016. 142, 143

[71] P. MacAlpine and P. Stone. Overlapping layered learning. Artificial Intelligence, 254:

21–43, 2018. 19, 22, 124, 141

[72] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor,

and M. L. Littman. Interactive learning from policy-dependent human feedback. In

International Conferences on Machine Learning (ICML), 2017. 142

[73] S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement

learning via clustering. In Proceedings of the Twenty-First International Conference

on Machine Learning, pages 560–567, 2004. 33

[74] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher-student curriculum learn-

ing. IEEE Transactions on Neural Networks and Learning Systems, 2017. 124, 135

183

[75] A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learn-

ing using diverse density. In Proceedings of the Eighteenth International Conference

on Machine Learning, pages 361–368, 2001. 33

[76] I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic discovery of sub-goals in

reinforcement learning. In 13th European Conference on Machine Learning, pages

295–306. Springer, 2002. 33

[77] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level con-

trol through deep reinforcement learning. Nature, 518(7540):529, 2015. 1, 13, 109,

123, 149

[78] T. Mu, S. Wang, E. Andersen, and E. Brunskill. Combining adaptivity with progression

ordering for intelligent tutoring systems. In Proceedings of the Fifth Annual ACM

Conference on Learning at Scale, pages 1–4, 2018. 164

[79] T. Mu, A. Jetten, and E. Brunskill. Towards suggesting actionable interventions for

wheel-spinning students. In Proceedings of The 13th International Conference on Ed-

ucational Data Mining (EDM), 2020. 164

[80] S. Narvekar and P. Stone. Learning curriculum policies for reinforcement learning. In

International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

May 2019. 83, 124, 135, 136, 139

[81] S. Narvekar and P. Stone. Generalizing curricula for reinforcement learning. In 4th

Lifelong Learning Workshop at ICML, 2020. 104

[82] S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone. Source task creation for curriculum

learning. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), Singapore, 2016. 27, 120, 121, 137

184

[83] S. Narvekar, J. Sinapov, and P. Stone. Autonomous task sequencing for customized

curriculum design in reinforcement learning. In International Joint Conference on

Artificial Intelligence (IJCAI), volume 147, page 149, 2017. xvi, 22, 24, 68, 91, 95,

124, 134, 135, 146

[84] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone. Curriculum

learning for reinforcement learning domains: A framework and survey. Journal of

Machine Learning Research, 21(181):1–50, 2020. 19, 116

[85] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations:

Theory and application to reward shaping. In International Conference on Machine

Learning (ICML), volume 99, pages 278–287, 1999. 16

[86] T. Nguyen, T. Silander, and T. Y. Leong. Transferring expectations in model-based

reinforcement learning. In Advances in Neural Information Processing Systems, pages

2555–2563, 2012. 50

[87] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. The International

Journal Of Production Research, 26(1):35–62, 1988. 136

[88] B. Peng, J. MacGlashan, R. Loftin, M. L. Littman, D. L. Roberts, and M. E. Taylor.

Curriculum design for machine learners in sequential decision tasks. IEEE Transactions

on Emerging Topics in Computational Intelligence, 2(4):268–277, 2018. 124, 143

[89] G. B. Peterson. A day of great illumination: B. F. Skinner’s discovery of shaping.

Journal of the Experimental Analysis of Behavior, 82(3):317–328, 2004. 1

[90] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement

learning. In International Conference on Machine Learning (ICML), pages 2817–2826,

2017. 124, 128

185

[91] J. R. Quinlan et al. Learning with continuous classes. In 5th Australian joint conference

on artificial intelligence, volume 92, pages 343–348. World Scientific, 1992. 57

[92] S. Racaniere, A. Lampinen, A. Santoro, D. Reichert, V. Firoiu, and T. Lillicrap. Au-

tomated curriculum generation through setter-solver interactions. In International

Conference on Learning Representations (ICLR), 2019. 124, 131

[93] A. N. Rafferty, E. Brunskill, T. L. Griffiths, and P. Shafto. Faster teaching via pomdp

planning. Cognitive Science, 40(6):1290–1332, 2016. 157, 164

[94] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine. Epopt: Learning robust

neural network policies using model ensembles. In Proceedings of the International

Conference on Learning Representations (ICLR), 2017. 170

[95] A. Ramachandran and B. Scassellati. Adapting difficulty levels in personalized robot-

child tutoring interactions. In Workshop at the AAAI Conference on Artificial Intelli-

gence, 2014. 158

[96] Z. Ren, D. Dong, H. Li, and C. Chen. Self-paced prioritized curriculum learning

with coverage penalty in deep reinforcement learning. IEEE Transactions on Neural

Networks and Learning Systems, 29(6):2216–2226, 2018. 123, 124

[97] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. van de Wiele, V. Mnih,

N. Heess, and J. T. Springenberg. Learning by playing solving sparse reward tasks from

scratch. In International Conference on Machine Learning (ICML), pages 4344–4353,

2018. 124, 132, 145

[98] M. B. Ring. Child: A first step towards continual learning. Machine Learning, 28(1):

77–104, 1997. 152

[99] D. Robles and S. M. Lucas. A simple tree search method for playing ms. pac-man.

186

In 2009 IEEE Symposium on Computational Intelligence and Games, pages 249–255.

IEEE, 2009. 38

[100] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evolutionary

computation, 5(1):1–29, 1997. 128

[101] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive neural networks. arXiv

preprint arXiv:1606.04671, 2016. 146, 147

[102] P. Ruvolo and E. Eaton. ELLA: An efficient lifelong learning algorithm. In Interna-

tional Conference on Machine Learning (ICML), 2013. 152

[103] P. Ruvolo and E. Eaton. Active task selection for lifelong machine learning. In Asso-

ciation for the Advancement of Artificial Intelligence (AAAI), 2013. 153

[104] S. Schaal. Learning from demonstration. In Advances in Neural Information Processing

Systems (NIPS), pages 1040–1046, 1997. 151

[105] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approxima-

tors. In International Conference on Machine Learning (ICML), 2015. 104, 105, 125,

131

[106] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In

International Conference on Learning Representations (ICLR), 2016. 21, 123, 124

[107] J. Schmidhuber. Powerplay: Training an increasingly general problem solver by con-

tinually searching for the simplest still unsolvable problem. Frontiers in Psychology,

4:313, 2013. 121

[108] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 11

187

[109] K. Shao, Y. Zhu, and D. Zhao. Starcraft micromanagement with reinforcement learning

and curriculum transfer learning. IEEE Transactions on Emerging Topics in Compu-

tational Intelligence, 2018. 145, 146

[110] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of

go with deep neural networks and tree search. Nature, 529(7587):484, 2016. 1, 13, 115,

127, 129

[111] O. Simsek and A. G. Barto. Using relative novelty to identify useful temporal ab-

stractions in reinforcement learning. In Proceedings of the Twenty-First International

Conference on Machine Learning, pages 751–758, 2004. 33

[112] J. Sinapov, S. Narvekar, M. Leonetti, and P. Stone. Learning inter-task transferability

in the absence of target task samples. In International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 725–733, 2015. 51, 146, 147

[113] B. F. Skinner. Reinforcement today. American Psychologist, 13(3):94, 1958. 1

[114] V. Soni and S. Singh. Using homomorphisms to transfer options across continuous

reinforcement learning domains. In American Association for Artificial Intelligence

(AAAI), 2006. 14

[115] R. K. Srivastava, B. R. Steunebrink, and J. Schmidhuber. First experiments with pow-

erplay. Neural Networks, 41:130 – 136, 2013. Special Issue on Autonomous Learning.

121

[116] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving neural network agents in

the nero video game. In IEEE Symposium on Computational Intelligence and Games

(CIG), Piscataway, NJ, 2005. 124, 141

188

[117] P. Stone and M. Veloso. Learning to solve complex planning problems: Finding useful

auxiliary problems. In AAAI Fall Symposium on Planning and Learning, pages 137–

141, 1994. 121

[118] H. B. Suay and S. Chernova. Effect of human guidance and state space size on in-

teractive reinforcement learning. In International Conference on Robot and Human

Interactive Communication (RO-MAN), pages 1–6, 2011. 142

[119] K. Subramanian, C. L. Isbell Jr, and A. L. Thomaz. Exploration from demonstration

for interactive reinforcement learning. In International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 447–456, 2016. 142

[120] S. Sukhbaatar, Z. Li, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic mo-

tivation and automatic curricula via asymmetric self-play. In International Conference

on Learning Representations (ICLR), 2018. 124, 127, 128

[121] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

9, 11, 12, 38, 42, 54, 151

[122] R. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211,

1999. 31, 33

[123] M. Svetlik, M. Leonetti, J. Sinapov, R. Shah, N. Walker, and P. Stone. Automatic

curriculum graph generation for reinforcement learning agents. In Association for the

Advancement of Artificial Intelligence (AAAI), pages 2590–2596, 2017. xiv, xvi, xxi,

14, 16, 22, 24, 91, 97, 98, 99, 100, 101, 124, 138

[124] I. Szita and A. Lõrincz. Learning to play using low-complexity rule-based policies:

Illustrations through ms. pac-man. Journal of Artificial Intelligence Research, 30:659–

684, 2007. 38

189

[125] M. E. Taylor. Assisting transfer-enabled machine learning algorithms: Leveraging

human knowledge for curriculum design. In The AAAI Spring Symposium on Agents

that Learn from Human Teachers, 2009. 140

[126] M. E. Taylor and P. Stone. Behavior transfer for value-function-based reinforce-

ment learning. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and

M. Wooldridge, editors, International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 53–59, New York, NY, 2005. ACM Press. xvi,

13, 14

[127] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A

survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009. xvi, 1, 14, 16,

17

[128] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task mappings for

temporal difference learning. Journal of Machine Learning Research, 8(1):2125–2167,

2007. 14, 15

[129] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous transfer for reinforcement

learning. In International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2008. 14

[130] M. E. Taylor, N. Carboni, A. Fachantidis, I. Vlahavas, and L. Torrey. Reinforcement

learning agents providing advice in complex video games. Connection Science, 26(1):

45–63, 2014. 37, 38, 97

[131] G. Tesauro. Temporal difference learning and td-gammon. Communications of the

ACM, 38(3):58–68, 1995. 115, 127, 129

[132] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor. A deep hierarchical

190

approach to lifelong learning in minecraft. In Association for the Advancement of

Artificial Intelligence (AAAI), pages 1553–1561, 2017. 146, 149

[133] A. L. Thomaz and C. Breazeal. Reinforcement learning with human teachers: Evidence

of feedback and guidance with implications for learning performance. In Association

for the Advancement of Artificial Intelligence (AAAI), volume 6, pages 1000–1005,

2006. 142

[134] S. Thrun. Lifelong learning algorithms. In S. Thrun and L. Pratt, editors, Learning

to Learn, pages 181–209. Kluwer Academic Publishers, Norwell, MA, USA, 1998. 119

[135] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, J. Agapiou, et al. Strate-

gic attentive writer for learning macro-actions. In Advances in Neural Information

Processing Systems (NIPS), pages 3486–3494, 2016. 146, 148

[136] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.

Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature, pages 1–5, 2019. 124, 127, 129

[137] L. S. Vygotsky. Mind in Society: Development of Higher Psychological Processes.

Harvard University Press, 1978. 140

[138] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao. From

few to more: Large-scale dynamic multiagent curriculum learning. In Association for

the Advancement of Artificial Intelligence (AAAI), pages 7293–7300, 2020. 129, 146,

150

[139] Y. Wang. Inducing model trees for continuous classes. In Proceedings of the European

Conference on Machine Learning, 1997. 57

[140] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992. 11

191

[141] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College,

Cambridge, 1989. 156

[142] D. Weinshall and D. Amir. Theory of curriculum learning, with convex loss functions.

arXiv preprint arXiv:1812.03472, 2018. 171

[143] D. Weinshall, G. Cohen, and D. Amir. Curriculum learning by transfer learning:

Theory and experiments with deep networks. In International Conference on Machine

Learning (ICML), pages 5235–5243, 2018. 171

[144] E. Wiewiora, G. W. Cottrell, and C. Elkan. Principled methods for advising reinforce-

ment learning agents. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 792–799, 2003. 16

[145] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning:

a hierarchical bayesian approach. In International Conference on Machine Learning

(ICML), pages 1015–1022. ACM, 2007. 152

[146] B. P. Woolf. Building Intelligent Interactive Tutors: Student-centered Strategies for

Revolutionizing e-Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2007. 156

[147] Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic

curriculum learning. In International Conference on Learning Representations (ICLR),

2017. 19, 124, 133

[148] B.-H. Yang and H. Asada. Progressive learning and its application to robot impedance

learning. IEEE Transactions on Neural Networks, 7(4):941–952, 1996. 146, 148

[149] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, and H. Zha. Cm3: Cooperative multi-

goal multi-stage multi-agent reinforcement learning. In International Conference on

Learning Representations (ICLR), 2020. 129, 146, 150

192

[150] M. Zimmer, Y. Boniface, and A. Dutech. Developmental reinforcement learning

through sensorimotor space enlargement. In International Conference on Development

and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 33–38. IEEE, 2018. 146,

148

193

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Overview

	Background
	Reinforcement Learning
	Markov Decision Processes
	Function Approximation

	Transfer Learning
	Methods
	Evaluation Metrics

	Summary

	The Curriculum Learning Method
	Curricula
	Curriculum Learning
	Evaluating Curricula
	Summary

	Task Generation
	A Space of Tasks
	Methods
	Task Simplification
	Promising Initializations
	Mistake-Driven Subtasks
	Option-based Subgoals
	Task-based Subgoals
	Composite Subtasks

	Ms. Pac-Man Experiments
	Maze Simplification Task
	Avoiding Ghosts Task

	Half Field Offense (HFO) Experiments
	Space of Tasks
	Manual Sequencing Process
	2v2 HFO Curriculum
	Extension to 2v3 HFO

	Summary

	Measuring Inter-task Transferability
	Modeling Task Transferability
	Notation and Problem Formulation
	Predicting the Benefit of Transfer
	Evaluation

	Experimental Domain and Methodology
	Experimental Results
	The Transferability Matrix
	Regression Model Performance
	Source Task Ranking and Selection
	Multi-stage Transfer

	Summary

	Heuristic-based Approaches for Sequencing
	Method Intuition and Overview
	Algorithm Details
	Experiments
	Learning Agent Descriptions
	Curriculum Generation and Results

	Summary

	Learning-based Approaches for Sequencing
	Curriculum Generation as an MDP
	Representing CMDP State Space
	Discrete State Representations
	Continuous State Representations

	Experimental Setup
	Gridworld Experiments
	CMDP Description
	CMDP State Space Representations
	Results and Discussion

	Ms. Pac-Man Experiments
	Learning Agent Description
	CMDP Description
	CMDP State Space Representations
	Results and Discussion

	Summary

	Generalizing Curricula
	Curriculum Generalization
	CMDP States and Goals
	Architecture

	Gridworld Navigation Domain
	Teacher (CMDP) Agent Description
	Experimental Results
	Summary

	Taxonomy of CL Methods and Related Work
	Dimensions of Categorization
	Task Generation
	Sequencing
	Sample Sequencing
	Co-learning
	Reward and Initial/Terminal State Distribution Changes
	No Restrictions
	Human-in-the-Loop Curriculum Generation

	Transfer Learning
	Related Paradigms in Reinforcement Learning
	Curricula in Supervised Machine Learning
	Algorithmically Designed Curricula in Education
	Summary

	Conclusion and Future Work
	Contributions
	Future Work
	Human Studies
	Fully Automated Task Creation
	Transferring and Combining Different Types of Knowledge
	Generalizing Curricula to Different Agents
	Extending CMDPs to Black Box Agents
	Sim-to-Real Curriculum Learning
	Combining Task Generation and Sequencing
	Theoretical Analysis

	Concluding Remarks

	Acronyms
	Bibliography

