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ABSTRACT

Superpixel generation is a common preprocessing step in vision
processing aimed at dividing an image into non-overlapping re-
gions. Simple Linear Iterative Clustering (SLIC) is a commonly
used superpixel algorithm that offers a good balance between per-
formance and accuracy. However, the algorithm’s high computa-
tional and memory bandwidth requirements result in performance
and energy efficiency that do not meet the requirements of real-
time embedded applications. In this work, we explore the design of
an energy-efficient superpixel accelerator for real-time computer
vision applications. We propose a novel algorithm, Subsampled
SLIC (S-SLIC), that uses pixel subsampling to reduce the memory
bandwidth by 1.8x. We integrate S-SLIC into an energy-efficient
superpixel accelerator and perform an in-depth design space explo-
ration to optimize the design. We completed a detailed design in a
16nm FinFET technology using commercially-available EDA tools
for high-level synthesis to map the design automatically from a C-
based representation to a gate-level implementation. The proposed
S-SLIC accelerator achieves real-time performance (30 frames per
second) with 250 better energy efficiency than an optimized SLIC
software implementation running on a mobile GPU.

1. INTRODUCTION

The recent improvements in mobile processing capability has al-
lowed computer vision to be deployed in mobile and embedded
devices for applications such as autonomous vehicles, augmented
reality, and mobile robotics. The computational requirements for
such vision applications is growing rapidly due to the increased
resolution of camera sensors, such as 1920 x 1080 full HD imag-
ing.

Many computer vision applications use a class of segmentation
algorithms known as Superpixel (SP) segmentation. SP segmen-
tation groups the pixels of an image into atomic groups based on
spatial locality and characteristics such as color. These regions can
be used to reduce the complexity of image processing tasks later in
the computer vision pipeline. Consequently, SP segmentation has
become a key component in many computer vision algorithms such
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as object classification, depth estimation, and region segmentation.

Simple Linear Iterative Clustering (SLIC) has become one of the
most commonly used SP algorithms [1]. SLIC provides a good
balance between accuracy and computational complexity for many
applications. However, the recent increases in camera resolutions
make it difficult for SP algorithms, including SLIC, to achieve real-
time performance (30 frames per second or fps). While SLIC seg-
mentation can significantly reduce the complexity of downstream
processing, the SLIC algorithm itself operates directly on raw data.
SLIC takes 5500ms to process a 1920 x 1080 image on an Intel i7-
4600M CPU, 1600ms on the mobile GPU of an NVIDIA Tegra K1,
and 22.6ms on the high-powered NVIDIA Tesla K20. While the
big discrete GPU (K20) can meet the real-time requires of 33ms
(30 fps), its 80W power consumption far exceeds the budget for
mobile computing platforms.

To achieve real-time mobile performance for SLIC-based SP seg-
mentation, we have developed both a new algorithm named sub-
sampled SLIC (S-SLIC) and an S-SLIC hardware accelerator for
mobile systems. We use subsampling to reduce the computational
and memory bandwidth requirements of SLIC. Our accelerator
provides efficient computation of superpixels at 30 fps while pro-
viding 250 % better energy efficiency than a SLIC implementation
on a mobile GPU. The key contributions of this work are:

e We propose an efficient SLIC algorithm named subsampled
SLIC (S-SLIC) and explore different subsampling mecha-
nisms to reduce the computational and memory bandwidth
requirements.

e We design, perform an in-depth design space exploration,
and analyze design trade-offs for a S-SLIC accelerator.

e We present an evaluation of our design in a 16nm FinFET
technology using a systematic framework consisting of (i)
the Mentor Catapult high-level synthesis tool to automati-
cally generate RTL from a synthesizable C-based implemen-
tation, (ii) Synopsys Design Compiler for logic synthesis,
and (iii) Synopsys Primetime-PX to perform power analysis.

2. SLIC SUPERPIXELS

SLIC is an adaptation of k-means for fast superpixel (SP) gen-
eration [1]. Figure 1a shows the algorithm’s flowchart. The user
specifies the number of superpixels K the algorithm is to produce.
The algorithm first converts an image composed of N pixels to the
CIELab color space. Starting from [r, g, b] in the [0, 1] range, this is
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Figure 1: Flowcharts of SLIC algorithms.
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where M is a 3 x 3 matrix and [X,,Y,,Z,] is the reference white.
The SP centers are initialized on a regular grid, with a spacing of
S = /N/K pixels. The i-th SP is identified by [Li,a,-,bi7x,~7y,-]T,
where the first three coordinates represent the average color of the
pixels of the SP and the last two coordinates its center. Each SP
center is then moved to the local minimum of the gradient image in
a 3 x 3 neighborhood, to avoid initialization on an edge or a noisy
pixel.

At each iteration, SLIC loops over all the SPs. For each of them,
it computes the color-space distance of each pixel within a 25 x 2§
rectangle centered in the SP as:

d=/d2+m?.(a2/s)’, (5)

where d, and d; are respectively the color and spatial distance of
the pixel from the SP, while m balances the importance of these two
factors (generally set between 1 and 40).

Each pixel is assigned to the SP with smallest distance d. Two
memory buffers (as large as the image) are required to store the
minimum distance and the corresponding SP for each pixel. Once
all the SPs have been considered, the 5D coordinates of each SP
are recomputed using the current member pixels. SLIC iterates un-
til either the change in the SPs is below a threshold or the maximum
number of iterations is reached. At convergence, a final step is per-
formed to enforce the connectivity, ensuring that any stray pixels
that may still be disjoint are assigned to the closest large SP.

3. SUBSAMPLED SLIC

Partially inspired by the stochastic gradient descent [2] and OS-
EM[4] approaches, we developed S-SLIC, a new way to compute

SLIC superpixels that is more efficient than the original SLIC. At
each iteration, we use a subset of the image pixels for computing
the SP centers, which allows us to update each SP with a fraction of
the distance computations and memory bandwidth while still com-
puting the SP location accurately.

Choosing the proper subsampling strategy is fundamental to guar-
anteeing the convergence of the iterative algorithm [4, 2]. We pri-
marily consider a pixel perspective architecture (PPA), shown in
Figure 1b. The image pixels are split into subsets of equal size.
At each iteration, a different subset is used to update the SPs. The
subsets are traversed in a round-robin fashion to guarantee that all
image pixels are considered. We also examined a SP Center Per-
spective Architecture (CPA) in which the SPs are split into subsets
of equal size. At each iteration, a different subset is used to update
the SPs. The SP subsets are traversed in round-robin order. As
discussed in Section 4, the two methods, the PPA and the CPA, dif-
fer in the amount of data required from DRAM and the amount of
computation. We focus primarily on the pixel perspective approach
as our results show that it is more efficient.

By adopting the proper subsampling strategy, S-SLIC leads to
improved performance in two key metrics, as shown in Figure 2.
The first is the undersegmentation error (USE) [1] which considers
the superposition of the computed and ground truth SPs. USE is
higher when the location and size of the computed SPs differ sig-
nificantly from the ground truth. Figure 2a shows USE for SLIC
and two variants of the pixel perspective S-SLIC, when dividing
the image pixels into two (S-SLIC (0.5)) or four (S-SLIC (0.25))
equally sized subsets. The figure shows that S-SLIC achieves the
same USE of SLIC in a 25% shorter time.

The second metric is the boundary recall [1], which is a measure
of how well the SP boundaries align with the ground truth. The
higher the boundary recall, the more the SP boundaries match the
ground truth. Figure 2b shows that for the same boundary recall,
S-SLIC (0.5) has a 15% shorter execution time than SLIC. Thus,
S-SLIC provides the same error rates for a lower execution time.

4. SLIC ACCELERATOR

4.1 Analysis of S-SLIC Algorithm

Table 1 shows the time breakdown of the proposed PPA of S-
SLIC measured on an Intel Core i17-4600M CPU using the Berke-
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Figure 2: CPU Performance of SLIC and pixel perspective S-SLIC for subsampling ratios 0.5 and 0.25. The test corpus includes 100 images

from the Berkeley segmentation dataset with K = 900 superpixels.

Table 1: Time breakdown of SLIC and S-SLIC implementations.

Color
Conversion | Distance + Min | Center Update | Other
SLIC 23.4% 65.9% 10.2% 0.5%
S-SLIC| 18.7% 59.7% 17.9% 3.7%

ley benchmark [6]. As in Table 1, the most dominant process in
S-SLIC is the computation of the color-space distance and the as-
signment to an SP which takes 59.7% of total processing time.
The second dominant phase is the center updating process (17.9%)
which becomes a much more time consuming process in S-SLIC
compared to the original SLIC (10.2%) since S-SLIC updates the
centers more frequently than the original SLIC with the same num-
ber of full iterations. The third dominant phase is color conversion
which takes 18.7% of total processing time. The remaining ex-
ecution (3.7%) includes the connectivity enforcement, and some
initialization tasks shown in Figure 1, are not covered by the pro-
posed accelerator in Section 4.3

4.2 Center and Pixel Perspective Architecture

Figure 3 shows an overview of the CPA and the PPA. The CPA
in Figure 3 first reads a 2Sx2S 2D patch surrounding a given SP
center point. Next, it calculates the color-space distances between
the center and the pixels in the 2D patch. After the distance com-
putation over all the SP center points, each pixel is assigned to the
SP cluster whose center is the smallest distance away. In contrast,
the PPA reads the 9 nearest centers for a given pixel to calculate
the distances, where the the 9 centers can be found by using the
closest SP centers at the start of processing. 9 is the minimum
number of nearest centers that can be considered to cover all pos-
sible pairs of center and pixel in the original CPA SLIC. Table 2
summarizes computational complexity and required memory traf-
fic of the two approaches. Since the CPA needs large overlapped
image area, 2SxS, between two adjacent 2Sx2S patches, the in-
put image data must be read multiple times per iteration which
results in higher memory bandwidth (more than 300MB/iteration
in 1080p). However, the PPA reads the image once per iteration,
needing 3x lower memory bandwidth than CPA, 100MB per iter-
ation in 1080p. The reduction in memory bandwidth comes at the
expense of more computational intensity. The PPA needs 2.25x
more operations for computing distances than the CPA, because the
PPA needs nine color-space distance calculations for a given pixel,
compared to four distance calculations required on average by the
CPA. The PPA shows almost same but slightly better SLIC accu-
racy than the CPA since the PPA considers more distance values in
SP decision. A simple energy model provides insight into which
architectural approach would minimize energy consumption. We
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Figure 3: Pixel (PPA) and center (CPA) perspective architectures.

Table 2: Analysis of CPA and PPA implementations.

[ | CPA | PPA |
Memory Bandwidth | 318 MB/iteration 100 MB/iteration
Operation count 58M OPs/iteration | 130M OPs/iteration

assume the average energy per arithmetic operation in the SLIC al-
gorithm is similar to the energy of an 8b integer add and that the
energy of an 8b DRAM reference is 2500x larger the energy of an
8b add [3]. Based on this simple model, we expect total energy per
iteration for the two approaches in Table 1 to be dominated by the
energy of accessing data from DRAM; thus we adopt the lower-
bandwidth PPA approach for the SLIC accelerator design shown in
Figure 1b.

4.3 Overall Hardware Architecture

The proposed hardware accelerator architecture shown in Fig-
ure 4 consists of 5 components: a Finite State Machine (FSM) host
controller, a fixed-point color conversion unit with look-up tables
(LUTSs) for efficient power-function implementation, four scratch
pad memories (three for storing color channels and one for storing
SP index results), a Cluster Update Unit to accelerate the minimum
and color-distance operations, and a Center Update Unit to find new
center points for each iteration.

The first step in the S-SLIC algorithm is color conversion. In-
put RGB image data is loaded from external memory in raster-scan
order where single-byte RGB values per pixel are stored contigu-
ously. R, G, and B input colors are loaded into the channel mem-
ories 1, 2, and 3, respectively. Once pixel values are loaded, the
color conversion unit starts reading from the scratch pads to fetch
each pixel’s RGB values. The color conversion unit converts from
RGB to CIELAB color space using LUTs, storing output values L,
a, and b back into channel memories 1, 2, and 3, respectively. After
color conversion is run on all pixels in the image, the FSM moves
the S-SLIC accelerator to the next step.

Next, the accelerator performs the initial assignment of the 9
closest SP centers for a given pixel. Although SLIC executes this
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Figure 4: S-SLIC accelerator architecture.

step with each image, our S-SLIC implementation precomputes
these values. We found that statically assigning these values has
minimal effect on the accuracy of the algorithm. The image is
statically split into tiled regions based on the initial 9 closest SPs.
These regions are computed offline and stored in external memory.
External memory also holds a copy of the pixel SP assignments
initialized to zero.

The next step is to update SPs. First, tile regions are loaded into
scratch pad memories: the L, a, and b data values are written into
channel memories 1, 2, and 3, respectively, while the SP indices are
written into the index memory. The color and spatial information
for the 9 initial closest SPs are loaded into the center registers from
external memory based on the tile being processed. The current
accumulations for the 9 SPs in the cluster update unit are loaded
from the center update unit. Once loaded, the FSM instructs the
cluster update unit to begin processing.

The cluster update unit starts by loading pixel data into pixel
registers: color values are loaded from the scratch pads while the
pixel location itself is supplied by the FSM. Five 8-bit registers are
needed for the current pixel’s data and 45 (5x9) registers for the
cluster center data. While a tile is being processed only the five §-
bit registers are updated for each pixel. The color distance unit then
computes the color distance and spatial distance of the pixel from
the center using Equation 5 based on these registers. Each unit ac-
cepts five registers per pixel and five registers for a single center
and returns the 8-bit distance. Once all nine color distance calcu-
lations are computed, they are passed to the 9:1 minimum function
unit, returning the SP center index associated with the smallest dis-
tance. This index is used to select the sigma register for accumulat-
ing the pixel values for a SP. Each sigma register holds six fields:
the accumulated L, a, and b color information, the accumulated x,y
location information, and the number of pixels assigned to the as-
sociated SP. Once the correct sigma register is selected, each field
is updated with the new pixel information, requiring six additions.
The SP index for the pixel is also written back to the index memory
scratch pad.

Once all pixels in a tile have been processed by the cluster update
unit, SP accumulations are stored back to the center update unit and
the index memory scratchpad is stored back to external memory.
The cluster update unit then moves to the next tile. After the cluster
update unit processes the entire image, the center update unit begins
computing the new centers for each SP. The center update unit
iterates over its sigma registers to compute the average for each SP.
The resulting new centers are written to the external memory for
use in the next iteration of the cluster update.

The system continues in this manner until the desired number of
iterations is reached or theof difference between the old and new
SP centers is below a threshold. At this point, the final assignment
for each pixel will be stored in the external memory.
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Figure 5: S-SLIC accelerator Evaluation Methodology.
5. EXPERIMENTAL FRAMEWORK

The proposed S-SLIC accelerator design was prototyped with a
16nm FinFET standard-cell library using the methodology shown
in Figure 5. We designed the S-SLIC accelerator in synthesizable
C using hardware libraries and used the high-level synthesis tool
Catapult to generate RTL. We then used Synopsys Design Com-
piler to perform logic synthesis, targeting 1.6GHz at 0.72V. The
scratchpad memories in the proposed accelerator were realized us-
ing synchronous RAMs with separate read-write ports. We used
Synopsys VCS to simulate the netlist and extract switching activity
information (SAIF), which was then used to perform power anal-
ysis in Synopsys Primetime-PX assuming 0.72V operation. The
design was highly parameterized to allow in-depth design space
exploration of the accelerator by varying the number of cores, num-
ber of SIMD ways, memory size, and bit-widths of different oper-
ations. The HLS-based implementation, design space exploration,
logic synthesis, and power analysis steps took 3-4 person weeks
of design effort. In our experiments, we used 200 images from the
Berkeley image segmentation dataset [6]. For baseline comparison,
we ran the SLIC algorithm on two different GPUs: Tegra K1 (mo-
bile GPU) and Tesla K20 (server class GPU). We used CPU Intel
Core 17-4600M CPU to evaluate the run time versus error tradeoffs
for the SLIC and S-SLIC algorithms.

6. EVALUATION

To optimize the performance of the S-SLIC accelerator, we per-
formed a design space exploration to determine the proper bit-width
for data, computational configuration of the cluster update and size
of memory buffers for computation. These three key items have a
direct effect on performance, energy, and area of the accelerator.

6.1 Bit Width Exploration

The number of bits used to represent the data is a critical deci-
sion for energy-efficient accelerator design. We performed an anal-
ysis of the error in the output given various data sizes and types,
analyzing both undersegmentation error and boundary recall. S-
SLIC error does not increase noticeably as numerical precision is
reduced from 64-bit floating-point to 8-bit fixed-point. At 8-bit
fixed point representation we see only 0.003 larger undersegmen-
tation error, and only 0.001 smaller boundary recall, compared to
the 64-bit double-precision S-SLIC implementation. The primary
reason for the robustness of S-SLIC to bit width is that the S-SLIC
accuracy is determined by the relative color-distance comparison
results rather than the absolute color-distance results. Therefore,
even though the 8-bit fixed-point generates large error in the dis-
tance values, it achieves small differences in the results from the
distance comparison. At 7-bit precision and below, the increase



Table 3: Cluster Update Unit configurations.

Distance calculator 1 way 9 way 1 way 1 way 9 way
Minimum unit 1 way 1 way 9 way 1 way 9 way
Adder unit 1 way 1 way 1 way 6 way 6 way
Area (mm?) 0.0020 | 0.0149 | 0.0023 | 0.0025 | 0.0156
Power (mW) 33 3.6 32 3.25 30.9
Latency (cycles) 27 19 20 22 7
Throughput (pixels/cycle) 1/9 1/9 1/9 1/9 1
Time (ms) 11.8 11.8 11.8 11.8 1.3
Energy (uJ) 38.9 42.5 37.5 38.3 40.6

in error begins to be noticeable. The selection of an 8-bit based
datapath affected the color conversion hardware design. To accom-
modate the 8-bit width, we use a look-up table (LUT) based design
in the color conversion step to achieve better energy-efficiency. We
adopt a 256-entry LUT for the power function used in the 8-bit
RGB to XYZ conversion, (Equation 1), and an 8 component piece-
wise linear LUT approximation of the power function used in the
XYZ to LAB conversion, (Equation 4), presented in Section 2.

6.2 Parallelism Exploration

The Cluster Update Unit performs three primary functions: color
distance calculation, minimum distance computation, and sigma
accumulation updates. The implementation of each function in-
volves design tradeoffs between area and throughput. For exam-
ple, an iterative unit can take multiple cycles to process each pixel
or can be parallelized to support single-pixel-per-cycle throughput.
The color distance calculation can compute all 9 distance functions
in parallel or could time-multiplex the same hardware to iterate
over the 9 calculations. The minimum distance computation could
be implemented using a tree structure with 9 inputs to maximize
parallelism or could iterate over 9 cycles with a single compare
ALU. Finally, for the sigma accumulations, the hardware imple-
mentation must update the color and location accumulations along
with the SP size. This requires 6 additions: 3 for color, 2 for lo-
cation and 1 for SP size. These additions could be computed in
parallel across 6 adders or could be time-multiplexed onto a single
adder over 6 subsequent cycles.

Experimental results for five Cluster Update Unit configurations
are shown in Table 3. For each configuration, we report area,
power, latency, throughput, and computation time and energy for
processing 1 iteration of a 1920x1080 image. The configurations
are named based on the ways of parallelism being exploited. For
example, the 1-1-1 way implementation uses iterative hardware
for each function, achieving a throughput of 9 cycles per pixel.
Meanwhile, the 9-9-6 way implementation exploits parallelism for
all three functions to achieve a throughput of one pixel per cycle.
All configurations use the same synthesizable C++ source code.
Loop unrolling directives are used to control the choice of mapping
each function to either iterative time-multiplexed or parallel fully-
pipelined hardware. HLS tools are used to automatically schedule
and pipeline the computation assuming 1.6 GHz operation with the
latency reported for each configuration.

The most efficient configuration from Table 3 is the fully-pipelined
9-9-6 way design, which optimizes for parallelism at the expense
of higher area. The 9-9-6 way design is 7.8 x higher area and 9.4 x
higher power compared to the 1-1-1 way design. However if offers
9% increase in throughput, which is critical for real-time perfor-
mance. This improved performance causes the energy to increase
only marginally compared to other configurations. The 9-1-1, 1-
9-1, and 1-1-6 way designs have imbalanced throughput, so would
not be chosen for a practical design. However, we included the re-
sults to show the area cost of pipelining each of the three functions.
Due to its energy efficiency and high throughput, we chose the 9-
9-6 way configuration for the Cluster Update Unit architecture.
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Table 4: Performance summary of best S-SLIC configurations.

[ Resolution [ 1920x1080 [ 1280x768 | 640x480 |
Number of SPs (K) 5000 5000 5000
Memory per Channel Buffer 4kB 1kB 1kB
Number of cores 1 1 1
Area 0.066mm? 0.053mm? 0.053mm?
Power 49mW 46mW 50mW
Latency 32.8ms 25.4ms 19.7ms
Throughput 30.5 fps 39.0 fps 50.3 fps
Energy 1.6mJ/frame | 1.17mJ/frame | 0.98mlJ/frame
Perf/Area 461 fps/mm?® 747 fps/mm? 963 fps/mm?®

6.3 Buffer Size Exploration

The final component of the design space exploration is the size
of the buffers for pixel and label data. The S-SLIC accelerator re-
quires 4 memory buffers, one for each color channel and one for
the pixel labels. The buffers are used to hold the color converted
pixels and the cluster updates as well. As the buffers are largely
used to rate-match the data between stages of the algorithm, large
buffers can reduce the rate of DRAM transfers, but require more
energy and area.

Figure 6 shows the execution time per frame as the buffer size per
channel is varied from 1kB to 128kB, for the 9-9-6 cluster configu-
ration with HD resolution and 5,000 superpixels. We assumed that
peak external bandwidth is 256b/cycle and memory latency is 50
cycle latency for this analysis. To achieve real-time performance,
the buffer size must be at least 4kB. As larger buffers provide only
slightly better frame time at the cost of larger area and energy, we
choose 4kB buffers. In the case of the 4kB buffer size, memory
access takes 35% of total execution time.

The overall computation and memory configuration process a
system that achieves 1.6mJ/frame for real-time S-SLIC based seg-
mentation on full HD images. The accelerator architecture can
scale gracefully down to lower resolution image streams by reduc-
ing the buffer sizes and ultimately reducing the clock rate.

Table 4 shows the accelerator parameters and performance on
HD, 720p, and VGA image sizes. The power and energy includes
use of all the units of the S-SLIC accelerator. The power for each
unit is computed using the peak active power from power analysis
in Synopsys Primetime-PX and multiplying by the utilization. We
assume the external memory and scratch pads are at full utilization.

7. ACCELERATOR PERFORMANCE

Table 5 compares a large GPU (NVIDIA Tesla K20), a GPU on a
mobile SOC (NVIDIA TK1), and the proposed S-SLIC accelerator.
The GPUs incorporate large on-chip storage structures (6,320kB in
K20 and 368kB in TK1) to support the general-purpose program-



Table 5: GPU, mobile GPU, and S-SLIC accelerator performance.

Tesla K20 TK1 This Work
Algorithm SLIC SLIC S-SLIC
Resolution 1920% 1080
Number of SPs (K) 5000
Technology 28nm (0.81V) | 28nm (0.81V) 16nm (0.72V)
On-chip memory 6320kB 368kB 20kB
Core count 2496 192 1
Average power 86W 332mW 49mW
Power (normalized) 39W 150mW 50mW
Latency 22.3ms 2713ms 32.8ms
Energy/frame (normalized) 867mlJ/frame 407mJ/frame 1.6mJ/frame

ming model, including register files, scratchpad memory, level-1
cache, and level-2 cache. They also include a large number of
general purpose math units aimed at single and double-precision
floating point (2496 CUDA cores in K20 and 192 in TK1). The
S-SLIC accelerator requires only 20kB of on-chip storage to buffer
pixel data flowing through the pipeline and a single “core” that pro-
cesses pixels efficiently in a pipelined manner. In addition, the S-
SLIC accelerator uses an 8-bit fixed-point precision data-path with
optimized compound operations.

We computed the latency of the S-SLIC accelerator as the sum of
the computation and memory access times for color conversion and
cluster update. Our evaluation shows that color conversion is highly
efficient and consumes only 1.4ms. Cluster update, on the other
hand, is computational expensive and it involves performing dis-
tance calculation, minimum distance computation, and sigma and
center updates over the entire image for 9 iterations along with fre-
quent memory access. Cluster update consumes 31.4ms with mem-
ory accesses taking 11.1ms and computation consuming 20.3ms.
For baseline comparisons, we executed the GPU SLIC algorithm
on the K20 and TK1 hardware, measuring both performance and
power consumption. While the K20 can achieve more than 30
frames per second, it requires an enormous power budget. TKI
requires much less power, but misses the real-time frame rate by a
factor of 80. The normalized power row estimates the power con-
sumption of the GPUs were they to be running in a 16nm process
instead of the 28nm process. The normalization includes multi-
plicative factors of 1.25 for voltage? and 1.75 for capacitance, for
a total of 2.2. As a result, the S-SLIC accelerator in its best con-
figuration is over 500x more energy efficient than K20 and over
250 more efficient than K1, while meeting the 30 frames per sec-
ond requirement. As the GPU in K20 is hundreds of mm? and the
GPU in K1 is tens of mm?, the estimated 0.066mm? required for
the S-SLIC accelerator is extremely small.

8. RELATED WORK

Because superpixels are an important and versatile method of
image segmentation, numerous algorithms have been developed to
generate them. Achanta et al. developed the widely used SLIC
algorithm and demonstrated its merit over other superpixel algo-
rithms [1]. While hardware accelerators have been designed for
video segmentation [5, 9], our work is the first to develop a hard-
ware accelerator for SLIC.

SLIC has been accelerated through algorithmic modifications
along multiple dimensions. A parallel implementation for GPG-
PUs [8] called gSLIC uses the assignment of each pixel to one of
the 9 closest superpixels during initialization, then adopts the im-
plementation of the original SLIC algorithm. The pixel perspec-
tive (PPA) version of S-SLIC uses a similar superpixel assignment
algorithm while also applying pixel subsampling to decrease the
amount of computation and memory bandwidth.

Preemptive SLIC optimizes computation by halting the update of

individual clusters when there is little to no difference in the cluster
center location[7]. This approach avoids performing computation
on pixels and regions that are not changing clusters or locations,
respectively. The optimization of Preemptive SLIC is orthogonal
to those performed by S-SLIC. While the two techniques could be
combined, the analysis of this combined algorithm is beyond the
scope of this work.

9. CONCLUSIONS

Superpixel (SP) generation is an important algorithm for image
segmentation in computer vision applications. This paper first de-
scribes our novel augmentations to the commonly used Simple Lin-
ear Iterative Clustering (SLIC) algorithm called S-SLIC that ex-
ploits subsampling to reduce memory bandwidth and computation
time without sacrificing the quality of result. We then designed
an accelerator for S-SLIC and implemented it using a high-level
synthesis design flow targeting a 16nm FinFET technology. Our
results show that the S-SLIC accelerator can achieve real-time per-
formance (30 frames per second) in 0.066mm? and achieve energy
efficiency 250 x that of a mobile GPU. We expect that this accel-
erator can be incorporated into the architecture of SoCs aiming to
accelerate computer vision applications.
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