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ABSTRACT
The available computing resources in modern GPUs are
growing with each new generation. However, as many gen-
eral purpose applications with limited thread-scalability are
tuned to take advantage of GPUs, available compute re-
sources might not be optimally utilized. To address this,
modern GPUs will need to execute multiple kernels simul-
taneously. As current generations of GPUs (e.g., NVIDIA
Kepler, AMD Radeon) already enable concurrent execution
of kernels from the same application, in this paper we ad-
dress the next logical step: executing multiple concurrent
applications in GPUs. We show that while this paradigm
has a potential to improve the overall system performance,
negative interactions among concurrently executing applica-
tions in the memory system can severely hamper the per-
formance and fairness among applications. We show that
the current application agnostic GPU memory system design
can (1) lead to sub-optimal GPU performance; and (2) cre-
ate significant imbalance in performance slowdowns across
kernels. Thus, we argue that GPU memory system should
be augmented with application awareness. As one example
to the applicability of this concept, we augment the mem-
ory system hardware with application awareness such that
requests from different applications can be scheduled in a
round robin (RR) fashion while still preserving the benefits of
the current first-ready FCFS (FR-FCFS) memory scheduling
policy. Evaluations with different multi-application work-
loads demonstrate that the proposed memory scheduling pol-
icy, first-ready round-robin FCFS (FR-RR-FCFS), improves
fairness and delivers better system performance compared to
the existing FR-FCFS memory scheduling scheme.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming
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1. INTRODUCTION
Graphics Processing Units (GPUs) are expected to play a

critical role in the foreseeable computing landscape ranging
from supercomputing machines to hand-held devices. These
GPUs are characterized by numerous programmable compu-
tational cores and thousands of simultaneously active fine-
grained threads. Traditionally, GPUs were designed to ex-
ecute only a single kernel at a time; it was expected that
a single kernel would have enough threads to keep all GPU
resources busy. However, as GPU resources are growing
with each new generation (for example, the state-of-the-art
Kepler Architecture model GTX 780 Ti has 2880 cores [3],
and AMD Radeon R9 290X has 2816 cores [1]), and as
more irregular and general-purpose applications are ported
to GPUs, many kernels will not be able to proportionally
scale [19] and effectively utilize the growing compute re-
sources. To address this problem, a new GPU computing
paradigm was recently introduced, where multiple kernels
can be executed concurrently on the same GPU platform.
This paradigm has two primary advantages. First, it sig-
nificantly improves the GPU efficiency, as shown in Fermi
White Paper [18] and Pai et al. [19]. Second, it facilitates
the consolidation of jobs from multiple independent users on
to the same GPU substrate, as demonstrated by NVIDIA
GRID technology [2].

Figure 1 shows this new computing paradigm pictorially.
Figure 1 (A) shows the traditional GPU architecture, where
all cores are executing a single kernel. In Figure 1 (B),
the same GPU architecture is concurrently executing mul-
tiple kernels. Broadly speaking, these multiple kernels can
originate from: (i) a single application, or/and (ii) multi-
ple independent applications (contexts). Although this new
computing paradigm is an effective way to increase GPU
performance and resource utilization, many architectural
challenges need to be addressed to unlock its full poten-
tial. Open issues that have not been sufficiently explored
include: efficient hardware support for execution of multi-
ple applications1, finding the optimal number of cores for
a particular kernel, designing a QoS-aware on-chip network

1In this paper, we assume concurrently executing kernels
originate from separate applications. Hence, we use the
terms kernels and applications interchangeably.
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Figure 1: Baseline GPU architecture executing: (A)
Single kernel, (B) Multiple kernels concurrently.

fabric and memory hierarchy, augmenting the memory hier-
archy to include resource sharing policies, and concurrency
management for effectively utilizing the on-chip shared re-
sources. Given the wide scope of the problem, this paper
focuses on one aspect of the design space: management and
allocation of shared memory system resources in GPUs ex-
ecuting multiple applications concurrently.

Our goal is to provide a better understanding of the in-
teractions of concurrent applications in the GPU memory
subsystem. We observe that the traditional GPU memory
system is application agnostic, and the widely used First-
ready FCFS (FR-FCFS) [20,21,25] memory scheduler is un-
aware of the individual demands of concurrent multiple ap-
plications. It primarily focuses on improving DRAM page
hit rates, and might hurt overall system performance and
fairness. This problem becomes more pronounced when
the memory demands of concurrently executing applications
have wide variation, implying that an application with high
memory demand attempts to monopolize the resource usage
over an application with low memory demands. To address
this, we augment application-awareness to the memory-
system logic and propose the First-ready Round-robin FCFS
(FR-RR-FCFS) memory scheduler, which schedules memory
requests originating from different applications in a round-
robin (RR) fashion, while preserving the benefits of FR-
FCFS scheduling. We show that this simple change to the
existing FR-FCFS memory scheduler is a better alternative
for concurrent execution of multiple kernels in terms of eq-
uitable memory bandwidth sharing and overall system per-
formance.
This paper makes the following contributions:
• To the best of our knowledge, this is the first work that
provides a detailed analysis of the interactions of multiple
applications in the GPU memory system.
• This work manifests the fact that a naive coupling and
execution of different applications concurrently on modern
GPUs with application-agnostic shared resource allocation
do not lead to desired results.
• We show that one of the primary reasons for sub-optimal
performance and unfairness is the application agnostic man-
agement of shared resources. The popular FR-FCFS mem-
ory scheduler fails to distinguish memory requests originat-
ing from multiple applications.
• In this context, we propose to propagate application aware-
ness to the memory system scheduling logic. As one possible
implementation, we suggest a memory controller scheduling
policy which not only preserves the benefits of FR-FCFS,
but also improves fairness and overall system performance
by serving memory requests of different applications in an
round-robin fashion. We evaluate the proposed memory
scheduler across 14 diverse 2-application workloads on a 60-

core GPU simulated platform using GPGPU-Sim [6]. On
average, we observe 7% improvement (up to 49%) in fair-
ness, 10% improvement (up to 64%) improvement in instruc-
tion throughput performance, and up to 7% improvement in
weighted system speedup.

2. BACKGROUND AND EXPERIMENTAL
METHODOLOGY

In this section, we provide a brief description of the base-
line GPU architecture and experimental methodology.

2.1 Baseline GPU Architecture
Our baseline GPU (see Figure 1) consists of multiple cores,

named Streaming Multiprocessors (SMs). Each SM is as-
sociated with a private L1 data cache, a read-only texture
cache and a constant cache. A software managed scratchpad
memory is also associated with each SM. SMs are connected
to memory channels (partitions) via a crossbar, and memory
requests to each partition are handled by a GDDR5 memory
controller. We simulate the baseline architecture described
in Table 1 using GPGPU-Sim v3.2.1 [6], a cycle-accurate
GPU simulator.
Single Application Scheduling: A typical CUDA appli-
cation consists of multiple kernels (or grids). Each kernel
is further divided into groups of threads, called cooperative
thread arrays (CTAs). Traditionally, GPUs execute all ker-
nels of an application sequentially, i.e. one kernel at a time.
In this scenario, when a kernel is launched on the GPU, the
CTA scheduler picks available CTAs associated with that
kernel and distributes them to the SMs as evenly as possi-
ble [6]. The maximum number of CTAs per SM is limited
by various resources associated with each SM, and by the re-
sources required by a given kernel [6, 15]. Hence, if a kernel
requires less resources, the maximum number of CTAs per
SM will be larger than that of another kernel whose CTAs
need more resources.
Multiple Application Scheduling: In this paper we con-
sider the case where multiple kernels from multiple applica-
tions are executed concurrently, i.e., we simultaneously ex-
ecute kernels from different applications. Since the focus of
the paper is the memory system, we use a simple kernel-to-
SM assignment scheme: in a two-application scenario where
two kernels of different applications are executed concur-
rently, we assign half of the SMs to the first application, and
the second half to the other application. We leave sophisti-
cated SM-partitioning techniques as future work. The CTA
assignment for each kernel follows the same load-balanced
distribution strategy as described before; the only difference
is that each kernel is now assigned to only half of the SMs
of the baseline GPU architecture.
Memory Scheduling in GPUs: First-ready FCFS (FR-
FCFS) [20, 21, 25] is the commonly employed memory
scheduling technique in GPUs. This scheme is targeted at
improving DRAM row hit rates, so request prioritization
order is as follows: 1) row-hit requests are prioritized over
other requests; then 2) older requests are prioritized over
younger requests. Among row-hit requests, older requests
are prioritized over younger requests.

2.2 Evaluation Methodology
The new generation of GPUs allows concurrent execution

of streams, where a stream is defined as a set of commands
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Table 1: Simulated baseline GPU configuration
SM Configuration 1400MHz, SIMT width = 16 × 2
Resources / SM Max. 1536 threads (48 warps, 32 threads/warp), 48KB shared memory, 32684 registers
Caches / SM 16KB 4-way L1 data cache, 12KB 24-way texture cache,

8KB 2-way constant cache, 2KB 4-way I-cache, 128B cache block size
Default Warp Scheduling Greedy-then-oldest (GTO) [22]
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Interconnect 1 crossbar/direction (60 SMs, 6 Memory Controllers), 1400MHz
Memory Model 6 GDDR5 Memory Controllers (MCs), First-Ready FCFS (FR-FCFS) scheduling

16 DRAM-banks/MC, 924 MHz memory clock
Hynix GDDR5 Timing [10] tCL = 12, tRP = 12, tRC = 40, tRAS = 28,

tCCD = 2, tRCD = 12, tRRD = 6

required to be executed serially. We exploit this mecha-
nism to issue commands from different applications (kernels)
to separate streams, thus allowing them to execute concur-
rently. We study 6 CUDA applications; Table 2 lists the
applications along with their DRAM bandwidth utilization.
Note that the considered applications have diverse memory
demands – while GUPS has the highest memory bandwidth
utilization of 93%, HIST and DGEMM have considerably lower
memory bandwidth utilization (50% and 34%, respectively).
In Section 3, we show that memory intensive applications
like GUPS significantly interfere with co-scheduled applica-
tions, leading to poor overall performance and fairness.

From these 6 CUDA applications, we form all possi-
ble two-application workloads and simulate them on the
GPGPU-Sim simulator. We omit the results of one work-
load (bfs_dgemm) as our infrastructure could not simulate it
faithfully. Table 3 lists all 14 two-application workloads. We
collect statistics at the point when both applications execute
to completion at least once. To do so, if one of the applica-
tions finishes execution earlier than the other, we relaunch
the faster running application again. This process continues
until the slower running application completes.

Table 2: Evaluated applications, along with their
DRAM bandwidth utilization when they are exe-
cuted alone on the entire baseline GPU architecture.

Application Abbr. Bandwidth Utilization
Histogram HIST 50%
Gaussian GAUSS 70%

Random Access GUPS 93%
Breadth First Search BFS 79%

3D Stencil 3DS 85%
Matrix Multiplication DGEMM 34%

2.3 Evaluation Metrics
We report on: (I) Weighted Speedup, for measuring ap-

plication throughput, (II) Instruction Throughput, for mea-
suring raw machine throughput, and (III) Fairness Index,
for measuring fairness in the system. For weighted speedup
(WS), we measure the slowdown experienced by each appli-
cation relative to the case where it runs alone on the en-
tire GPU (Eq.(1)). Note that when an application is run-
ning alone, it can use all SMs in the system. The sum of
slowdowns of all the concurrent applications is defined as
weighted speedup (Eq.(2)). WS indicates how many jobs
are executed per unit time. Assuming there is no construc-
tive interference among applications, the maximum value
of WS is equal to the number of applications. Thus, in
a 2-application mix, the optimal (maximum) value of WS

is 2. In the worst case, if both the applications stall the
progress of each other indefinitely, WS will be equal to 0.
Instruction Throughput (IT) is defined as the total num-
ber of instructions committed per cycle in the entire chip.
(Eq.(3)). It basically depicts the raw machine throughput.
We use Fairness Index (FI) to express the imbalance of per-
formance slowdowns across applications. Eq.(4) shows the
FI equation for a system that executes two application con-
currently. When FI is equal to 1 the system is completely
fair, because all applications are slowed down equally when
they execute concurrently and share the same resources.

Summary of Evaluation Metrics
(A) IPCi is the number of committed instructions per cycle (IPC)

of ith application, (B) IPCshared
i is IPC of ith application when it

is co-scheduled with other applications, (C) IPCalone
i is IPC of ith

app. when it is the only application executing on the entire GPU,

Eq.(1) Slowdown(APPi) =
IPCshared

i

IPCalone
i

Eq.(2) Weighted Speedup =
∑
i

Slowdown(APPi)

Eq.(3) Instruction Throughput =
∑
i

IPCi

Eq.(4) Fairness Index = MAX(
slowdown(APP1)

slowdown(APP2)
,
slowdown(APP2)

slowdown(APP1)
)

Table 3: Evaluated 2-application GPU workloads.
Workload # 1st APP 2nd APP Abbr.

1 HIST GAUSS hist gauss
2 HIST GUPS hist gups
3 HIST BFS hist bfs
4 HIST BFS hist bfs
5 HIST 3DS hist dgemm
6 GAUSS GUPS hist gups
7 GAUSS BFS gauss bfs
8 GAUSS 3DS gauss 3ds
9 GAUSS DGEMM gauss dgemm
10 GUPS BFS gups bfs
11 GUPS 3DS gups 3ds
12 GUPS DGEMM gups dgemm
13 BFS 3DS bfs 3ds
14 3DS DGEMM 3ds dgemm

3. CONCURRENT KERNEL EXECUTION
CHALLENGES

In this section, we zoom in on the memory system and
highlight the main challenges associated with concurrent
execution of applications. We show that while concurrent
execution of applications can increase overall system per-
formance, negative interactions among applications in the
memory system can hamper application performance, and
can introduce severe fairness problems.
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Figure 2: Weighted speedup (Application through-
put) for the evaluated workloads. The 1st APP and
2nd APP are the first and second applications in the
workload, respectively, as mentioned in Table 3.
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Figure 3: Fairness Index for the evaluated workloads
when the memory scheduler adopts the baseline FR-
FCFS scheduling policy.

3.1 Fairness considerations
Explicitly addressing fairness in the memory system is es-

sential whenever multiple applications (potentially from dif-
ferent users) share the same resources. An unfair or uncoor-
dinated resource allocation can lead to imbalance in perfor-
mance degradation across applications. This phenomenon
is demonstrated in Figure 2, where we plot the weighted
speedups obtained for all 14 evaluated workloads. We show
the slowdown of each application in every workload. 1st

APP shows the slowdown of the first application when co-
scheduled with the 2nd APP, and vice versa. In a completely
fair system, the values of slowdowns (performance degrada-
tion) for each one of the two applications would be the same.
Instead, we observe that this is hardly ever the case, and
the slowdowns are considerably different between the two
applications. For example, consider the case of gups_dgemm,
where there is significant difference between the slowdowns
of GUPS, 1st APP, and DGEMM, 2nd APP. This means that
while GUPS performance is hardly affected by sharing the
GPU resource, DGEMM performance is considerably de-
graded. In fact, most of the contribution to WS in this case
is associated with GUPS.

Figure 3 shows the FI metric for the evaluated workloads.
While slowdowns in some workloads are relatively balanced
(e.g., hist_dgemm) the FI value for other workloads is very

high (e.g. gups_3ds and gauss_gups). Particularly, the FI
for gups_dgemm is the worst (maximal) among all the work-
loads (10.75). The reason for such high FI value is the fact
that GUPS has very high memory bandwidth demands com-
pared to other co-scheduled applications. Its memory band-
width utilization reaches 93% (see Table 2), which signifi-
cantly degrades performance of other co-scheduled applica-
tions. As we will show next, the presence of such memory
bandwidth demanding applications causes imbalance in per-
formance degradation, leading to very high FI values.

To get a deeper insight into the mechanics of the cross-
application interference in the memory system, Figure 4
shows a break down of the memory bandwidth to the follow-
ing components: (A) 1st and 2nd APP: the relative portion
of DRAM cycles during which the 1st and 2nd applications
in the workload move useful data over the DRAM inter-
face, (B) Wasted-BW: the relative portion of DRAM cycles
during which no data is transferred over the DRAM inter-
face, but there are pending memory requests in memory
controller. This is because of DRAM timing constraints;
improving DRAM page hit rates, and bank-level parallelism
can reduce this Wasted-BW, and (C) Idle-BW: the relative
portion of DRAM cycles during which there are no requests
pending in the memory controller queues, and hence DRAM
is idle. Besides the concurrent execution configuration, the
figure also plots alone 60 – where an application executes in
a stand-alone mode over the entire 60 SM GPU system, and
alone 30 – where an application executes in a stand-alone
mode over half of the compute resources (up to 30 SMs in
our case).

It is evident from Figure 4 that the memory intensive
applications monopolize the memory scheduler while the
lighter applications are unable to get a fair share of the
bandwidth. For example, when GUPS is co-scheduled with
other applications (HIST, GAUSS, BFS, 3DS, and DGEMM),
the majority of the bandwidth is consumed by GUPS, while
the other application gets a very small share of the band-
width. In the case of gups_dgemm, the memory bandwidth
obtained by GUPS reduces only marginally (by 6% over
alone 60 configuration), but dgemm achieves only 3% of the
memory bandwidth (31% lower than its alone 60 configu-
ration). This imbalanced allocation of memory resources
translates to imbalance in performance degradation – GUPS
slows downs by only 2% while DGEMM slows down by 90%,
when GUPS and DGEMM are coupled together. Overall, these
observations indicate that one of the main reasons for poor
fairness is the interference caused by applications with in-
tensive bandwidth requirements.

3.2 Throughput considerations
One of the primary motivations for preferring concurrent

execution of multiple applications over time division mul-
tiplexing of the GPU hardware is to increase the machine
utilization and thus improve application throughput. Ap-
plications throughput is reflected by weighted speedup and
is shown in Figure 2. Indeed, the achieved WS for each one
of the workloads is above one, indicating that concurrent
execution performs either as good or better than a time di-
vision scheme. Some workloads present significant speedups
- up to 41% for hist_dgemm. This is because these two ap-
plications have the lowest memory bandwidth demands in
our workload suite (see Table 2), and hence do not inter-
fere significantly in the memory system when co-scheduled

4



0%

20%

40%

60%

80%

100%

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

g
a

u
s
s

g
u

p
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_
3
0

a
lo

n
e
_

6
0

h
is

t

g
u

p
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

3
d

s

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

b
fs

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

3
d

s

HIST (1st App) GAUSS (1st App) GUPS (1st App) BFS (1st App) 3DS (1st App) DGEMM (1st App)

P
e

rc
e

n
ta

g
e

 o
f 

P
e

a
k

 B
a

n
d

w
id

th

1st App 2nd App Wasted-BW Idle-BW

Figure 4: DRAM bandwidth utilization distribution across various workloads when memory scheduler adopts
the baseline FR-FCFS memory scheduling policy.

together. However, other workloads present modest to min-
imal gains: in the case of gauss_gups, the interference is
significant and is mostly caused by GUPS, leading to only
2% improvement in WS. In fact, most applications that are
co-scheduled with GUPS exhibit poor WS.

The main reasons for this sub-optimal weighted-speedup
behavior is in fact a manifestation of the previously dis-
cussed fairness problem, where the bandwidth-intensive ap-
plication significantly degrades the performance of other ap-
plications leading to lower overall weighted speedup. For ex-
ample, consider the case of gups_dgemm where the weighted-
speedup is only 7%. GUPS interferes with the progress of
GAUSS leading to its sub-optimal performance resulting in
lower overall WS.

4. APPLICATION-AWARE MEMORY
SCHEDULING

From the analysis in Section 3, we observe that
application-agnostic approach of the underlying memory-
system scheduling policy leads to sub-optimal results both
in terms of overall application throughput and fairness. We
believe that it is imperative to develop an application-aware
memory scheduling approach to address these issues. To
this end, in this section we propose and discuss details of
an example design of a simple application-aware memory
scheduler that improves fairness and performance. We also
discuss its associated hardware overheads.

4.1 Designing Application-aware Memory
Scheduler

In previous section we discussed the negative interference
phenomena among bandwidth-intensive and the light appli-
cations on a single GPU. The bandwidth-intensive appli-
cations (e.g. GUPS) can severely degrade the performance
of its co-scheduled applications, leading to sub-optimal ap-
plication performance and fairness. To address these is-
sues, we propose an example implementation of a simple
memory scheduler. We propose to equip the widely known
FR-FCFS memory scheduler with application awareness by
choosing requests from different applications in round-robin
(RR) fashion. The advantage of this memory scheduling
approach is that the bandwidth-intensive application would
not be able to starve its co-scheduled applications for a long
period time. Note that our scheme still prioritizes the row-

App-1 App-2

R1

(A) FR-FCFS Schedule (B) FR-RR-FCFS Schedule

Time

Bank Bank

R1

R1

R2

R2

R2

R3

R1

Time

R1

R1

R2

R2

R2

R3

R1 R2 R3

Request to

Row-1 Row-2 Row-3

Figure 5: Conceptual example showing the working
of (A) baseline FR-FCFS memory scheduling, (B)
our proposed FR-RR-FCFS memory scheduling.

hit requests over other requests for optimizing DRAM page
hit rates. The only difference in our memory scheduler is
that the requests are not picked in FCFS fashion, but in
RR fashion across applications. If the pending memory con-
troller queue has only requests from either one of the appli-
cations, the RR automatically performs FCFS.

Formally, we propose First-ready Round-robin FCFS (FR-
RR-FCFS) memory scheduling method for handling mem-
ory requests from multiple GPU applications. The request
prioritization order of FR-RR-FCFS is: 1) row-buffer-hit
requests over all other requests, 2) requests from the ap-
plication next in the round-robin scheduling order, 3) older
requests over younger ones. Among row-hit requests, older
requests are prioritized over younger requests.

Figure 5 shows the mechanics of the proposed FR-RR-
FCFS memory scheduling function, for multiple concurrent
GPU applications. Figure 5 (A) shows the baseline scheduler
with FR-FCFS memory scheduling function. Without the
loss of generality, in this example, we assume one memory
bank and one-memory controller memory system. Further-
more, we assume that two applications, App-1 and App-2,
are concurrently executing on the same GPU platform. The
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Figure 6: Effect on DRAM page hit rates. The pro-
posed scheduler FR-RR-FCFS preserves the DRAM
page hit rates obtained by the baseline FR-FCFS
memory scheduler.

memory requests are tagged with their application-id (in this
example, they are color coded – App-1 (gray) and App-2
(white)). In Figure 5 (A), the first memory request arriv-
ing to the memory controller is originating from App-1, and
destined to row-1 (R1). Similarly, the next two requests also
belong to R1, and originate from App-1. Because of the FR-
FCFS policy, the baseline memory scheduler will schedule all
these three requests back-to-back. The next three requests
are also originated from App-1 (also gray coded), but are
destined to R2. As the memory scheduler is application-
agnostic, it will keep on scheduling those requests in their
arrival order, and the request from App-2 (the last request –
white coded, destined to R3) would be delayed significantly
in that case. Alternatively, FR-RR-FCFS memory scheduler
in Figure 5 (B), would service App-2 request after servicing
first three App-1 requests destined to R1. In our proposed
policy the waiting time of memory requests from App-2 is
substantially shorter, and thus it will not be starved by re-
quests from App-1.

One might argue that after servicing the first memory re-
quest of App-1, memory scheduler should shift to App-2 for
the natural round-robin sequence. However, by doing so,
the scheduler would have to switch the memory-row (from
R1 to R3) and back to R1 (R3 to R1). These row-switches
would have degraded DRAM page hit-rates and through-
put. In order to preserve DRAM page-hit rate, our scheme
first services all the memory requests to the same page, and
then moves to the next application in round-robin fashion.
Figure 6 shows that the DRAM page hit-rates for FR-FCFS
and our scheduler are roughly the same (average reduction
is less than 1%).

4.2 Hardware Complexity
The proposed method is relatively simple to implement in

hardware, and that it would require a very low additional
hardware cost compared to an existing scheduling logic.

In order to propagate application-related information
throughout the memory-system, the memory request need
to be tagged with the application-id information. The tag-
ging is performed at the SM-level. For a limited number of
concurrent applications on a single GPU, we assume several
bits per memory request. For the example discussed in this
paper, of up to 2 applications per GPU, single bit is needed
for application-id extension of the request meta-data fields.

The additional hardware required for the RR function in
the memory controller is minimal compared to an existing
FR-FCFS logic. It requires a duplication of the find-first
masking logic according to the application ID, similar to
what is done for finding the first ready request for an open-
row in the memory controller already. In addition, it is re-
quired to compute the next-application ID in a RR fashion,
which can be implemented by a simple rotating function.
Note that all the required information is computed locally at
the memory controller, and no communication/coordination
across memory controllers, and banks within memory con-
troller is required.

5. EXPERIMENTAL RESULTS
In this section, we provide comparative analysis of the

evaluated schedulers in terms of fairness and performance.

5.1 Fairness Results
Figure 7 shows the fairness index (FI) for all the eval-

uated workloads, both for the baseline memory scheduler
(FR-FCFS), and for our proposed FR-RR-FCFS policy. We
observe significant improvements in fairness (decrease in FI)
with FR-RR-FCFS: 49% for hist_gups, 47% for gups_3ds,
14% for gauss_bfs, and 11% for hist_bfs. On average,
we observe 7% improvement in fairness over the baseline
FR-FCFS policy. To understand these benefits better, we
re-plotted Figure 4 in Figure 8, but here we compare the
bandwidth distribution of the baseline FR-FCFS with the
distribution achieved when using proposed FR-RR-FCFS
scheduling policy. For clarity, we have omitted the work-
loads that do not have significant difference in these distri-
butions. We observe that improvement in FI has originated
from a fairer distribution of the overall memory bandwidth
across the concurrently executing kernels. FR-RR-FCFS
provides more memory bandwidth to the lighter applica-
tions (compared to the baseline), and thus limits their per-
formance degradation. For example, when HIST is coupled
with GUPS, the bandwidth obtained by HIST is increased from
10% (fr-fcfs-gups) to 20% (fr-rr-fcfs-gups). Note that, ide-
ally HIST should reach up to 33% and 50%, when it executes
alone on 30 and 60 SMs system, respectively. Our proposed
scheduler has facilitated in bridging this gap.

5.2 Performance Results
Figure 9 and Figure 10 show the improvement in instruc-

tion throughput (IT) and weighted-speedup (WS) when us-
ing the FR-RR-FCFS memory scheduler, respectively. Re-
sults are normalized to the baseline FR-FCFS scheduler. We
observe significant improvement in IT and WS for workloads
hist_gups, hist_bfs, gauss_gups, and gups_3ds. The
maximum improvement is observed in hist_gups: 64% in
instruction throughput and 7% in weighted speedup. These
improvements in performance are primarily due to the fairer
allocation of memory bandwidth (see Figure 8). FR-RR-
FCFS facilitates the lighter applications and thus reduces
their performance degradation. It is evident that the high
memory demanding applications GUPS and BFS are now com-
paratively less dominant, thereby improving performance.

We note that in two cases (hist_gauss and hist_3ds),
there is a small decrease (2-3%) in WS when using FR-
RR-FCFS. Clearly, in these workloads, the FR-RR-FCFS
scheduler is unable to intelligently allocate memory band-
width among the applications. Indeed, while “round-robin”
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Figure 7: Fairness index (FI) of the evaluated
workloads when memory scheduler adopts FR-FCFS
(baseline, 1st bar) and FR-RR-FCFS (proposed, 2nd
bar) scheduling techniques.
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Figure 8: DRAM bandwidth utilization distribution
across selected workloads when memory scheduler
adopts FR-FCFS (baseline, 3rd bar) and FR-RR-
FCFS (proposed, 4th bar) scheduling techniques.

gives better opportunity to all concurrent applications in
taking service from memory, it is still unaware of individual
application’s characteristics. A more sophisticated scheme
might use application characterization to influence the pri-
ority settings in attaining service from memory. We leave
the design of such schemes for future works.

6. RELATED WORK
To the best of our knowledge, this is the first work to

provide a detailed analysis on the interactions of multiple
applications in GPU memory system, and propose a memory
scheduler to improve both fairness and overall performance.
Memory scheduling techniques: There is a large body
of work on memory scheduling techniques in the context of
multi-cores. Thread cluster memory scheduling (TCM) [14]
classified applications on the basis of their sensitivity to
memory bandwidth and latency. They further proposed
various memory request prioritization schemes for improv-
ing fairness and throughput. However, their work only
considers multiple single-programmed applications. On
the other hand, our work focuses on multiple massively
threaded applications, and proposes a simple but effective
memory scheduling technique to handle their memory re-
quests. Ebrahimi et al. [7] proposed parallel application
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Figure 9: Improvement in instruction throughput
(IT) across the evaluated workloads. Results are
normalized to the case when memory scheduler
adopts the baseline FR-FCFS scheduling policy.
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Figure 10: Improvement in weighted speedup (WS)
across the evaluated workloads. Results are normal-
ized to the case when memory scheduler adopts the
baseline FR-FCFS scheduling policy.

memory scheduling, where they explicitly managed inter-
thread memory interference for improving performance, es-
pecially in critical sections of the program. However, their
work only considers a single multi-threaded application,
while our work deals with scheduling of multiple multi-
threaded applications.

In the context of GPUs, Lakshminarayana et al. [16] ex-
plored a DRAM scheduling policy that essentially chooses
between Shortest Job First (SJF) and FR-FCFS [21, 25].
Yuan et al. [24] proposed an arbitration mechanism in the
interconnection network to restore the lost row buffer local-
ity caused by the interleaving of requests. They showed that
performance of in-order DRAM memory scheduler can be
competitive to FR-FCFS, if interconnect is aware of the re-
quests destined to the same row. Ausavarungnirun et al. [5]
proposed a staged memory scheduler for CPU-GPU archi-
tectures. Their primary goal was to improve row-buffer lo-
cality in heterogeneous architectures. All these works only
focus on improving the performance of single GPU applica-
tion and do not focus on the scenarios when multiple appli-
cations are scheduled concurrently, as we do in our work.
Concurrent execution of multiple kernels on GPUs:
Pai et al. [19] proposed elastic kernels that allow a fine-
grained control over their resource usage. Further, they pro-
posed elastic-kernel aware concurrency management policies
for improving GPU performance. Adriaens et al. [4] pro-
posed spatial partitioning of SM resources across concurrent
applications. They presented a variety of heuristics for di-
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viding the SM resources across applications. In our work, we
assume an even partitioning technique, according to which
SMs are distributed evenly among concurrent applications.
Gregg et al. [9] presented KernelMerge, a runtime frame-
work to understand and investigate concurrency issues for
OpenCL applications. Wang et al. [23] proposed context
funneling, which allows kernels from different programs to
execute concurrently. None of these works directly addressed
the problem of contention caused by multiple concurrently
executing kernels in the memory system.
Warp scheduling in GPUs: Narasiman et al. [17] pro-
posed two-level warp scheduler that splits the concurrently
executing warps into groups to improve memory latency tol-
erance. Rogers et al. [22] proposed cache-conscious wave-
front scheduling to improve the caching efficiency in GPUs.
Gebhart and Johnson et al. [8] proposed a two-level warp
scheduling technique that focuses on reducing the energy
consumption in GPUs. Jog et al. [12] proposed a series of
CTA-aware warp scheduling techniques to reduce cache and
memory contention. Kayiran et al. [13] modulated the avail-
able thread-level parallelism by intelligent CTA scheduling.
Jog et al. [11] proposed prefetch-aware warp scheduling tech-
niques for enhancing GPGPU performance. All these warp
scheduling schemes are developed for the scenario when only
one kernel is executing at a time. It is not clear how these
techniques will perform when multiple kernels are scheduled
concurrently. However, in our work, we do not design smart
warp scheduling techniques for such scenarios, but do believe
that it is an open research issue.

7. CONCLUSIONS AND FUTURE WORK
GPUs are expected to support concurrent execution of

multiple kernels – either from the same application or from
multiple applications. While this computing paradigm can
improve machine utilization when executing applications
with limited scalability, the complexity of marshaling mul-
tiple kernels introduces key architectural challenges. In this
paper we zoomed in on the memory system; we showed that
the interactions among memory streams of concurrently ex-
ecuting applications can lead to severe unfairness and sub-
optimal performance. Furthermore, we showed that the pri-
mary reason for these problems is the application-agnostic
management of shared resources. For example, the memory
scheduler refers to all memory requests as a single request
stream and focuses solely on improving the overall DRAM
page hit rates.

We argue that in order to overcome these problems, ap-
plication awareness must be propagated to the memory sys-
tem. To this end, we proposed a simple augmentation to the
current memory system scheduler that schedules memory
requests from different applications in a round-robin man-
ner that not only preserves DRAM page hit rates, but also
makes sure that co-scheduled memory-intensive applications
do not starve other applications for long intervals. Detailed
simulation results show that the proposed scheduler delivers
superior performance and improves fairness across a wide
set of workloads.

Going forward, we plan to explore more sophisticated
memory scheduling schemes that exploit knowledge about
kernels characteristics to improve scheduling decisions. We
also plan to address contention in other shared resources (for
e.g., in caches and interconnect) and augment them with
application-awareness to provide a complete solution across

the entire design.
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