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Abstract—Popular deep learning frameworks require users
to fine-tune their memory usage so that the training data of
a deep neural network (DNN) fits within the GPU physical
memory. Prior work tries to address this restriction by virtu-
alizing the memory usage of DNNs, enabling both CPU and
GPU memory to be utilized for memory allocations. Despite its
merits, virtualizing memory can incur significant performance
overheads when the time needed to copy data back and forth
from CPU memory is higher than the latency to perform DNN
computations. We introduce a high-performance virtualization
strategy based on a “compressing DMA engine” (cDMA) that
drastically reduces the size of the data structures that are
targeted for CPU-side allocations. The cDMA engine offers
an average 2.6× (maximum 13.8×) compression ratio by
exploiting the sparsity inherent in offloaded data, improving
the performance of virtualized DNNs by an average 53%
(maximum 79%) when evaluated on an NVIDIA Titan Xp.

I. INTRODUCTION

Deep neural networks (DNNs) are now the driving tech-
nology for numerous application domains, such as computer
vision, speech recognition, and natural language processing.
To facilitate the design and study of DNNs, a large number
of machine learning (ML) frameworks [1], [2], [3], [4], [5],
[6], [7], [8] have been developed in recent years. Most of
these frameworks have strong backend support for GPUs.
Thanks to their high compute power and memory band-
width [9], GPUs can train DNNs orders of magnitude faster
than CPUs. One of the key limitations of these frameworks
however is that the limited physical memory capacity of the
GPUs constrains the algorithm (e.g., the DNN layer width
and depth) that can be trained.

To overcome the GPU memory capacity bottleneck of
DNN training, prior work proposed to virtualize the memory
usage of DNNs (vDNN) so that ML researchers can train
larger and deeper neural networks beyond what is afforded
by the physical limits of GPU memory [10]. By copying
GPU-side memory allocations in and out of CPU memory
via the PCIe link, vDNN exposes both CPU and GPU mem-
ory concurrently for memory allocations, which improves
user productivity and flexibility in studying DNN algorithms
(detailed in Section III). However, in certain situations,
this memory-scalability comes at the cost of performance
overheads resulting from the movement of data across the
PCIe link. When the time needed to copy data back and
forth through PCIe is smaller than the time the GPU spends
computing the DNN forward and backward propagation

operations, vDNN does not affect performance. However, for
networks whose memory copying operation is bottlenecked
by the data transfer bandwidth of PCIe, vDNN can incur
significant overheads with an average 51% performance loss
(worst case 63%, Section III). The trend in deep learning
is to employ larger and deeper networks that lead to large
memory footprints that oversubscribe GPU memory [11],
[12], [13]. Therefore, ensuring the performance scalability
of the virtualization features offered by vDNN is vital for
the continued success of deep learning training on GPUs.

Our goal is to develop a virtualization solution for DNN
training that satisfies the dual requirements of memory-
scalability and high performance. To this end, we present a
compressing DMA engine (cDMA), a general purpose DMA
architecture for GPUs that alleviates PCIe bottlenecks by
reducing the size of the data structures copied in and out of
GPU memory. Our proposal minimizes the design overhead
by extending the (de)compression units already employed in
GPU memory controllers as follows. First, cDMA requests
the memory controller to fetch data from the GPU memory
at a high enough rate (i.e., effective PCIe bandwidth × com-
pression ratio) so that the compressed data can be generated
at a throughput commensurate with the PCIe bandwidth. The
cDMA copy-engine then initiates an on-the-fly compression
operation on that data, streaming out the final compressed
data to the CPU memory over PCIe. The key insight derived
from our analysis is that the data (specifically the activation
maps of each DNN layer) that are copied across PCIe
contain significant sparsity (i.e., fraction of activations that
are zero-valued) and are highly compressible. Such sparsity
of activations primarily comes from the ReLU [14] layers
that are extensively used in DNNs. We demonstrate sparsity
as well as compressibility of the activation maps through a
data-driven application characterization study. While recent
prior work [15], [16], [17] explored network sparsity in the
context of DNN inference, our work is the first to provide
a detailed analysis of DNN sparsity during training and
how it can be used to overcome the data transfer bandwidth
bottlenecks of virtualized DNNs.

II. BACKGROUND

A. Deep Neural Networks

Today’s most popular deep neural networks can broadly
be categorized as convolutional neural networks (CNNs) for
image recognition, or recurrent neural networks (RNNs) for



video captioning, speech recognition, and natural language
processing. Both CNNs and RNNs are designed using a
combination of multiple types of layers, most notably the
convolutional layers (CONV), activation layers (ACTV),
pooling layers (POOL), and fully-connected layers (FC).
A deep neural network is divided into two functional
modules: (a) the feature extraction layers that learn to
extract meaningful features out of an input, and (b) the
classification layers that use the extracted features to analyze
and classify the input to a pre-designated output category.
“Deep learning” refers to recent research trends where a
neural network is designed using a large number of feature
extraction layers to learn a deep hierarchy of features. The
feature extraction layers of a CNN are generally composed
of CONV/ACTV/POOL layers whereas the classification
layers are designed using FC/ACTV layers.

Convolutional layers. A convolutional layer contains a
set of filters to identify meaningful features in the input data.
For visual data such as images, 2-dimensional filters (or 3-
dimensional when accounting for the multiple input channels
within the input image) are employed which slide over the
input of a layer to perform the convolution operation.

Activation layers. An activation layer applies an element-
wise activation function (e.g., sigmoid, tanh, and
ReLU [14]) to the input feature maps. The ReLU function in
particular is known to provide state-of-the-art performance
for CNNs, which allows positive input values to pass through
while thresholding all negative input values to zero.

Pooling layers. Pooling layers perform a spatial-
downsampling operation on the input data, resulting in an
output volume that is of smaller size. Downsampling is done
via applying an average or max operation over a region of
input and reducing it into a single element.

Fully-connected layers. Fully-connected layers (or classi-
fier layers) constitute the final layers of the network. Popular
choices include multi-layer perceptrons, although other types
of FC layers are based on multi-nomial logistic regression.
Key functionality of this layer is to find the correlation
between the extracted features and the output category.

B. Training versus Inference

DNNs require training to be deployed for an inference.
Training involves learning and updating the weights of the
network, which is typically done using the backpropagation
algorithm [18]. Figure 1 shows the three-step process for
each training pass: (1) forward propagation, (2) deriving
the magnitude of error between the network’s inference and
the ground truth, and (3) propagating the inference error
backwards across the network using backward propagation.

Forward propagation. Forward propagation is a seri-
alized, layer-wise computation process that is performed
from the first (input) layer to the last (output) layer in a
sequential manner (from left to right in Figure 1). Each layer
applies a mathematical operation (such as a convolution
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Figure 1: Training a DNN.

operation for CONV layers) to the input activation maps1

(X) and generates/stores the results of this operation as
output activation maps (Y).

Calculating the loss value. Forward propagation pro-
duces a classification of the input image which must be
compared to the ground truth. The loss function is defined to
calculate the magnitude of this error between classification
and ground truth, deriving the gradients of the loss function
with respect to the final layer’s output. In general, the loss
value drops quickly at the beginning of training, and then
drops more slowly as the network becomes fully trained.

Backward propagation. Backward propagation is per-
formed in the inverse direction of forward propagation, from
the last layer to the first layer (from right to left in Figure 1),
again in a layer-wise sequential fashion. During this phase,
the incoming gradients (dY) can conceptually be thought of
as the inputs to this layer which generate output gradients
(dX) to be sent to the previous layer. Using these gradients,
each layer adjusts its own layer’s weights (W), if any (e.g.,
CONV and FC layers), so that for the next training pass, the
overall loss value is incrementally reduced.

With sufficient training examples, which may number in
the millions, the network becomes incrementally better at
the task it is tasked to learn. A detailed discussion of the
backpropagation algorithm and how contemporary GPUs
implement each layer’s DNN computations and memory
allocations can be found in [19], [10].

C. Data Layout for Activation Maps

For training CNNs, the (input/output) activation maps are
organized into a 4-dimensional array; the number of images
batched together (N), the number of feature map channels
per image (C), and the height (H) and width (W) of each
image. Because the way this 4-dimensional array is arranged
in memory address space has a significant effect on data
locality, different ML frameworks optimize the layout of
their activation maps differently. For instance, the CNN
backend library for Caffe [1] is optimized for NCHW (i.e., the
N and W in the outermost and innermost dimension of the
array, respectively) whereas cuDNN [9] provides support for
both NCHW and NHWC. Neon [5] and cuda-convnet [7]
on the other hand is optimized for CHWN. We elaborate on
the sensitivity of our proposal on activation data layout in
Section VII-A.

1Following prior literature, we use the terms input/output feature maps
and input/output activation maps interchangeably.
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Figure 2: (a) PCIe attached CPUs and GPUs, and (b) vDNN
memory management using (GPU-to-CPU) offload and (CPU-to-
GPU) prefetch operations. OFF(n) and PRE(n) corresponds to the
offload and prefetch of layer(n)’s activation maps, respectively.

D. Related Work

DNNs are generally over-parameterized, stemming from
a significant redundancy in the way the parameters are
used to represent the approximating model. As a result, a
series of proposals have aimed to reduce DNN memory
usage by alleviating network redundancy. Network pruning
strategies in particular have been studied extensively by prior
literature [20], [21], [22]. Pruning helps reduce the memory
allocated for model weights by removing redundant network
connections that satisfy a given pruning criteria. These
proposals provide limited opportunity for saving memory
usage, as weights only account for a small fraction of overall
memory allocations needed for training DNNs. Hauswald et
al. presented DjiNN and Tonic [23], an open source DNN
service and applications suite for GPU server designs in
warehouse scale computers. A series of accelerator designs
have also been proposed for CNNs recently [24], [25], [26],
[27], [28], [29], [30], [31], [15], [16], [17]. The scope of
these prior proposals is in the domain of DNN inference
while our work focuses on DNN training. More importantly,
none of these prior works address the communication bot-
tleneck that arise due to DNN memory virtualization.

III. MOTIVATION

Several techniques have been proposed for supporting
virtual memory on GPUs. Pichai et al. [32] and Power et
al. [33] proposed TLB designs that leverage the unique mem-
ory access patterns of GPUs for optimizing the throughput of
memory address translations. Zheng et al. [34] studied archi-
tectural solutions for closing the performance gap between
page-migration based virtual memory and software-directed
direct-memory-access (DMA) copy operations. Nonetheless,
the performance overheads of these fine-grained, page-
based virtual memory solutions are high because of the
low throughput and high latency of page-migration on
discrete GPU systems. Rhu et al. [10] therefore proposed
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Figure 3: (a) Speedups offered by versions of cuDNN (right-
axis), and the performance degradations incurred by vDNN (left-
axis). (b) Performance of vDNN (using cuDNN, v5) across different
generation of GPUs, normalized to an oracular GPU (Section VII).

an application-level virtual memory management solution
specifically tailored for DNNs (vDNN). Figure 2 provides
a high-level overview of a state-of-the-art DNN training
platform containing CPUs and GPUs, and how the vDNN
memory manager orchestrates the data copy operations
across the CPU and GPU memories. Figure 2(a) illustrates
a discrete GPU card (Maxwell Titan X) with 336 GB/sec
of GPU DRAM bandwidth, connected to a host CPU via
a PCIe channel, which provides a maximum data transfer
bandwidth of 16 GB/sec for PCIe gen3.

Figure 2(b) shows how vDNN virtualizes memory by
proactively offloading the inter-layer activation maps out
to CPU memory during forward propagation and later
prefetching them back into the GPU, just before they are
reused during backward propagation. For training DNNs,
these activation maps occupy more than 90% of the GPU-
side memory allocations [10]. Thus vDNN offers significant
reduction in the average GPU memory usage by offloading
activations to the CPU. vDNN also provides much higher
PCIe bandwidth utilization and performance than page-
migration based virtual memory (i.e., 12.8GB/sec [10] ver-
sus 200 MB/sec [34]) as the data movements are orches-
trated by GPU’s DMA copy-engine. Therefore, major ML
frameworks, such as TensorFlow and Chainer have been
employing a vDNN-style solution as means to enhance both
system memory scalability and the productivity of algorithm
developers [35], [36], highlighting the importance of DNN
memory virtualization. However, vDNN can still incur non-
negligible performance overheads when the time needed to
move data in and out of the CPU memory takes longer than
computing DNN’s backpropagation algorithm.

Figure 3 illustrates the extent of this bottleneck on the
performance of DNNs. The right-axis on Figure 3(a) shows
the performance improvements offered by successive ver-



Table I: GPU math throughput (TFLOPS) and memory bandwidth
(GB/sec) scaling trends.

GPU generation TFLOPS GB/sec
Kepler K40 (2013) 5.0 288

Maxwell M40 (2015) 6.8 288
Pascal P100 (2016) 10.6 720
Volta V100 (2017) 15.0 900

sions of NVIDIA’s deep learning library cuDNN [9], which
effectively reduces the time spent computing each CONV
layer. The more recent version of cuDNN (v5) offers an
average 2.2× the performance of the first version (v1)
released in 2014 across a range of different DNNs. At the
same time, the maximum math throughput and memory
bandwidth provided by state-of-the-art GPUs have scaled up
rapidly over four years, by a factor of 3× and 3.2× in terms
of math throughput2 and memory bandwidth, respectively
(Table I). Consequently, the overall latency incurred to
compute a DNN algorithm is proportionally scaling down
as faster GPUs and high-performance backend GPU libraries
are introduced to the market. Unfortunately, the data transfer
bandwidth offered by the state-of-the-art PCIe link (gen3)
has remained unchanged at 16 GB/sec. This divergence is
the key reason behind the steadily increasing performance
overheads of vDNN on successive generations of GPUs
and its backend DNN libraries (Figure 3). Note that recent
high-end HPC systems for DNN acceleration are employing
multiple GPUs per server node (e.g., up to 8 GPUs on
a dual-socket motherboard), which reduces the the CPU-
GPU communication bandwidth allocated per each GPU.
For instance, 4 GPUs connected to a single CPU socket
are given 32 GB/sec of communication bandwidth to the
CPU memory over two PCIe switches, leaving only (32/4)
= 8 GB/sec of CPU-GPU bandwidth available per GPU. In
general, the growing performance gap between GPU per-
formance and CPU-GPU communication bandwidth renders
an urgent need for hardware/software solutions that can
remedy the aforementioned communication bottleneck issue.
In Section VIII, we discuss the implication of NVIDIA’s
high-bandwidth communication soluton NVLINK [38] and
next generation PCIe on our cDMA proposal.

Our compressing DMA engine is based on the key
observation that the activation maps, which account for
the majority of GPU-side memory allocations for training
deep networks [10], are amenable for compression, which
will drastically alleviate the PCIe bottleneck of virtualized
DNNs. A significant fraction of each layer’s activations are
zero-valued, meaning these data structures are sparse and are
highly compressible. As noted by multiple prior works [39],
[15], such sparsity of activations are originated by the
extensive use of ReLU [14] layers that follow (almost) every
single layer for feature extraction. We first provide a data-

2The math throughput of Volta V100 for mixed precision FP16/FP32
training can increase up to 125 TFLOPS when using its TensorCore [37].
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Figure 4: Average activation density of each layer in AlexNet over
time during training (going from dark to light blue colored bars,
per layer). Activation density is sampled at every 2K iterations of
training, and a total of 226K iterations were spent to reach the fully
trained model (53.1%/75.1% top-1/top-5 accuracy).

driven, in-depth DNN characterization study in Section IV
that motivates our work, followed by our compressing
DMA architecture in Section V. As the effectiveness of
our proposition (i.e., compression) is highly correlated with
the actual data that are input into the neural network, this
paper primarily focuses on convolutional neural networks
(CNNs) owing to their publicly available, realistic datasets
(e.g., ImageNet [40]) for computer vision tasks. Nonetheless,
we believe our proposal is equally applicable for some
popular recurrent neural networks that extensively employ
sparsity-inducing ReLU layers, including the GEMV-based
(general-matrix-vector-multiplication) RNNs employed by
Baidu for speech recognition [41] and language transla-
tion [42] services. At present, we cannot study these RNN
applications applications as there are no publicly available
training datasets. cDMA is less well-suited for RNNs based
on LSTMs [43] or GRUs [44], as they employ sigmoid
and tanh activation functions rather than ReLUs.

IV. SPARSITY OF DNN ACTIVATIONS

The focus of this paper is on DNN training, which
involves learning and updating the weights of a neural net-
work using the backpropagation algorithm. As discussed in
Section II-B, the values in the output activation maps (Y) are
derived as a function of both the input activation maps (X)
and the layer weights (W). The sparsity of each layer’s output
activations will therefore change as the training progresses,
during which not only will the layer be continuously fed with
new input activation maps, but the weights for the same layer
will undergo changes as a result of backpropagation. For our
compressing DMA engine to be effective, it is crucial that
the activation sparsity, and accordingly its compressibility,
remains consistently high throughout the entire training pro-
cess. This section analyzes the effect of training on activation
sparsity by using AlexNet [14] as a running example. We
detail our training methodology in Section VI.

A. Case Study: Activation Sparsity in AlexNet

Figure 4 shows the change in each layer’s average output
activation density over time, as the network is trained for
better image classification. We define the per-layer average
output activation density (AVGdensity) as the number of non-
zero output activations divided by the total number of output
activations, which is measured across the minibatch of the
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Figure 5: Change in AlexNet’s activation sparsity as the network
is trained. “Trained (0%)” corresponds to point in time when the
weights of AlexNet were initialized at the onset of training, whereas
“Trained (100%)” designates a fully-trained AlexNet. The three
numbers (C, H, W) below the names of each layer represent
the number of channels, the height, and the width of the output
activation maps. A zero value in an activation map is represented
as a black pixel and white otherwise. The RGB image of the boy
shown in Figure 1 was used to derive these results.

same 50 images. Accordingly, average activation sparsity is
equal to (1−AVGdensity). Figure 5 shows a visualization of
sparsity across time (x-axis), layer (y-axis), and spatially
within each activation map. For brevity, we only show the
layers that are immediately followed by ReLU layers and
would exhibit sparsity. For instance, the output activation
maps of the first convolutional layer of AlexNet (conv0)
contain 96 channels, each of which can conceptually be
thought of as a 2-dimensional, (55×55) array of activations
per channel. The 96 channels are arranged as a (8 × 12)
grid, with each grid corresponding to a single channel
with (55 × 55) activations (i.e., the top-leftmost image in
Figure 5). Each of the activations are displayed as black
and white pixels depending on whether they are zero-valued
(sparse, black) or not (dense, white).

Based on this analysis, we can draw the following key
observations. First, the first convolutional layer (conv0),

regardless of the iterations of training it has gone through, is
neither sparse nor dense, always falling within ±2% of 50%
average activation sparsity (or density). Second, pooling
layers always increase activation density, i.e., activation
maps always get brighter after going through the pooling
layers. This result is expected as pooling layers either pick
the highest value (when we use max pooling) or derive the
average value (average pooling) within the pooling window.
Thus, a pooling layer is likely to generate a dense output
unless all the input activations within the pooling window
are all zero-valued. Third, with the exception of the first
convolutional layer, the change in average activation density
exhibits a U-shaped curve during training; the number of
non-zero activations rapidly decreases during the initial
training periods but gradually increases back during the
latter stages of training as the model accuracy improves.
This U-shaped curve is also reflected in Figure 5 where the
activation maps quickly turn extremely dark during the first
40% of the training period but gradually becoming lighter as
the layer enters the mid-to-end stages of the training process.
Finally, layers located towards the end of the network are
generally more sparse than the earlier layers with the fully-
connected layers exhibiting much higher sparsity than the
convolutional layers. Overall, AlexNet exhibits an average
49.4% activation sparsity across the entire network when
accounting for the size of each of the layer’s activations
(e.g., the sizes of the activations in the earlier layers are
generally larger than those located at later layers). Thus, a
compression algorithm that can perfectly compress out all
the zeros can reduce the activation size by about half.

B. Effects of Training on Sparsity

In addition to AlexNet, we examined the sparsity of acti-
vations for larger, deeper, and more recent CNNs, including
OverFeat [45], NiN [46], VGG [11], SqueezeNet [47], and
GoogLeNet [12]. Figure 6 shows that the per-layer sparsity
measurements of these networks are very similar in nature
to AlexNet, reinforcing the observations listed above 3. In
the six networks that we study in this paper, we observe an
average 62% network-wide activation sparsity (maximum of
93%) across the entire training periods. Figure 7 shows the
behavior of AlexNet as a function of training time, including
the loss value computed by the loss function at the end of the
network and the activation densities of the four convolutional
layers. The graph demonstrates four key observations about
the effect of training on per-layer activation density, as
described below.

• When training begins, activation density drops dramat-
ically for all of the layers. This drop correlates with
the dramatic improvement in the loss function. We
believe that this drop in density is due to the network

3We omit the results for OverFeat, NiN, and SqueezeNet due to space
constraints. All these networks exhibit the U-shaped curve similar to
AlexNet, VGG, and GoogLeNet.
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Figure 6: Effect of training on layer activation density.

quickly adapting from its randomly initialized weights
to learning what features of the input data are not
important for classification.

• In the second regime, the activation density increases,
first somewhat rapidly and then more slowly. We be-
lieve that this increase stems from two factors. First,
during the middle stages of training, the network
weights are iteratively optimized to extract features
that it has previously neglected, gradually improving
accuracy. Second, a common heuristic in training DNNs
is to reduce the learning rate, typically multiplying the
original learning rate by 0.5 or 0.1, when the validation
accuracy plateaus with the current value [14], [48].

• During the final fine-tuning stages of training, the
weights are already close to their respective optimal
points so the effect on the overall average activation
sparsity is minimal.

• In general, convolution layers later in the network are
sparser than earlier ones. Deep networks are known to
build up a rich set of hierarchical feature extractors
across the network layers. For instance, Zeiler and
Fergus [48] observed that the first few layers of a CNN
are generally trained to respond to corners, edges, and
basic colors that commonly exist across all images in
a class-invariant fashion. However, deeper layers are
used to detect class-specific high-level abstractions such
as common textures (e.g., mesh patterns), texts, faces
of a dog, etc. We hypothesize that layers located deep
in the network are trained to respond to class-specific
features and have activations that only respond to a
subset of classes, leading to high sparsity. In contrast,
because layers positioned early in a network respond in
a class-invariant manner (e.g., activations will respond
to all the classes that have red-colored regions of an
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Figure 7: Change in loss value (left axis) and per-layer activation
density (right axis) as the network is trained (x-axis).

image), they are likely to exhibit less sparsity.

V. COMPRESSING DMA ENGINE

To address the performance bottlenecks associated with
moving activation maps between the GPU and CPU memory,
we exploit the sparsity of activation maps to compress them
before transferring them across the PCIe. Our proposal is
somewhat similar to compressing pages prior to moving
them to backing storage in a virtual memory system [49].
Our compressing DMA engine (cDMA) requires choosing an
efficient and effective compression algorithm, and a mecha-
nism to employ this algorithm to compress activation maps
as they are transferred between GPU and CPU memory.

A. Compression Algorithm

To compress activation maps, we need a simple com-
pression algorithm which can sustain compression from and
decompression to GPU memory at rates of 100’s of GB/sec
while saturating PCIe bandwidth with compressed data.

Run-length encoding compression. Early observations
of the sparse activation maps demonstrated a clustering of
zero-valued activations (Figure 5). As a result, we investigate
a simple scheme using run-length encoding (RLE) [50]
to compress the activation maps. Run-length encoding is
simple to implement, and is well suited for high-bandwidth
compression. Despite its simple design, the effectiveness of
RLE highly depends on the sparsity patterns exhibited in
the activation maps as compression is only effective for
consecutive zeros or non-zeros. As a result, RLE does not
offer good compression ratios across all of the activation
layouts (detailed in Section VII-A).

Zero-value compression. As demonstrated in Section IV,
approximately 50% to 90% of the activations are zero-
valued. We therefore investigate a simple yet highly effective
approach based on Frequent-value compression [51] that is
used to compress out the zero-valued elements.

Figure 8 provides a high-level overview of our zero-value
compression (ZVC) algorithm which assumes a compression
window sized as 32 consecutive elements. For every 32
activation values, a 32-bit mask is generated with a ‘0’ in a
given bit position indicating the corresponding value is zero
and a ‘1’ indicating a non-zero value. After this 32-bit mask
is generated, the non-zero elements are appended. Thus, 32
consecutive zero valued activations can be compressed down



Mask 

: Zero

Uncompressed

Data

: Non-zero

10011010000100100010000001100010

Compressed

Data

: Mask

: Non-zero

Figure 8: Zero-value compression.

to a single 32-bit all-zero mask (32× compression ratio). 32-
consecutive non-zero elements will result in a 32-bit all-one
mask, followed by the 32 non-zero activation values (a 3.1%
metadata overhead, 1-bit per each single activation value).
If 60% of the total activations are zero-valued, we would
expect an overall compression ratio of 2.5×. Compared to
RLE, the key advantage of ZVC is that it can compress out
zeros equally well regardless of how the zero values are
distributed in the data. Unlike RLE, ZVC works robustly
across all the data layouts of the activation maps. ZVC can
be implemented in high-bandwidth compression hardware
in a straightforward manner. The hardware implementation
complexity is dominated by the MUXes to gather/scatter the
non-zero data elements to/from the compressed representa-
tion and the pop-count/prefix-sum operation on the mask
to determine the offset to the next mask in the compressed
stream. We detail the ZVC DMA engine microarchitecture
in Section V-B and the area overhead in Section V-C.

Zlib compression. The compression scheme used in
the popular gzip utility is based on the DEFLATE al-
gorithm [52]. This algorithm has very good performance
across a range of data, but designing a high-throughput
hardware to perform the compression is quite complex.
Dedicated FPGA and ASIC solutions [53], [54] are capa-
ble of reaching approximately 2.5 GB/sec of throughput.
While processing multiple streams in parallel with multiple
compression engines can improve throughput, the hardware
costs escalate linearly with increased bandwidth. Supporting
this compression algorithm is impractical when the system
must be capable of compressing 100’s of GB/sec of data.
Nonetheless, we include the results using this approach to
demonstrate the upper-bound of the opportunity we may be
leaving on the table by not compressing non-zero data and
focusing solely on zero-value compression.

B. Compressing DMA Engine Architecture

Architecture overview. Figure 9 provides an overview
of the cDMA architecture embedded into the memory sys-
tem of a GPU. The additional hardware includes com-
pression/decompression units adjacent to the GPU memory
controllers (boxes labeled “C”) and a little more data buffer-
ing storage (box labeled “B”) in the existing DMA engine
at the PCIe interface. GPUs already perform compression
operations within the memory controllers today [55], [56],
[57], but the compression operations of our cDMA are
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Figure 9: cDMA architecture overview. Box “B” indicates the
location of the cDMA buffers whereas boxes labeled “C” indicate
the location of (de)compression units.

somewhat backwards compared to existing systems. The
existing compression hardware in the GPU memory con-
trollers compress data on the way into the GPU DRAM
and decompress on the way out to the L2 and GPU cores
(streaming multiprocessors, denoted as SMs in Figure 9)
to save GPU DRAM bandwidth. Our cDMA architecture
compresses the data coming out of the GPU DRAM on their
way to the DMA unit, and decompresses data in the other
direction. We provide a qualitative discussion on how the
operation of cDMA can be designed to work in a conventional
way (i.e., compression taking place on its way to the DRAM
to save bandwidth) in Section VIII.

An alternative implementation of cDMA would directly
add the (de)compression units inside the existing DMA
unit so that it compresses the data just before sending it
over PCIe and decompresses the data when received over
PCIe from the CPU. One key concern with this design is
its effect on the bandwidth requirements of the GPU on-
chip crossbar which connects the memory controllers to the
SMs and DMA engine. The key design objective of our
cDMA engine is to be able to saturate the PCIe bandwidth
to the CPU with compressed data. Accordingly, the GPU
crossbar bandwidth that routes uncompressed data from the
L2 to the DMA engine must be high enough to generate
compressed activation maps at a throughput commensurate
to the PCIe link bandwidth. As detailed in Section VII-A, the
maximum per-layer compression ratio observed is 13.8×.
Assuming PCIe (gen3) with maximum 16 GB/sec data
transfer bandwidth, up to (16×13.8)=220.8 GB/sec crossbar
bandwidth must be provisioned to fully exploit the potential
of sparse compression. Since the baseline DMA engine need
only serve the 16 GB/sec of PCIe bandwidth, providing over
200 GB/sec of crossbar bandwidth to the DMA engine for
the purposes of data offloading is unattractive. Our cDMA
design instead augments the GPU memory controllers with
the (de)compression units to compress the data read from
the DRAM before sending it over the crossbar to the DMA.
Such a design reduces the bandwidth demand on the crossbar
during a compressed DMA operation back to levels similar
to the baseline non-compressing DMA engine.

(De)compression microarchitecture. Figure 10(a) shows
the compression engine micrarchitecture implementing the
ZVC algorithm. This logic operates each cycle on a 32B (8
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Figure 10: ZVC engine microarchitecture.

word) element which corresponds both to the internal data-
path width in the memory controller and to one DRAM
burst. On one cycle, these eight words are compared in
parallel to zero, forming the mask bits for these 8 words.
A prefix sum operation, requiring eleven 3-bit adders, is
performed on the mask bits to determine the number of
zero-valued words in front of a given word. In the next
pipeline cycle, the non-zero data elements are shifted to
the correct resulting offset using the result of the prefix
sum operation to drive the mux-selects. The final cycle
in the pipeline steers the resulting zero-compressed data
to append it to previous compressed data in the overall
128B (cache-line sized) window on which we perform ZVC
compression. The 8-bit mask is also appended to the mask
from previous cycles. The total latency to compress a 128B
line is six cycles, four 32B sectors moving through a three-
stage pipeline.

Figure 10(b) shows the ZVC decompression microarchi-
tecture which expands one compressed item into 128B.
The decompression logic also operates on 32B at a time,
producing 32B of decompressed data each cycle. In the
first cycle of the pipeline, an 8-bit segment of the mask
is considered. A pop-count (number of ones) of this 8-bit
segment of the mask determines the number of words that
will be used in a given 32B sector. In parallel, the 8-bit
segment of the mask is evaluated to determine the correct

mux-selects (also a small prefix-sum operation). In the next
cycle, the 32B decompressed value is formed by muxing
payload values (or a zero) into the correct locations. The
pipeline requires only two additional cycles of latency to
decompress a 128B line, because decompression can start as
soon as the first part of the data arrives from the crossbar.

C. Design Overheads

(De)compression units. While we expect that the ex-
isting GPU compression units can be leveraged for cDMA
to minimize design overheads, we assume that the cDMA
(de)compression hardware supplements existing hardware
for a conservative area estimate. Nonetheless, our cDMA unit
can allow existing DRAM compression schemes optimized
to minimize DRAM bandwidth to also take place. We use
the FreePDK [58] 45 nm process design kit and scaled the
resulting area using a conservative cell size reduction of
0.46× from 45 nm to 28 nm. Assuming a 50% cell area
utilization due to the design being dominated by wires
and MUXes, the six (de)compression units are estimated to
occupy 0.31mm2.

Buffer sizing. The DMA engine must also maintain a
buffer large enough to hold the bandwidth-delay product
of the memory sourcing the data to prevent bubbles in
the output stream. As we detail in Section VII-B, DNN
computations are highly compute-bound so the required
average memory bandwidth is measured at less than 100
GB/sec, leaving more than (336 − 100)=236 GB/sec for
cDMA to fetch data without affecting performance4. Our
experiments show that provisioning 200 GB/sec of band-
width (i.e., the maximum per-layer compression ratio of
13.8× multiplied by the max PCIe bandwidth of 16 GB/sec)
for cDMA reaps 99% of the performance benefits of sparse
compression. As a result, based on a 350 ns latency from
the time the DMA engine requests data from GPU memory
to the time it arrives at the DMA engine [59] and the
200GB/sec compression read bandwidth, the DMA engine
needs a 70KB (200GB/sec×350 ns) buffer, shown as block
“B” in Figure 9. It may seem counter-intuitive that cDMA
would need this large a buffer, since it is receiving only
compressed requests at an overall rate of 16 GB/sec from the
crossbar. The reason why the buffer must be overprovisioned
is because the cDMA engine does not know a priori which
responses will be compressed or not. Since it must launch
sufficient requests to keep the PCIe bus busy even with
highly-compressed data, a large number of requests will be
in-flight. If these requests are not compressed, the buffer is
required to hold the large amount of data returned until it
can be streamed out over the PCIe interface. This buffer size

4For a conservative estimation, we discuss the overall design of cDMA
architecture and its effect on DRAM bandwidth utilization in the context of
Maxwell Titan X which has 40% lower memory bandwidth than the more
recent Pascal Titan Xp. We quantitatively evaluate the effect of cDMA on
both Maxwell and Pascal GPUs in Section VII.



is not a significant source of area (approximately 0.21mm2

in 28 nm according to CACTI 5.3 [60]). Compared to the
600mm2 of a NVIDIA Titan X chip, the added overheads
of (de)compression units and DMA buffers are negligible.

D. cDMA Policy

Performance-optimal cDMA. As noted above, we provi-
sioned both the cDMA engine and the memory subsystem
to maximally utilize and saturate the PCIe channel with
compressed activations. In other words, the baseline cDMA
policy is to read uncompressed activations at a high enough
rate (commensurate with the per-layer compression ratio
× PCIe bandwidth) from DRAM so that the compressed
data can be transferred to the CPU via PCIe at maximum
throughput.

Bandwidth-aware cDMA. For GPUs that are not equipped
with high enough DRAM bandwidth, the near 200GB/sec of
worst-case memory bandwidth usage can be a performance
limiting factor (e.g., GTX 1060 with only 192 GB/sec of
DRAM bandwidth). We therefore propose a bandwidth-
aware cDMA policy that throttles the DRAM bandwidth us-
age of cDMA at a statically fixed level when the compression
ratio for a given layer’s activation exceeds this predefined
amount. As the average network-wide compression ratio is
shown to be around 2.6×, we empirically set the bandwidth-
aware cDMA policy’s throttling threshold at 48GB/sec (i.e.,
3.0× compression ratio times 16GB/sec). For layers with a
compression ratio higher than 3.0×, bandwidth-aware cDMA
can only reduce the latency overheads of data movements
by up to 3×. As we quantitatively demonstrate in Sec-
tion VII-B, our bandwidth-aware cDMA still provides 94% of
the performance of the baseline, performance-optimal cDMA
policy, presenting a practical and cost-effective solution for
DNN memory virtualization. Such a predefined threshold
can be adjusted per user requirements by an extension to the
CUDA driver API, similar in spirit to cudaMemAdvise()
or cudaMemPrefetchAsync() used for customizing
page migration policies in CUDA Unified Memory [61].

E. Software Interface

The (de)compression features of the DMA engine can
be exposed to the programmer for adoption within ML
frameworks and other applications. We envision that the
compressed memory copy operation can be exposed to the
software level using a new cudaMemcpyCompressed()
call that enables the compression (or decompression) in the
DMA engine. We expect this API will be extended beyond
the typical cudaMemcpy() to also return the compressed
size of a region on completion of the copy operation. In our
experimental framework, the cudaMemcpyCompressed
calls would easily replace the cudaMemcpy calls already
deployed in vDNN.

VI. EVALUATION METHODOLOGY

Architectural exploration of cDMA in cycle-level simu-
lation is challenging for two primary reasons. First, exist-
ing GPU architecture simulators (e.g., GPGPU-Sim [62])
are not able to execute the cuDNN APIs as these GPU
accelerated library routines are released as pre-compiled
binaries. Second, a single iteration of training can take up
to tens of seconds even on the fastest GPU, so running
cycle-level simulations on these ML workloads within a
reasonable timeframe is likely a research project on its own.
We therefore take a hybrid approach in evaluating the effect
of cDMA on training performance. Specifically, we measure
DNN applications on a real GPU while properly penalizing
the system performance based on an analytical model of the
GPU memory subsystem, as summarized below.

GPU node topology. Our baseline DNN training platform
contains an Intel i7-5930K CPU with 64 GB of DDR4
memory communicating with an NVIDIA Maxwell Titan X
containing 12 GB of GDDR5 memory with a maximum of
336 GB/sec bandwidth [63]. For performance evaluation, we
also study the effects of cDMA on a Pascal Titan Xp which
contains 12 GB of GDDR5X memory with a maximum
of 548 GB/sec [64]. The PCIe switch (gen3) provides a
maximum of 16 GB/sec of data transfer bandwidth.

Virtualized DNN. We modeled the vDNN memory man-
agement policy as described in [10], which is interfaced to
the latest version of cuDNN (v5) [9]. vDNN is configured to
offload all the layer’s activation maps for memory-scalability
and to maximally stress the PCIe channel. The offload and
prefetch operations to and from CPU memory are initiated
using cudaMemcpyAsync(); the memory allocation size
is determined by the compression ratio observed by the
cDMA unit, as modeled below.

Compression pipeline. We implemented our cDMA com-
pression pipeline on top of Caffe [1]. We modified the
Caffe Python interface (pycaffe) to checkpoint the target
network’s activations so that they can be fed to our cDMA
compression algorithm to compress and downsize the acti-
vation maps for each layer’s offloaded data. The compressed
activations are then returned to the vDNN memory manager
to measure the latency incurred during the memory copy
operation to/from the CPU memory across the PCIe bus.

Effect of cDMA on memory bandwidth. Compared to
a baseline implementation of vDNN, cDMA affects system
performance based on the following two factors. First, the
reduced PCIe traffic helps improve the performance of vDNN
because the latency to move data in/out of CPU memory is
significantly reduced. However, to fully saturate the PCIe
link bandwidth and maximize the benefits of DNN virtual-
ization, the compressed activations must be generated at a
throughput commensurate to the PCIe transfer bandwidth.
Thus the second issue is that the average DRAM bandwidth
utilization of cDMA can exceed that of vDNN by a factor



Table II: Networks and trained model accuracy.

Network Top-1/5 (%) Batch Trained iterations
AlexNet 53.1 / 75.1 256 226K
OverFeat 52.8 / 76.4 256 130K

NiN 55.9 / 78.7 128 300K
VGG 56.5 / 82.9 128 130K

SqueezeNet 53.1 / 77.8 512 82K
GoogLeNet 56.1 / 83.4 256 212K

of 2.6× (Section VII-A), potentially interfering with the
cuDNN computation and decreasing performance.

State-of-the-art DNN libraries refactor the convolution
operations into a dense matrix-multiplication operation for
GPU acceleration [19]. This approach allows the CNN com-
putation to be completely compute-bound with high cache
hit rates and low average DRAM bandwidth utilization.
Using the NVIDIA CUDA profiler (nvprof), we observed
less than an average of 100 GB/sec of off-chip memory
bandwidth utilization across all six networks. This leaves
more than an average 336− 100 = 236 GB/sec of memory
bandwidth available for our cDMA engine to fetch activation
maps from Maxwell’s GPU memory without affecting the
throughput of DNN computations using cuDNN.

As we are not able to model cDMA inside an existing
GPU, evaluating the performance of cuDNN with both vDNN
and cDMA in silicon is impractical. Nonetheless, as long as
the GPU memory bandwidth consumption of cDMA (i.e., a
given layer’s compression ratio×PCIe bandwidth, denoted
as COMP_BW below) is smaller than the available 236
GB/sec of DRAM bandwidth (DRAM_BW), the compressed
activations can be generated at a high enough rate to fully
saturate the PCIe bandwidth while not affecting the baseline
cuDNN performance. To model the bandwidth limitations
on cDMA performance, we restrict the memory bandwidth
consumption of cDMA to never exceed the 236 GB/sec
leftover bandwidth of Titan X. For the few layers that
do require a DRAM bandwidth higher than 236 GB/sec
(i.e., layers with compression ratio×PCIe transfer bandwidth
higher than DRAM_BW), we assume that the compressed
activations are not generated at a fast enough rate to saturate
the PCIe channel. In other words, when evaluating system
performance of vDNN, we increase the latency incurred
when offloading the compressed activations by a factor of
(COMP_BW/DRAM_BW), modeled in an existing GPU by
inflating the volume of data transferred over the PCIe in-
terface. For a conservative evaluation, we set the COMP_BW
value, the maximum memory bandwidth cDMA is allowed
to consume5, to 200 GB/sec. The bandwidth-aware cDMA
policy does not consume more than 48 GB/sec of DRAM
bandwidth as discussed in Section V-D.

Training methodology. All networks are trained using

5Even though the peak memory bandwidth consumption of cDMA can
be on the order of 200 GB/sec, the average memory bandwidth usage will
not exceed 16×2.6 = 41.3 GB/sec, which is the PCIe bandwidth×average
network-wide compression ratio of 2.6.

stochastic gradient descent (SGD) with an initial learning
rate of 0.01. We manually reduce the learning rate by
factor of 0.1 or 0.5, choosing the value that provides higher
improvements in validation accuracy when the validation
error plateaus. Dropout [65] is employed for the fully-
connected layers with a rate of 0.5. We terminate the training
process when the validation accuracy does not improve
further beyond a learning rate smaller than 1× 10−5. All of
our compression algorithms are lossless and affect neither
the functionality nor the algorithmic nature of SGD.

Networks evaluated. We study DNNs that show state-
of-the-art performance in ImageNet [40]: AlexNet [14],
OverFeat [45], NiN [46], VGG [11], SqueezeNet [47],
and GoogLeNet [12]. We configure these networks based
on the .prototxt files available at Caffe Zoo [1] or
those available at the original authors’ websites [46], [47].
Table II summarizes each network’s fully trained top-1/top-5
classification accuracy, the minibatch sizes used for training,
and the total number of training iterations taken to reach its
final trained model.

VII. RESULTS

This section evaluates the efficiency of cDMA com-
pression, the savings in PCIe traffic, and the effect of
cDMA on energy-efficiency and performance. The three
compression algorithms discussed in Section V are denoted
as RL (run-length encoding), ZV (zero-value compression),
and ZL (zlib) in all of the figures discussed in this section.
vDNN is evaluated with the memory management policy that
provides memory-scalability, which offloads all activation
maps. We also established an oracular baseline (orac)
that completely removes the PCIe bottleneck by having the
offload/prefetch latencies always be hidden inside the DNN
computation when measuring performance.

A. Compression Efficiency

Figure 11 shows the the maximum per-layer compression
ratio across a given network and the average network-wide
compression ratio for each of the three compression algo-
rithms and three data layouts. While the results presented
in this section assume a 4KB compression window, we also
studied windows up to 64KB and found that our results did
not change much.

The maximum per-layer compression ratio determines
how much DRAM bandwidth cDMA must provision to
generate the compressed activations at a high enough rate
to fully saturate the PCIe bandwidth. The average network-
wide compression ratio reflects the reduction in PCIe traffic
provided by cDMA . Overall, our ZVC algorithm provides
the best average compression ratio across all the networks
and all three data layouts (average 2.6×). Despite its sim-
ple design, the efficiency of ZVC is decoupled from the
sparsity patterns in the activation maps and provides the
same compression ratio regardless of how the activations are
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Figure 11: The average and maximum compression ratio for a given compression algorithm for different activation data layouts. The
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Figure 12: The size of the activation maps offloaded to CPU memory (normalized to vDNN).
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Figure 13: Overall performance of cDMA on Maxwell and Pascal GPUs (normalized to oracle baseline).

arranged in GPU memory. zlib shows the highest average
compression ratio of 2.76× with NCHW but falls behind
ZVC for all but GoogLeNet with NHWC and CHWN. Similar
to zlib, RLE performs best with NCHW but provides the
worst compression with high sensitivity to the underlying
data layouts. As mentioned in Section V, zlib and RLE
prefer NCHW because this layout makes it more likely to
have the activation sparsity in a spatially clustered manner.
In the rest of this paper, we assume the NCHW layout for
both brevity and for a conservative evaluation of ZVC as
both RLE and zlib perform best with NCHW.

Figure 12 shows the reduction in the size of the activations
offloaded to the CPU, which directly translates into PCIe
traffic reduction. Although the sophisticated zlib algorithm
provides a further 30% reduction in PCIe traffic for GoogLe-
Net (over ZVC), the average traffic reduction across all six
networks is only 3% compared to ZVC.

B. Performance

Figure 13 summarizes the performance of cDMA com-
pared to vDNN and the oracular baseline. The performance

of RLE, ZVC, and zlib are measured based on the base-
line performance-optimal cDMA policy, consuming up to
(compression ratio×PCIe bandwidth) of DRAM bandwidth.
As discussed in Section V-C, bandwidth-aware cDMA (de-
noted as BW) only consumes up to 48 GB/sec of memory
bandwidth; we report its effect on performance under ZVC
algorithm for brevity.

While zlib provides the highest compression ratio for
SqueezeNet and GoogLeNet (8% and 30% higher than
ZVC), the resulting performance improvements are marginal,
providing an average 0.7% speedup over ZVC (maximum
2.2% for GoogLeNet). The meager performance advantage
of zlib stems from two reasons: (1) a significant fraction of
the offloading latency is already being hidden by the DNN
forward and backward propagation operations, and (2) the
higher compression ratios zlib achieves are for layers of
which RLE and ZVC already are able to mostly hide the
offloading latencies. Similarly, the bandwidth-aware cDMA
(BW) performs competitively against all three performance-
optimal policies, reaching an average 94% of the best
performing cDMA while only consuming up to 48 GB/sec



of DRAM bandwidth. Because of its simple compression
algorithm and robustness across different data layouts, we
conclude that ZVC with the bandwidth-aware cDMA policy
is the best option for DNN virtualization.

C. Energy Efficiency

The current CUDA software stack does not provide users
the ability to change the DRAM read bandwidth or PCIe
transfer bandwidth, making it difficult to precisely measure
the effect of cDMA on energy-efficiency. Instead, we provide
a qualitative comparison of cDMA’s energy-efficiency versus
vDNN. The primary energy overheads cDMA imposes on
vDNN are (1) the average 2.6× increase in DRAM read
bandwidth, corresponding to ZVC’s average network-wide
compression ratio, for fetching the activations from the
DRAM for cDMA compression; and (2) the (de)compression
units and buffers augmented inside the GPU. Based on
the examination of overheads of cDMA in Section V-C,
we expect the energy costs for the additional compression
logic and its buffers to be negligible as cDMA primarily
leverages (de)compression units already existing in GPU
memory controllers.

Also, while vDNN’s offload/prefetch operations do incur
1–7% power overhead, as measured with nvprof, cDMA’s
average 2.6× reduction in PCIe traffic will significantly
reduce the energy-consumption on the PCIe link as well
as in the CPU memory subsystem. When accounting for
the average 32% performance improvements (maximum
61%) provided by cDMA, we expect the overall energy
consumption of cDMA to be noticeably lower than vDNN.

VIII. DISCUSSION AND FUTURE WORK

Future CPU-GPU interconnects. NVLINK is NVIDIA’s
proprietary, high-bandwidth interconnect that enables fast
communication between GPU and CPU, and between
GPUs [38]. When coupled with IBM Power systems [66],
the communication bandwidth between the CPU-GPU can
be up to 80 GB/sec, alleviating the communication bottle-
neck of virtualized DNNs. With a multi-GPU DNN plat-
form [67] where 4 to 8 GPUs share the same communication
channel, the bandwidth allocated per each single GPU is
10–20 GB/sec, which is similar to what we evaluate in
this paper. Similarly, while next generation PCIe gen4 will
provide 2× higher bandwidth than PCIe gen3 and increase
CPU-GPU communication bandwidth to 64 GB/sec (as
opposed to 32 GB/sec of gen3), communication bandwidth
allocated for each single GPU will remain at (64/4)=16
GB/sec, which is equivalent to our evaluation setting. Conse-
quently, while these future CPU-GPU interconnects can help
alleviate the performance overheads of vDNN, it does not
fundamentally change the problem we address in this paper.
Current research trends point to even more memory hungry
DNN structures with complex inter-layer dependencies; for
an N layered neural network, the memory allocation size

has grown from O(N) for AlexNet, VGG, or GoogLeNet to
O(N2) for DenseNet [68], due to its densely interconnected
layers. Given such trends, the quadratically increased mem-
ory requirements of DNNs will cause much higher pressure
on CPU-GPU interconnects even for PCIe gen5 (providing
4× higher bandwidth then gen3, scheduled for standard-
ization in 2019), thereby continuing to motivate cDMA for
future systems running more complex and memory-limited
DNN algorithms. Overall, hardware/software co-designs like
cDMA that can remedy the CPU-GPU communication bot-
tleneck will grow in importance as DNNs become deeper
and their memory requirements grow.

Design costs of cDMA. In this paper, we assumed that
cDMA hardware supplements existing compression logic
for a conservative area estimation, consuming a total of
0.52mm2 in a 28 nm process assuming PCIe gen3. For
future high-bandwidth CPU-GPU interconnects like PCIe
gen4/gen5 or NVLINK, the cDMA engine should be capable
of keeping up with the higher CPU-GPU communication
bandwidth and be provisioned with a proportionally larger
buffer size to hold the bandwidth-delay product of the
memory sourcing the data (Section V-C). For PCIe gen5, the
overall area overhead of cDMA would amount to 1.5mm2

in a 28 nm process, which is negligible as current high-end
GPU chips already exceed 800mm2 (e.g., Volta V100 [37]).
However, we also estimate that the cDMA design complexity
can be amortized by leveraging existing GPU compression
logic [55], [56], [57] thereby incurring negligible design
overheads on top of existing GPU microarchitecture.

Compression for GPU footprint reduction. While cDMA
help reduce the PCIe traffic and CPU-side memory footprint,
the amount of memory allocated inside the GPU is the same
as the baseline vDNN. To reduce GPU DRAM bandwith
and memory capacity requirements, the compression engine
inside the GPU’s memory controllers could compress and
store the activations inside the GPU’s DRAM. Implement-
ing this optimization involves developing efficient memory
addressing schemes that allow the memory controller to
retrieve the data in its original, uncompressed form without
disturbing overall performance and energy-efficiency. This
future work is beyond the scope of this paper.

IX. CONCLUSION

Previous DNN virtualization solutions can incur sig-
nificant performance overheads when the communication
channel between the CPU and GPU is bottlenecked. We
introduce a general purpose compressing DMA engine that
can be used for high-performance DNN virtualization. Our
proposal exploits the unique characteristics of DNNs to
develop a cost-efficient compression algorithm, offering an
average 2.6× (maximum 13.8×) savings in data movement
on the CPU–GPU communication link. Overall, our cDMA
engine improves the performance of virtualized DNNs by
an average 53% (maximum 79%) on the Pascal Titan Xp



with a modest implementation overhead and can easily be
adopted into existing ML frameworks.
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