Appears in ICCD 2006. IEEE copyright restrictions apply.

Design and Implementation of the TRIPS Primary
Memory System

Simha Sethumadhavan, Robert McDonald, Rajagopalan Desjdaoug Burger and Stephen W. Keckler
Computer Architecture and Technology Laboratory
Department of Computer Sciences, The University of Texasustin
* Department of Electrical and Computer Engineering, Thevehsity of Texas at Austin
cart @s. utexas. edu - wwv. cs. ut exas. edu/ users/cart

Abstract— In this paper, we describe the design and implemen- 1) To support high bandwidth, the L1 caches are address-

tation of the primary memory system of the TRIPS processor. interleaved and partitioned across four cache banks thus
To match the aggressive execution bandwidth and support hig supporting up to four loads and stores every cycle. In

levels of memory parallelism, the primary memory system is L .
completely partitioned into four banks, can support up to 2% addition, the LSQ and MHU mechanisms are also com-

in-flight memory instructions, aggressive reordering of inflight pletely partitioned. Previous implementations have used
loads and stores, up to four loads and stores every cycle ancpu partitioning to a limited extent (like address interleaved
to 64 outstanding cache misses to sixteen different cachendis. caches [4]), but these architectures still used centilize

The design was implemented using IBM 130nm ASIC technology it ; _
and occupies 21% of the processor area. We describe in detdile structures such as the LSQ and MHU, limiting microar

microarchitecture of the memory system, detailed design ofwo Ch'tecwra_l Sca_lab'“ty' .
of the most complex and interesting components — the LSQ and 2) To sustain high levels of memory parallelism, the
the MHU — and discuss the rationale behind some of the design TRIPS processor implements miss handling structures

decisions. Our design experience suggests that the comptgxof (“MSHRs”) that can support up to 64 load misses to
the partitioned memory system is comparable to less aggrese up to sixteen cache lines. Most modern processors can
centralized implementations. . .
support up to eight pending loads to four or fewer cache
lines [5]. In addition, to support aggressive reordering of
I. INTRODUCTION loads and stores, the TRIPS processor use®graory-
side dependence predictor. Typically, centralized proces-
Recent technology scaling trends are forcing more heavily sors feature fetch- or execution-side dependence predic-
partitioned microarchitectures [1], [2], [3]. In such dgss, tors but these designs cannot be efficiently implemented

the memory system must also be partitioned to match the i TRIPS because the fetch and execution portions of
bandwidth and capacity requirements of the partitioned ex- the microarchitecture are also partitioned.

ecution core. However, to our knowledge, no previous system

has achieved a fully partitioned memory system that support (a) TRIPS Processor Core (b) Data Tile Components
aggressive reordering of loads and stores while also stipgor
sequential memory semantics. In this paper, we describe
set of microarchitecture and design techniques that erebl
fully partitioned level-one memory system, in which none ¢

256
256 entry LSQ CAM entry
) LSQ
RAM

the necessary functions are centralized. We describedoel-|

design details of two of the most challenging portions o$ th - K5, 2y
pa_rtmoned design, the load/store queues and the misdihgnd MHU o e
unit. e

Each TRIPS processor supports four thread contexts (sim
to SMT), out-of-order execution, an instruction window o
up to 1024 instructions, and up to 256 memory operations.
To achieve high performance on this machine, the primagyg 1. Single core of the TRIPS SMT-CMP prototype and compo-
memory system must (1) be fully partitioned so as to praents of a single data tile
vide memory bandwidth commensurate with the execution
bandwidth, and (2) sustain a high degree of memory-levelThe primary memory system (level-1) of the TRIPS proces-
parallelism. For an aggressive execution core like TRIPSgr prototype is made up of four partitions, each called aDat
a centralized L1 system cannot provide the necessary Iqwe(DT). Each DT (Figure 1) is interleaved at a cache-line
latency, high bandwidth, or proximity. granularity and includes an 8KB, 2-way associative cacim ba

To satisfy the above requirements, the TRIPS primary merfi-1D), a local copy of the load store queue (LSQ), a local copy
ory system implements the following advanced capabilitiesof the data translation lookaside buffers (TLB), a storadlo

16 entry
TLB

Dependence Predictor

dependence predictor (DPR), and miss-handling unit (MHU% also partitioned and there are multiple fetch pointsHieig
Each DT is connected to three different networks: the ogkramdependent instruction streams. In such cases, it is igilples
network delivers loads and stores from the execution unitsto construct the total memory age order from the partial
the DTs, the L2 network is used to access the L2 cache bamkemory age orderings observed at different fetch pointsghe
on load and store misses and the status network connectd 8lIDs must be encoded as part of the instruction.
the DTs and is used to track stores arriving at the differentConsistency model TRIPS implements a weak consistency
DTs. model (similar to Power 4 [6]) that enforces load/store de-
Using the structures and networks, each DT partition: (pendences but relaxes all execution orders and requires the
provides data for loads and stores, (b) performs addrgs®grammer to insert memory barriers to realize more strict
translation and protection with the DTLB, (c) handles cacleonsistency. Direct hardware support of more traditiomal a
misses with MHU, (d) tracks load and store dependenceogrammer friendly consistency models on TRIPS (like in
with LSQs, (e) performs load/store dependence prediction fother aggressive out-of-order processors) can negatively
aggressive load store issue with DPR, (f) detects whenat st pact performance. Consider, for instance, total storerorge
outputs for a TRIPS block have been produced, (g) writ€$SO). Among other requirements, TSO requires that stores
stores to caches/memory when they become non-speculative different memory addresses commit in program order.
and (h) performs store merging on L1 store cache missé&se. support TSO on TRIPS, a store must be constrained to
Since each DT provides all necessary L1 capabilities for thpdate memory only after the previous store has committed.
addresses that are mapped to it, the design can be scaled Tiia requirement would restrict store commits to one per
complexity-effective manner by replicating the DTs. cycle whereas a weaker model can enable simultaneous store
The design, implementation and verification effort for theommits from all four DT partitions. The slower deallocatio
TRIPS partitioned memory system required a total 21 persoh stores eventually leads to slower deallocation of other
months and used an IBM ASIC flow at 130nm for the desigprocessor resources resulting in performance losses.
A group of 4 DTs occupies 21% of the processor core area.Block Atomic Execution: TRIPS implements a block
Our design experience suggests that complexity is not a batemic execution model in which a TRIPS block [2] can
rier to implementing partitioned memory systems. Althougbpdate architectural state only when all of its memory and
new mechanisms are required for partitioned systems, theegister outputs have been generated. To support blocki@atom
mechanisms are simple, and the time-to-design and verificatexecution, each TRIPS block encodes the number of memory
complexity are comparable to a centralized implementationoutputs for a block, and the LSIDs of all outputs in the
The rest of this paper is organized as follows: Sections dtore-mask bit vector, in the block header. This informatio
and Il describe the memory system related aspects of TRIBSbroadcast to all the DTs when a new block is fetched.
architecture and the DT microarchitecture respectivelye T
design and implementation of the the LSQ and MHU - the
two of the most interesting components in the design where th The load and store instructions can be mapped onto any
most innovation was required — are described in Sections 6f the sixteen execution units on the TRIPS processor (Fig-
and V. We describe the area and timing aspects of the desige 1a.) The memory instructions issue from the execution
in Section VI and conclude with discussion of scalabilitydanunits when all their inputs are available, and are then detid
future work in Section VII. to the DT through the operand network. This section provides
an overview of the basic steps involved in load and store
processing in the DT and the pipelines that implement the
The TRIPS system supports most features found in commigrad/store processing steps. We also descsibee tracking,
cial architectures including different size loads/stof@s16, the only additional microarchitecture mechanism requfoed
32 and 64-bit), different types of memory attributes (mergémplementing the TRIPS partitioned memory system. We
able/unmergeable, cacheable/uncacheable), synchtionizaconclude this section with a discussion of the rationalérzkh
instructions, and virtual memory. In addition, TRIPS ISAhe memory side dependence prediction.
includes special support for providing sequential memor .
semantics and efficiently implementing a partitioned mgmof™ L0ad Processing
system. The pipeline diagram in Figure 2 illustrates the different
Load/Store Ordering: To determine the correct memorystages of load processing. Every incoming load accessts(a)
order and thus track load store dependences in the paetitioTLB to perform address translation and check the protection
primary memory system, the TRIPS processor uses speciatyributes, (b) the dependence predictor (DPR) to check for
encoded program order tags called Load Store IDs (or LSIDgpssible store dependences, (c¢) the LSQ to identify older
An LSID is a 5-hit field in a memory instruction. In mostmatching uncommitted stores, and (d) the cache tags to check
superscalar architectures, the program order (or “age”) fixr cache hits. Based on the responses (hit/miss) from tine fo
determined dynamically in the fetch stage and hence the LSiDits, the control logic decides on the course of actiontat t
is not included in the instruction. In eompletely partitioned load. Table | summarizes the possible load execution sim=nar
microarchitecture like TRIPS however, the fetch mechanisim the DT.

IIl. DT M ICROARCHITECTUREOVERVIEW

Il. ARCHITECTUREOVERVIEW

MHU - Missed load pipeline

From : N MBHR
L2 : BUFFER SEARCH
0-16Toads per fli H
H CHECK (EXECUTI ON UNI TS
: PRI OR DATA |73~ ’D» TLB
: STORE | READ | I [ACCESS
To
: — Deferred load pipeline : N AR B HE OCN |-
LSQ LSQ r:ﬁ:sz(BUFFER L2
LD FROM : WITE || P |:: :
EXECUTI ON SEARCH DETECT) : : fill :
TILES H H buf f er
1LSQ Multiple store fwd (1-8 cycles): : MHU all ocate :

Fig. 2. The DT Load Pipelines

[LTLB [DPR| Cache| LSQ | Response _ | to the L2. When the data is returned from the L2, the loads
Miss | X X X | Report TLB Exception in the MSHRs are enabled and load processing resumes. Like
Hit | Hit X X | Defer load until all prior deferred loads, missed loads also access the LSQ and cache to

At 1 WViss T B 1 Viss E?rﬁzrzrzggcﬁz;dcache pick up the most recent store values. Figure 2 illustrates th

At T Miss | Miss T X | Forward data _from L2 stages involved in processing missed loads.
cache, issue cache fi

B. Sore Processing

request
Hit | Miss | Hit Hit Foqrward data from LSQ Store processing occurs in two phases. During the first
and cache phase, each incoming store is buffered in the LSQ and the
other DTs are notified about the store’s arrival. During this
TABLE | phase each store checks for dependence violations; if any
LOAD EXECUTION SCENARIOS. X REPRESENTS DON'T CARE” ygunger loads to the same address as the store are in the queue
STATE. then a violation is reported to the control unit, which iaiéis
recovery. The dependence predictor is also trained to pteve
such violations in the future.
Load hit: When the load hits in the cache, and only ir Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
the cache, the load reply can be generated in two cycles. T siore pick Store Read Access | checkfor | Writeto
best-case latency is likely to be the common case for m¢ MMt I o commit ?fﬁfi’saéa f:‘;:e hit or miss C:;':Z;’
loads. When a load hits both in the cache and the LSQ, t LRU update buffer

load return value is formed by composing the values obtained
from the LSQ and cache. First, the load picks up any matching
stores bytes from the LSQ and then reads the remaining bytes

from the cache. This operation can take multiple cycles andWh block b lati h doh ;
is referred to as store forwarding. Section 1V describesesto en a block becomes non-speculative, the second phase o

forwarding in more detail. store processing begins as illustrated in Figure 3. Ir_1 thissp
g . ._the oldest store is removed from the LSQ, checked in the TLB,
DPR hit: A load may arrive at the DT before an earlie

hich it d ds. P . h a load righ "and the store value is written out to the cache/memory system
store on which it depends. Processing such a load right awgy,e giore hits in the cache, the corresponding cache $ine i

will result in a dependence. vioilation and a flush leading ta, 0 ag dirty. If the store misses in the cache, the store
performance losses. To avoid this performance loss, thl§>$RImiss request is sent to the L2. We chose a write-back, write-

processor employs a simpl_e dependence predictor th";“qbt"edl'woalIocate policy to minimize the number of commit stalls.
whether the load processing should be deferred. If the DPR

predicts a likely dependence the load waits in the LSQ ulitil ££. Store Tracking
prior stores have arrived. After the arrival of all olderrst® In the TRIPS execution model, a block can commit only
the load is enabled from the LSQ, and allowed to accegfter all of its store outputs have been generated. Wherra sto
the cache and the LSQs to obtain the most recent updaigflves at any DT, the store arrival information is broadeds
store value. Figure 2 illustrates the stages involved ire@l tg the other DTs through the Data Status Network (DSN). Each
in processing deferred loads. DT then increments a local counter that counts the number of
Load miss: If the load misses in the cache, it is bufferedtores that have arrived at the memory system. When all of
in the MSHRs [7] and a read request is generated and s#re stores in a block have been received, the DT that received

Fig. 3. The ST Commit Pipeline

the last store sends a message to the control tile indicttatg Logical L9Q Record

all memory outputs have been generated. 3 37 g 64

vALI D| TYPE| wai T| ADDRESS BYTE | ST DATA

D. Memory-Sde Dependence Processing ENABLE| | b TARGET
In the TRIPS implementation, the instruction window is MA//‘/ A><§ o
partitioned across sixteen execution units (Figure 1) dred t oo
dependent loads and stores can be mapped on to any of the) Byte L2 forget & lond addres
execution units. A naive extension of conventional depande & || Address Enable RAM
processing mechanisms [8] would hold back the |oadhe - CAM CAM
execution unit until the execution of the dependent store. This Eg Ports: Ports: Ports:
strategy can increse the load latency as explained below. 3 1read 0 read 2 read
The latency of dependent loads can be broken down into 1 write 1 write 1 write
four parts: (1) the latency for the load to detect that the 1search 1search

dependent store has executed, (2) the latency for the loael to

delivered from the execution unit to the DT, (3) the latermy t

access the DT, and (4) the latency to deliver the value fram th

DT to the target of the load. With execution side dependence Fig. 4. Logical and Physical Organization of the LSQ

processing, no overlap is possible between any of the letgnc

because the loads are issued only after the dependent stores

resolve and rest of the steps must be performed in ordée LSQ scans all the matching stores starting from the most

However, memory side dependence processing allows tig€ent store, processing one matching store every cytterei

overlap of steps (1) and (2). until the value every load byte has been obtained or untiethe
are no matching stores to the unforwarded bytes.

Physical LSQ Organization

IV. LSQ MICROARCHITECTURE

The LSQ is critical for Supporting aggressive memor%/T doubl o OXbbb{fﬁ,,,,EEY‘?,Q,,,,B)/E?,1,,,F,Y!e,?,,,B,V,‘?i,,,B)’E%f‘,,,?!E%?,,,‘?YE@,,,?Y‘?J,,
ordering and is often considered to be one of the most complex 15)

. - o hal f
structures in an out-of-order processor. This sectionritesg ' "' *° , CEENS

the design of the LSQ in the context of the partitioned TRIPS verd 0x8004 AN

microarchitecture. ST doubl e Oxbbbb)
The LSQ must support four major functions: (1) detec nhait oxsoos ; === ;

ordering violations between loads and stores to the sam€, . o1 ® ; : :

address, (2) forward values from uncommitted stores tosloaS byte 0XB000 2 @ : ;

to same address, (3) buffer and wake up deferred loads, and 2 @ : :

(4) buffer and commit store values to memory. All the above ™' ©® » | P -8

Obtained from
cache

functions, except the third, are also required of the LSQs {ff\® doubl e 0x8090 y v v v v v
conventional architectures. The third functionality idated ST DT DI G e e
to dependence prediction and is most efficiently implengnte
in the DT/LSQs for TRIPS. In this section, we describe the Fig. 5. Multiple stores forwarding to loads in the LSQ
state in the LSQ and the store forwarding functionality af th

LSQ. We omit the description of other functionality for spac Figure 5 illustrates an example of multiple forwarding

reasons. where multiple stores of different sizes match to a 8-byte LD
(Address 0x8000, Age 24). In the first cycle, the CAMs are
A LQ state associatively searched and the stores 23, 22, 20, 18 and 17

The TRIPS microarchitecture allows up to eight blocks to bare identified as matching stores. These matches are scanned
in-flight simultaneously and each block can have a maximustarting from the most recent store. In the first scan, byte
of 32 memory instructions; therefore, a maximum of 256 of the LD is retrieved from store 23 and load byte is
memory instructions in-flight. To accommodate the case wherarked as forwarded. In the next scan, a new associative
all the memory instructions in a block reach a DT partitidmg t search identifies the matching stores corresponding tohie t
LSQ is sized to hold 256 memory instructions. The logical amémaining unforwarded bytes. The search now returns 22, 20,
physical organization of the LSQ are illustrated in Figure 418 and 17. Store 23 does not match because it produces byte

: 6 which was already forwarded to in cycle 1; at the end
B. LSQ Store Forwarding of the second scan, byte 0 from the store 22 is forwarded

The store-load forwarding operation is the most complitatéo the load. After the next three scans, bytes 4 and 5 are
operation in the LSQ because the load may match an arbitréoywarded from 20, byte 7 is forwarded from 18 and byte 1 is
number of stores and can forward from up to eight distinébrwarded from 17. At this point, there are no more matching
stores because of different sized LDs/STs. To handle tlsis,castores to the remaining unforwarded bytes (bytes 2 and 3)

and therefore LSQ forwarding is terminated. The remaining V. MISSHANDLING UNIT MICROARCHITECTURE
bytes are obtained from the cache. In this example, forwardi The Miss Handling Unit (MHU) plays a key role in sustain-
takes five cycles and during this period, the LSQ is completghq high levels of memory parallelism by managing multiple,
stalled and cannot accept new loads or stores. Note that afi§istanding L1D load and store misses. The MHU sends L1D
the first associative search which searches both the addresss requests to the L2 cache via the On Chip Network (OCN)
and the byte enable CAM and the rest of the scans searCthe chip data transfer fabric — and receives read dataéat |
only the byte enable CAM which is eight-bits wide. misses) and write acknowledgements (for store misses) from
the L2 cache. While much of the TRIPS MHU functionality is
typical of out-of-order processors, the use of on-chip oeks
Multiple forwarding in the LSQ: Many superscalar pro- imposes different correctness and performance requirsmen
cessors avoid the complex processing required for multipAg MHU Sate
forwarding by either simply flushing [9] or replaying [6] the =~ i
load when multiple matching stores are detected in the LSQ.Figure 6 illustrates the components of the MHU. The MHU
This strategy is not feasible in a block-atomic architegtike " each DT contal_ns (1) sixteen MSHRs that hol_d information
TRIPS because it can lead to deadlocks. If there are parffd) €ach of the missed loads, (2) four 64-byte fill buffers that
matches within a block, the load will not execute until th80ld cache lines returning from L2 (on the OCN) before it is
matching stores are drained, but the matching stores canfigften to the L1D cache, (3) a four entry FIFO load request
be drained because the load and its dependents may hav84gUe(LRQ) that decouples fill buffer allocation from thado
execute to produce the block outputs. miss processing, (4) a 64-byte store merge buffer that can
Unified LSQ: Recently several processors have support_&&alesce multiple stores to the same caghe line befor_emyndl
memory ordering using separate load and store buffers '{d0 the L2, (5) a 64-byte store transmit buffer that is used
increase the bandwidth and decrease the power per accB8sScraich storage for holding the coalesced writes whée th
TRIPS, however, uses an unified LSQ because separate buffér. packets are being created and sent, and (6) a 64-byte
will require more than 32 bits for encoding the memor§p'" buffer that holds one cache line worth of data and is

instructions. This is because implementing separate LD aiged to temporarily buffer cache spills before sending them
ST buffers requires that each memory instruction carry tw't ©n the OCN.

different types of age tags; one tag encoding the global Cache fill :| D From

C. Design Rationale

L2 Cache

Alternatively, one can partition the TRIPS LSQ in LQ/SQ

with the instruction encoding fixed at 32 bits. This strateg R il Butter Input
is disadvantageous because it restricts the number of ngemor Queue é Buffer
instructions in the block and places hard restrictions an th

number of loads and stores seperately in block (due to reduce e —I H) L2 he
number of bits available for both the tags). RS :

Maximally sized LSQs: Although only one fourth of the Store Mins g J %
total memory instructions are expected to reach any DT . StoreMerge Store Transmit Butbor

partition, the LSQ in each DT is maximally sized. There
are two microarchitectural reasons motivating maximaitgd
LSQs: o

Cache spill
1) Deadlock avoidance: If the LSQs are undersized then MSHR entry:

with speculative execution, younger memory instruc- Cache Spill [oor] rvee AEJBT:RfEr| st zq sratep
tions may arrive earlier than the older instructions and
may take up all slots in the LSQ preventing the older _ _
instructions from completing and eventually Stallingg'g' 6. Block diagram of the MHU. Inset shows the logical structure
f the MSHRs

forward progress.

2) Design Simplicity: When we started the project it ap-
peared to us that maximally sized conventional ag& MHU Operations

indexed LSQs would pose the least design risk becauserne MHU is capable of filtering redundant read requests
they were well-understood and straight-forward to imyfor joad misses) and coalescing smaller write updatese(sto
plement. misses) into larger chunks before sending them out into the
In research conducted after the prototype implementatiQCN. Both of these optimizations are critical to improvihg t
we have discovered complexity-effective methods to safgbacket efficiency and utilization of the OCN.
reduce the LSQ size without causing deadlocks [10]. TheseLoad Miss Processing:On a cache load miss, the MHU
undersized LSQs are managed as a free-list and are as sinafitecates a MSHR to hold the information pertaining to the
as the conventional LSQ. load. If there are no pending requests to the same cache line

the load is placed in the LRQ . To avoid deadlock conditionsgquests. Fill buffers guarantee deadlock-free operalipn
the pipelines in the DT ensure that requests accepted inThe providing support for decoupling the OCN fills from rest of
can always be allocated in the MSHRs and the LRQ. Whertlee MHU as they are always allocated prior to generation.
free fill buffer entry becomes available, and the OCN port i¬her alternative is to directly fill from the OCN into the
available, a fill buffer is allocated for the transactiorg tbad caches. This strategy requires either a dedicated caché&por
is removed from the request queue and a read request is $ifist or mechanisms to premptively acquire cache ports. The
on the OCN. former is undesirable because of area constraints and latte
When a read reply returns on the OCN, the reply data licause of the high complexity.
placed in the fill buffer allocated for that transaction. A2t Why Load Request Queues2RQ’s are used to improve
data arrives from the OCN, the load(s) corresponding to tlttee utilization of the fill buffers and to avoid conservative
missed data are identified in the MSHR, packaged as if it wegtalling on mergeable misses. For deadlock-free operation
a load entering the DT for the first time and sent to accetgo slots have to be reserved in all MHU load handling
the caches and the LSQ. This approach of re-injecting trek lostructures, so that loads already in the pipeline can beedlot
as new loads significantly simplifies bypassing betweerestagPre-reserving two slots in the fill buffers can be constraini
and correctness reasoning in the MHU. because there are only four fill buffers. Providing more fill
Store Coalescing:A OCN transaction requires one headebuffers is expensive in terms of area and restricted by timin
flit and between one and four data flits depending on the sizenstraints. To work To work around this, the fill buffer
of datum. To minimize the overhead of header packets, th#ocation is decoupled from the load execution by using
MHU attempts to create larger packets by coalescing maltighe request queues and pre-reserving slots in the request
stores misses to same cache line. This functionality isigeay queue. Pre-reserving slots is area-efficient and timifigiet
by the merge and transmit buffers in the MHU. If the L1 storbecause LRQ is smaller than fill buffers (45 bits vs 512 bits).
miss is to the same cache line as the cache line currently irSizing of structures: The number of MHU entries was
the store merge buffer then the missed store updates themejigosen so as to saturate the link between the DTs and the
buffer. If the store miss is to a different cache line, thee thOCN. For uninterrupted traffic on the link, the MHU should
line in the merge buffer is moved to the transmit buffer andave sufficient MSHRs to hold all incoming loads between
the new store is allocated in the merge buffer. Once a lifige L1 miss detection and L1 reply for a load. Assuming
is moved into the transmit buffer, the MHU logic scans angne load is issued every cycle in this interval, and given
packages the cache line into fewest possible flits. that the average round trip for miss handling is 14 cycles,
MHU Coherence Policies: As the MHU handles both we would need fourteen MSHRs. An additional two MSHRs
L1 load and store misses concurrently, it needs to ensuie required for deadlock-free operation, bringing theltot
coherency between load and store misses to the same addfgssber of MSHRs to sixteeen. If all these loads are to differe
The load misses and store updates to the same cache faehe lines, then a 16-entry fill buffer is required. However
can arrive in three different orders at the MHU). the store to meet cycle times and constraints of our ASIC methodology
update arrives before the load request to the same adddesswe restricted the number of fill buffers to four. This is uelik
the store update arrives after the load requesg)dsoth the to be performance critical because load misses are commonly
load request and store update arrive at the same time. clustered and contiguous and hence it is uncommon to have 16
In case 1, instead of forwarding to the load from the merggack-to-back loads to different cache lines to one DT partit
buffers, the merge buffers are flushed to the memory system.
The load is then issued to the memory system as usual. VI. PHYSICAL DESIGN
This strategy takes avoids building complex forwardingidog
between the merge buffer and the incoming load request for arfEach DT has an 8KB, 2-way set associative cache with 64
uncommon execution scenario. In case 2, the strategy atlogdgte lines. The cache has 1 read and 1 write port. Each LSQ
for case 1 will not work because the load request may hakenk contains 256 entries and consists of CAM and RAM
already read the L2 caches and outside of the L1 none of tp@rts. The CAM is physically constructed out of eight 32rgnt
structures have store-to-load forwarding capabilitiestis CAMs (one per block) and has a read, write and search port.
case, the store updates the corresponding bytes of theimgtcfThe DTLB is a 16 entry, 48-bit wide CAM with two search
fill buffer entry. When the load data arrives, it ensures that ports (one load, one store), one read port and one write port.
store update bytes are not overwritten. In case 3, the stdiee predictor is built using a single ported 1024-bit array.
update is held back a cycle so that it becomes a write-after-Area: Figure 7 shows the DT floorplan after synthesis,
read case as described in case 2. timing and layout optimizations. The design was impleménte
) . using IBMs 130nm ASIC process and the DT measures
C. Design Rationale 3.37mmx 1.188mm. The CAM is entirely synthesized from
Why fill buffers? For deadlock-free operation, the MHUflip-flops and occupies a large fraction of the DT area. A
should not have any resource dependences on the O@Nistom CAM is likely to be smaller than the synthesized
Namely, the MHU can never refuse to accept incoming OCSAM, but our design methodology did not support integration
replies while waiting for the OCN to accept new outgoingf custom CAMs into the design flow.

16 outstanding load misses per DT (64 per core). The design,
implementation and verification required 21 person months
and our design experience suggests that the design cotyplexi

of the partitioned memory system is comparable with the

complexity of a centralized memory system.

A completely partitioned memory system like TRIPS pro-
vides a complexity-effective way of increasing the capacit
and bandwidth of the memory system by simply increasing
the number of partitions. For instance, eight loads/stpers
cycle can be supported on TRIPS with eight DTs. However, for
such partitioning to be beneficial and feasible (1) the mgmor
instructions should be placed close to the cache banks to
which their addresses map to, (2) the area overheads from
replicated structures like LSQs should be minimized, and (3
the mechanisms used for communicating across the padtition
should scale.

Timing and Critical Paths: The design synthesized to The TRIPS compiler team is currently investigating tech-
3.2ns under worst case process parameters and operdafigges for placing the memory instructions closer to DTs
conditions. The top critical path is the detection of story array alignment analysis and sophisticated profile drive
forwarding in the LSQ and the generation of signals fopptimizations. In follow-up research, we have solved theaar
stalling the DT pipelines during store forwarding. At a higi®Pverhead problem, by utilizing the on-chip network for $afe
level, this process involves generating a eight-hit masi tHouffering overflows from the undersized LSQs [10]. Efficient
encodes the blocks older than the load, ANDing with anothgfore-tracking mechanism for sixteen or more partitions is
eight-bit mask that encodes blocks with matching stored, a@ challenging problem and left for future work. Solutions
then performing a cumulative OR on the resulting 8-bit masi@ these problems are the last few remaining steps towards
This process takes up roughly 45% of the cycle time. Then, thealable and completely distributed memory systems.
forwarding signal must be distributed to rest of DT pipedine
to stall conflicting operations. The high fanout on this sign
contributes significantly (27% of cycle time) to the totalade

The next most critical path is the logic for extracting an

packaging store misses to the L2. There are two componeﬁlt}?/anced Research Projects Agency under contracts F33615-

to the delay, the first involves the actual extraction precesl . .
the second that is a stall signal that is asserted when a-mu &ég{gﬁ%gggé\égcH30390004 and an NSF instrumentation

cycle OCN transaction has to be generated. For higher ik
guency implementations, adding an extra stage to the pgpeli
can eliminate the critical path, without affecting perf@amce

LSQ
CAM

‘- Dependence Predictor, TLB, Router and Logic -

8 Kb, 2-way
Cache

Fig. 7. Major structures in the DT floorplan

VIIl. ACKNOWLEDGMENTS

We thank the anonymous reviewers, Katherine Coons and
goris Grot for their suggestions that helped improve the
lity of this paper. This research is supported by the &fe

REFERENCES
[1] Elliot Waingold et al., “Baring it all to software: RAW nthines,”|EEE

because the store writes are unlikely to be critical openati

The third most critical path involves checking for cohemrenc 2]
in the MHU and performing coherence updates. The sourgg;
of the problem is not the delay associated with the coherence
checks, but the late availability of the load address thizxedr 4]
the coherence checks. Speculatively performing the cokere
checks a cycle earlier can result in false positives whiclp]
can complicate the design. Adding another stage (for the
uncommon case of a coherence violation) in the pipeline willg
reduce performance by increasing the latency of missed;loadm

VIl. CONCLUDING REMARKS

The TRIPS microarchitecture includes a primary memorys]
system that igully partitioned and capable of supportirfggh
levels of memory level parallelism. The memory system is
made up of four Data Tiles(DT), partitioned by interleaving[o]

Computer, vol. 30, no. 9, pp. 86-93, September 1997.

Doug Burger et al., “Scaling to the End of Silicon with EBGarchi-
tectures,”|EEE Computer, vol. 37, no. 7, pp. 44-55, July 2004.

S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Waealar,”
in Proceedings of the 36th Micro, December 2003, pp. 291-302.

G. S. Sohi and M. Franklin, “High-bandwidth data memoygtems for
superscalar processors,” Rroceedings of the 4th ASPLOS, Apr. 1991,
pp. 53-62.

L. Ceze, J. Tuck, and J. Torrellas, “Are we ready for higlemory-
level parallelism?” inProceedings of the 4th Workshop on Memory
Performance Issues, February 2006.

S. Vetter, S. Behling, P. Farrell, H. Holthoff, F. O’'Cosl) and W. Weir,
The POWER4 Processor Introduction and Tuning Guide. 1BM, 2001.
D. Kroft, “Lockup-free instruction fetch/prefetch dae organization,”
in Proc. of the 8th annual symposium on Computer Architecture. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1981, pp-891
G. Z. Chrysos and J. S. Emer, “Memory dependence prediatising
store sets,” inProc. of the 25th annual symposium on Computer
architecture.
pp. 142-153.
Intel Architecture 32 Family Developer’'s Manual, Volume 3, Appendix

based based on addresses of the memory instructions. To A2 Intel, 2001.

support high levels of memory level parallelism, the D

0] S. Sethumadhavan, D. Burger, and S. W. Keckler, “Rantithe Banks,

not the functionality, of Large-Window Load-Store Queti@gpartment

utilizes memory side dependence predictors, deep LSQs, and of Computer Sciences, The University of Texas at Austin,hTeeep.

an agressive miss handling unit capable of supporting up to

TR-06-39, 2006.

Washington, DC, USA: IEEE Computer Society, 1998,

